

WIADOMOŚCI TECHNICZNO-ARTYLERYJSKIE

Nr. 15.

$L_{L}OL_{I} = I = I = I = J = J = J = J$	Ζ	ES	ZY	T	II —	1932	r.
---	---	----	----	---	------	------	----

Pages.

SOMMAIRE:

TREŚĆ:

Str.

 Prof. dr. Huber Maksymiljan. — O wiel-	Prof. dr. M. Huber. — Sur la valeur des
kości naprężeń własnych, pozosta-	tensions internes, (restantes) dans
łych w skorupach pocisków działo-	les corps d'obus après le traite-
wych po ich obróbce termicznej. 3	ment thermique.
Ppłk. dr. Felsztyn Tadeusz. — Wpływ	Lt col. dr. T. Felsztyn — L'influence
pionowych pradów powietrza na tor	sur le trajet du projectile des cou-
pocisku 6	rants d'air verticaux
Ppłk. dr. Felsztyn Tadeusz, Lewandowski	dowski et M. Ziębiński – Le rebon-
Wawrzyniec i Ziębiński Marjan. —	dissement du projectile "S" tiré d'une
Odbijanie się pocisku "S", wystrze-	carabine contre l'acier et le bois
lonego z kbk., od stali i drzewa na	aux distances de 100 m. 200 m. et
odległościach 100, 200 i 300 m., 28	300 m
Inż. Ciundziewicki Jerzy i Czerwiński Igna-	Ing. J. Ciundziewicki et I. Czerwiński —
cy. — Wykreślna metoda wyzna-	Une methode graphique de détermi-
czania środków ciężkości i momen-	nation des centres de gravité et des
tów bezwładności pocisków 127	moments d'inertie des projectiles , 12'

UWAGA: Liczby. umieszczone nad tytułami poszczególnych artykułów w tekście, oznaczają symbole klasyfikacji dziesiętnej.

620.1:623.472.3

Prof. dr. HUBER MAKSYMILJAN.

O WIELKOŚCI NAPRĘŻEŃ WŁASNYCH, POZOSTAŁYCH W SKORUPACH PO-CISKÓW DZIAŁOWYCH PO ICH OBRÓBCE TERMICZNEJ.

W pracy prof. St. Płużańskiego i inż. R. Bergera p. t. "Zachowanie się materjału przy procesach cieplnych podczas wyrobu pocisków działowych" (Wiad. techn. artyleryjskie № 12, zesz. 1. 1932 r.) podano interesujące pomiary odkształceń pierścieni, wyciętych ze skorup termicznie obrobionych (str. 80 i nast.). Odkształcenia te zaszły wskutek dokonanego rozcięcia pierścienia w jednym przekroju (na rys. 102) i objawiły się mniej więcej równomiernem zmniejszeniem się średnicy zewnętrznej pierścienia, czyli zmniejszeniem się promienia krzywizny osi kołowej tego pierścienia jako preta zakrzywionego. Dowodzi to niewątpliwie istnienia przed rozcięciem naprężeń wewnętrznych, których układ w każdym przekroju sprowadzać się musi do pary sił. W każdym przekroju musiały więc panować po stronie zewnętrznej ciśnienia, a wewnętrznej—ciągnienia, rozłożone tak w przekroju, ażeby suma algebraiczna naprężeń bezwzględnych była równa 0 (z powodu braku sił zewnętrznych na powierzchniach pierścienia). Tylko w ten sposób można objaśnić silniejsze zakrzywienie się pierścienia po usunięciu cienkiej warstwy materjału na przekroju aa. Wielkości naprężeń, jakie przy tem zachodziły, łatwo ocenić, zginając w myśli oba końce rozciętego pierścienia momentami M dobranemi tak, ażeby promień osi pierścienia przybrał znowu wartość pierwotną.

Wobec nieznajomości dokładnego prawa rozkładu naprężeń w przekroju zastosujemy do oceny rachunek przybliżony, wychodząc z teorji prętów cienkich, dla których zmiana krzywizny osi jest wprost proporcjonalna do momentu zginającego M, a odwrotnie — do sztywności zginania EJ. Oznaczywszy przez przez ρ promień krzywizny osi pierścienia nierozciętego, a $\Delta \rho$ ubytek po rozcięciu, mamy przeto:

$$\frac{1}{\rho - \bigtriangleup \rho} - \frac{1}{\rho} = \frac{M}{EJ}$$

Uwzględniając, że skrajną wartość naprężenia zginającego w warstwach o odległości *e* od warstwy obojętnej określa wzór:

$$\sigma = \pm \frac{M}{I} e$$
,

możemy wyrugować z obu równań $\frac{M}{J}$. W ten sposób otrzymamy

$$\sigma = \pm E e \left(\frac{1}{\rho - \bigtriangleup \rho} - \frac{1}{\rho} \right)$$

Ale $\rho = \frac{D}{2} - e$, jeżeli *D* oznacza średnicę zewnętrzną przed operacją rozcięcia. Pomijając znikomo małą zmianę wielkości *e* przy zginaniu, możemy napisać

$$\triangle \rho = \frac{\triangle D}{2}$$

Ostatecznie więc wzór

(1) . . .
$$\sigma = \pm 2 E e \left(\frac{1}{D - 2e - \triangle D} - \frac{1}{D - 2e} \right)$$

posłuży do obliczenia przybliżonych wartości skrajnych naprężeń, powstałych widocznie jako skutek hartowania i zmniejszonych znacznie obróbką termiczną. Biorąc np. z tabl. 17 pierścień \mathbb{N} 5, znajdujemy D = 77 mm, e = 5 mm, $\triangle D = 0,036$ mm. Przyjąwszy $E = 2.1 \cdot 10^4 \text{ kg/mm}^2$, otrzymujemy:

$$\sigma = \pm 21.10^4 \left(\frac{1}{66,964} - \frac{1}{67} \right) =$$

 $=\pm 21.10^{4} (0.0149334 - 0.0149254) =$

 $=\pm 21.10^4$, 0,000008 $=\pm 1.68$ kg/mm² $=\pm 168$ kg/cm².

Jak należało się spodziewać, znalezione wartości są małe i nie przewyższają zapewne 5% granicy plastyczności stali skorupy.

Dear the interit contra Dearty in a main the State of the state of the

and a set of the set of the

Ppłk. dr. FELSZTYN TADEUSZ.

WPŁYW PIONOWYCH PRĄDÓW POWIETRZA NA TOR POCISKU.

Ostatnie lata badań meteorologicznych zaznajomiły nas bliżej z istnieniem, wielkościami i warunkami występowania wiatrów wstępujących i zstępujących. Zwłaszcza silny rozwój lotnictwa bezsilnikowego (lot szybowy) przyniósł nam wiele zupełnie nowych obserwacyj w tej dziedzinie.

Istnienie tych pionowych prądów powietrza pomijano dotychczas w rachunku toru pocisku. Mierząc wiatry i wyszukując możliwie najdoskonalsze wzory kompensacyjne na ustalenie t. zw. "wiatru balistycznego", przyjmowano zawsze wiatr średni, jako prąd ustalony, zmienny z wysokością, ale zawsze poziomy.

Jeżeli nawet liczono się przy pomiarach doświadczalnych wiatru ze zmienną szybkością wznoszenia się służącego do jego pomiaru balonika, to jedynie poto, by mieć pewność, na jakiej wysokości znajduje się w każdej chwili balonik, a więc, jaka jest szybkość średnia ruchu — uznawanego zawsze za poziomy — warstwy powietrza, przebytej przez niego w czasie między jednym odczytem a drugim.

Celem niniejszej pracy jest zbadanie, jak wielkim może być wpływ na lot pocisku prądów pionowych panujących w powietrzu, a dotychczas pomijanych.

1. Wyprowadzenie wzoru ogólnego.

Ażeby więc przyjąć pod uwagę w sposób prosty, choć niewątpliwie tylko przybliżony, wpływ wiatru pionowego w_y (oznaczonego przez +, jeżeli skierowany jest do góry) na lot pocisku, posługiwać się tu będziemy znanem założeniem Didion'a o ruchu względnym.

Wtedy (rys. 1) szybkość względna v_r i kąt rzutu względny τ_r pocisku względem powietrza wyrażać się będą wzorem:

(1)
$$v_r^2 = v_0^2 + w_y^2 - 2 v_0 w_y \sin \tau_0$$

(2)
$$\operatorname{tg} \tau_r = \frac{v_0 \sin \tau_0 - w_0}{v_0 \cos \tau_0}$$

a więc

$$v_r = \sqrt{v_0^2 + w_y^2 - 2 v_0 w_y \sin \tau_0} \sim v_0 \sqrt{1 - 2 \frac{w_y}{v_0}} \sin \tau_0$$
(3)

$$\sim v_0 \left(1 - \frac{w_y}{v_0} \sin \tau_0 \right)$$

lub (4)

$$\Delta v_0 = v_r - v_0 = -w_y \sin \tau_0$$

1Y

RY5. 1

Analogicznie

5)	$\operatorname{tg} \tau_r = \operatorname{tg} \tau_0 - \frac{w_y}{v_0 \cos \tau_0}$		
a więc	and the standard standard and		
6)	$\Delta t g \tau_0 = - \frac{\Delta \tau_0}{2} = - \frac{\Delta \tau_0}{2}$	wy	
	$\cos^2 \tau_0$	$v_0 \cos \tau_0$	
ub			
7)	$\Lambda = - \mathcal{W}_y$	$\cos \tau_0$	
"		v_0 ,	

przyczem należy zauważyć, że—jak to wynika bezpośrednio z rys, 1—

8

$$\Delta (v_0 \cos \tau_0) = 0$$

Przyjmujemy na wstępie założenie najprostsze, że pocisk od wylotu aż do punktu upadku biegnie w warstwie powietrza posiadającej jednostajną szybkość pionową w_y .

Zastosujemy do tego wypadku (rys. 2) ogólny wzór Cranza 1):

1) Dr. C. Cranz "Aüssere Ballistik". Wydanie 5. Berlin, 1925. str. 281.

$$\Delta y - \Delta x \operatorname{tg} \tau = \frac{\Delta (v_0 \cos \tau_0)}{v_0 \cos \tau_0} \left\{ n \cdot x \operatorname{tg} \tau_0 + (n-2) x \operatorname{tg} \tau - 2(n-1) y \right\} +$$

$$+ \frac{x \Delta \tau_0}{\cos^2 \tau_0} + \left\{ (n-1) \frac{\Delta \alpha}{\alpha} - \frac{\Delta c}{c} \right\} (x \operatorname{tg} \tau_0 + x \operatorname{tg} \tau - 2 y).$$

W naszym wypadku interesuje nas punkt upadku, $x=x_{\omega}$, a więc

$$\Delta x = 0.$$

Zauważmy, że w założeniu samem

$$\Delta c = 0.$$

Poza tem, tak jak to czyni Cranz w wymienionej wyżej pracy, i jak się to zwykle w pierwszem przybliżeniu przyjmuje,

(11a)
$$\Delta \alpha = 0.$$

Jeżeli więc w (9) wstawimy (8), (10), (11) i (11a), a zamiast $\Delta \tau_0$ wstawimy wartość z (7), przekształca się ono na:

(12)
$$\Delta_1 y = -w_y \frac{x}{v_0 \cos \tau_0}$$

i to niezależnie od stopnia oporu powietrza.

Oczywiście do tego samego rezultatu dojdziemy, stosując podane przez Cranza²) wzory różnicowe dla kwadratowego i kubicznego prawa oporu powietrza.

Wzór (12) nie podaje iednak zmiany całkowitej, ponieważ punkt początkowy układu wykonał w czasie przelotu pocisku t_{ω} drogę $+ w_y \cdot t_{\omega}$. Dlatego też we wzorze (12) zastosowaliśmy znacznik 1 przy Δy .

Jeżeli uwzględnimy tę zmianę początku układu, to otrzymamy, że całkowita zmiana wysokości w punkcie upadku Δy wynosi:

$$\Delta y = + w_y \left(t_\omega - \frac{x_\omega}{v_0 \cos \tau_0} \right). \tag{13}$$

²) 1, c. str. 283 i 284.

Powiększenie donośności wynosić więc będzie (rys. 2):

$$\Delta x_{\omega} = \frac{\Delta y}{\mathrm{tg}\,\omega} = + \frac{w_{y}}{\mathrm{tg}\,\omega} \left(t_{\omega} - \frac{x_{\omega}}{v_{0}\cos\tau_{0}} \right) \tag{14}$$

2. Wypadek "komina" wiatru pionowego.

Wypadek jednak, że pocisk przebywa całkowicie swą drogę w prądzie wstępującym lub zstępującym jest wypadkiem wyjątkowym. Normalnie wiatry wstępujące spotykają się w formie "kominów" pewnej długości i wysokości. Przyjmiemy tu dla uproszczenia (co odpowiada rzeczywistości w większości wypadków), że wysokość "komina" jest wyższa od wierzchołkowej toru.

Ogólny wypadek jest to więc ten, kiedy pocisk w pewnym punkcie swego toru wchodzi w taki "komin" (rys. 3) przy elementach początkowych x_1 , y_1 , t_1 , v_1 , τ_1 .

Oznaczamy przez x_2 , y_2 , t_2 , v_2 , τ_2 elementy końcowe toru pierwotnego przy opuszczaniu komina, a przez te same znaki z kreską (x_2' , y_2' , i t. d.) elementy toru, zmienione pod wpływem wiatru pionowego, panującego w tym kominie.

RY5. 3.

W samem założeniu, jak to wynika z faktu, że szukamy wartości elementów po opuszczeniu komina,

 $x_{0}' = x_{0}$

czyli

$$\Delta x = 0. \tag{15}$$

Ze wzoru (13) wynika również bezpośrednio, że:

$$\Delta_1 y = + w_y \left\{ (t_2 - t_1) - \frac{x_2 - x_1}{v_1 \cos \tau_1} \right\}.$$
 (16)

Dla całkowitego obliczenia wartości zmian donośności pod wpływem wiatru pionowego potrzebne nam będą wartości v_2' i τ_2' . Wartość t_3' nie wywiera wpływu na dalszy lot pocisku.

Wartość τ_2' znajdziemy z podanego przez Cranza³) wzoru (z odpowiednią zmianą znakowania).

$$\Delta \operatorname{tg} \tau + \frac{\operatorname{g} \Delta x}{(v_2 \cos \tau_2)^2} = \frac{\Delta \tau_1}{\cos^2 \tau_1} - \frac{\Delta (v_1 \cos \tau_1)}{v_1 \cos \tau_1} \cdot \qquad (17)$$

$$\left[2(tg \tau_2 - tg \tau_1) + (n-2)(tg \tau_2 - tg \tau_1) + \frac{g(x_2 - x_1)}{(v_2 \cos \tau_2)^2}\right] -$$

$$-\left[\operatorname{tg} \tau_2 - \operatorname{tg} \tau_1 + \frac{g(x_2 - x_1)}{(v_2 \cos \tau_2)^2}\right] \cdot \left[\frac{\Delta c}{c} + (n-1)\frac{\Delta a}{a}\right]$$

w którym piszemy

$$\Delta x = \Delta c = \Delta \alpha = \Delta (v_1 \cos \tau_1) = 0$$

zgodnie z wzorami (8), (10), (11) i (11a).

Jeżeli dalej za $\Delta \tau_1$ wstawimy wartość z wzoru (7), przy odpowiednio zmienionem znakowaniu, to otrzymamy, że

$$\Delta_1 (\operatorname{tg} \tau) = -\frac{w_y}{v_1 \cos \tau_1}, \qquad (18)$$

gdzie Δ_1 (tg τ) oznacza zmianę funkcji tg τ w odniesieniu do układu o punkcie zerowym w ruchomej warstwie powietrza.

³) 1. c. str. 282.

Ażeby znależć drugi składnik zmiany tg τ , będącej wynikiem (rys. 4) dodania wektoru pionowego w_y do wektoru v_2'' (gdzie v_2'' oznacza zmianę v_1 w odniesieniu do układu ruchomego), należy wpierw obliczyć wielkość bezwzględną v_2'' , czyli zmianę v_2 pod wpływem zmian początkowych v_1 i τ_1 .

W tym celu należy wpierw obliczyć zmianę v pod wpływem zmiany danych początkowych toru. Wobec tego, że w literaturze wzór ten w formie bezpośredniej nie jest podany, wyprowadzamy go w sposób analogiczny do podanego na str. 280 i 281 Cranz'a ogólnego dowodu wpływu zmian elementów początkowych na elementy końcowe łuku.

3. Wyprowadzenie wzoru na zmianę szybkości lotu pod wpływem zmiany jego danych początkowych.

$$v \cos \tau = \frac{v_0 \cos \tau_0}{V(z)}$$

(19)

więc

(20) $\frac{d(v \cos \tau)}{v \cos \tau} = \frac{d(v_0 \cos \tau_0)}{v_0 \cos \tau_0} - \frac{V'(z) dz}{V(z)} =$

$$=\frac{d\left(v_{0}\cos\tau_{0}\right)}{z\,V'(z)}\frac{dz}{dz},$$

$$v_0 \cos \tau_0 \quad V(z) = z$$

przyczem

(21)
$$z = k \cdot c \cdot \alpha^{n-1} (v_0 \cos \tau_0)^{n-2} x$$
,

gdzie

$$k=2$$
 dla $n=2$

$$k = (n-2) \text{ dla } n > 2$$

Więc

(22)
$$\frac{d(v \cos \tau)}{v \cos \tau} = \frac{d(v_0 \cos \tau_0)}{v_0 \cos \tau_0} - \frac{z V'(z)}{V(z)}$$

$$\left\{\frac{d c}{c}+(n-1)\frac{d \alpha}{\alpha}+(n-2)\frac{d (v_0 \cos \tau_0)}{v_0 \cos \tau_0}+\frac{d x}{x}\right\}$$

Na tym samym torze, w każdym jego punkcie

$$(23) dc = d\alpha = d(v_0 \cos \tau_0) = 0,$$

zachodzić więc musi równość

(24)
$$\frac{d(v \cos \tau)}{dx} = -\frac{z V'(z)}{V(z)} \cdot \frac{v \cos \tau}{x}$$

Lecz

(25)
$$\frac{d(v \cos \tau)}{dx} = \frac{d(v \cos \tau)}{dt} \cdot \frac{dt}{dx} = (-c v^n, \cos \tau) \cdot$$

$$\frac{1}{v \cos \tau} = -c v^{n-1}$$

Z porównania (24) i (25) wynika, że

(26)
$$\frac{z \, V'(z)}{V(z)} = - (-c \, v^{n-1}) \cdot \frac{x}{v \, \cos \tau} = + \frac{c \, v^{n-2} x}{\cos \tau}$$

Wstawiając to w (22) i zastępując różniczki przyrostami skończonemi, otrzymujemy:

(26)
$$\frac{\Delta (v \cos \tau)}{v \cos \tau} = \frac{\Delta (v_0 \cos \tau_0)}{v_0 \cos \tau_0} - \frac{c v^{n-2} x}{\cos \tau}.$$

$$\cdot \left\{ \frac{\Delta c}{c} + (n-1) \frac{\Delta \alpha}{\alpha} + (n-2) \frac{\Delta (v_0 \cos \tau_0)}{v_0 \cos \tau_0} + \frac{\Delta x}{x} \right\}$$

4. Ostateczne ustalenie zmiany donośności przy przejściu pocisku przez komin wiatru pionowego.

Wstawiając w równanie (26) wartości z równań (8), (10), (11) i (11a), otrzymamy, że

(27)
$$\frac{\Delta (\upsilon \cos \tau)}{\upsilon \cos \tau} = 0,$$

czyli rzut wektora v_2'' na oś xx-ów (rys. 4) jest równy $v_2 \cos \tau_2$.

Jeżeli dodamy wektorjalnie w_y do v_2'' , otrzymamy:

(28)
$$\Delta_2(t g \tau) = \frac{+w_y}{v_2 \cos \tau_2}$$

czyli ostatecznie z (18) i (28):

(29)
$$\Delta (t g \tau) = w_y \left(\frac{1}{v_2 \cos \tau_2} - \frac{1}{v_1 \cos \tau_1} \right) = \frac{\Delta \tau_2}{\cos^2 \tau_2}.$$

Problem polega więc obecnie na znalezieniu wartości Δy , w wyniku zmian w v_2 i τ_2 , określonych równaniem (27) i (29), w punkcie (rys. 5)

$$x = x_{\omega}, y = -y_3$$
.

Zastosujemy tu wzór (9), uwzględniając, że i tu stosować możemy założenia (10), (11) i (11 a).

Otrzymamy wtedy

(30)
$$\Delta_2 y = (x_{\omega} - x_2) \cdot w_y \left(\frac{1}{v_2 \cos \tau_2} - \frac{1}{v_1 \cos \tau_1} \right)$$

W rezultacie więc

 $\Delta_y = \Delta_1 y + \Delta_2 y$ (gdzie $\Delta_1 y$ określone jest równaniem (16)) wynosi:

(31)
$$\Delta y = w_y \left\{ (t_2 - t_1) + \frac{x_\omega - x_2}{v_2 \cos \tau_2} - \frac{(x_\omega - x_2) + (x_2 - x_1)}{v_1 \cos \tau_1} \right\} =$$

$$= w_{y} \left\{ (t_{2} - t_{1}) + \frac{x_{w} - x_{2}}{v_{2} \cos \tau_{2}} - \frac{(x_{w} - x_{1})}{v_{1} \cos \tau_{1}} \right\},$$

a

(32)
$$\Delta x_{\omega} = \frac{w_{y}}{tg\omega} \left\{ (t_2 - t_1) + \frac{x_{\omega} - x_2}{v_2 \cos \tau_2} - \frac{x_{\omega} - x_1}{v_1 \cos \tau_1} \right\}$$

Jeżeli wreszcie pocisk przechodzi przez kilka "kominów", z których każdy wywiera wpływ $\Delta_n x_{\omega}$, to ostateczny wynik wyrażać się będzie wzorem:

$$\Delta x_{\omega} = \Sigma \Delta_n x_{\omega} ,$$

Innemi słowy, pomijamy wpływ zmiany elementów toru pod wpływem działania pierwszego "komina" na zmianę elementów toru w drugim "kominie", czyli wyrazy drugiego rzędu.

Słuszność tego pominięcia łatwo sprawdzić na przykładzie.

Rozłóżmy (rys. 6) warstwę pionową, przez którą pocisk przechodzi, na dwa "kominy" w dowolnym punkcie x.

W pierwszym kominie więc

 $t_1 = 0, t_2 = t, x_1 = 0, x_2 = x, v_1 = v_0, v_2 = v, \tau_1 = \tau_0, \tau_2 = \tau.$

W drugim kominie

 $t_1 = t, t_2 = t_{\omega}, x_1 = x, x_2 = x_{\omega}, v_1 = v, v_2 = v_{\omega}, \tau_1 = \tau, \tau_2 = -\omega.$

RYS. 6

W pierwszym więc kominie

$$\Delta_1 x_{\omega} = \frac{w_y}{t g \omega} \left\{ t + \frac{x_{\omega} - x}{v \cos \tau} - \frac{x_{\omega}}{v_0 \cos \tau_0} \right\}$$

17

W drugim

$$\Delta_2(x_{\omega}) = \frac{w_{\nu}}{t g \omega} \left\{ (t_{\omega} - t) - \frac{x_{\omega} - x}{v \cos \tau} \right\}$$

Razem więc:

$$\Delta x_{\omega} = \Delta_1 x_{\omega} + \Delta_2 x_{\omega} = \frac{w_y}{t g \omega} \left\{ t_{\omega} - \frac{x_{\omega}}{v_0 \cos \tau_0} \right\}$$

zgodnie z wzorem (19).

5. Przykłady w wypadku ogólnym.

Ażeby zdać sobie sprawę z tego, jakiego rzędu mogą być zachodzące tu wielkości, obliczmy 3 przykłady:

a) 75 mm gr. wz. 15, $v_0 = 550$ m/sek, $x_w = 4000$ m.

b) 7.9 mm pocisk "S", wystrzelony z kb., $v_0 = 880$ m/sek, $x_{\omega} = 1000$ m.

c) jak b) $x_{\omega} = 2000 \text{ m}$.

Dane dla obliczenia przedstawia poniższa tabela:

Wypadek	το	$v_0 \cos \tau_0$	$\frac{x_{\omega}}{v_0\cos\tau_0}$	ťω	tgω	Δx_{ω} dla $w_y = 1$ m/sek
а	8º20'	544 m/sek	7,35 sek	12,2	0,2321	20,9 m
b	1°15′23″	880 ,,	1,137 "	2,251	0,03448	32,3 ,,
с	5°5′33″	877 ,,	2,280 ,,	7,213	0,2088	23,6 ,,

Wypadek a) jest rzadki. Kominy takiej rozciągłości zdarzać się mogą w wyjątkowych tylko wypadkach. Jeżeli do tego dojdzie szybkość wiatru n.p. 10 m/sek, to różnica donośności sięgnie 200 m

2

i więcej. Są to owe "niewytłumaczalne" zmiany w specjalnie niekorzystnych warunkach atmosferycznych.

Jeszcze bardziej rzucają się w oczy wpływy wiatrów pionowych w wypadku b). Wiatr taki o szybkości 3 m/sek zmienia donośność o okrągłe 100 m. Wiatr pionowy może więc być jedną z przyczyn zmiany donośności ognia k. m., tem poważniejszych, że w torze tak przyziemnym wiatry pionowe panują niewątpliwie często, zwłaszcza w dniach słonecznych, jako naturalny wynik ogrzania ziemi.

Wiatry pionowe mogą więc być w ogniu piechoty jedną z zasadniczych przyczyn jego nieobliczalnych zmian. W terenie szczególnie niepomyślnym (np. kotliny) wpływy wiatrów pionowych mogą być bardzo duże. One też tłomaczą owe nieobliczalne wprost wyskoki, jakie często obserwujemy przy strzelaniu na niektórych poligonach.

6. Obliczanie toru pocisku 75 mm.4)

Ażeby obliczyć wpływ wiatru pionowego w pewnym konkretnym wypadku toru artyleryjskiego, należy znać cały przebieg toru pocisku. Wiatry pionowe bowiem nie występują przeważnie w formie ciągłego prądu, lecz w postaci "kominów" wiatru wstępującego lub zstępującego.

Jako przykład weźmiemy 75 mm gr. wz. 17 z zapaln. R.Y.G., wystrzelony kątem rzutu $\tau_0 = 35^{\circ}$.

Z tabel strzelniczych i wykresów toru można dla tego pocisku odczytać następujące dane:

Punkt początkowy:

 $v_0 = 577 \text{ m/sek}, \tau_i = 35^0, x = 0, t = 0.$

Punkt upadku:

 v_{ω} (styczne) = 259.5 m/sek, $\omega = 48^{\circ}48'$, $x_{\omega} = 10665$ m, $t_{\omega} = 43.6$ sek.

Wierzchołek:

 $v = 233 \text{ m/sek}, \tau = 0^{\circ}, x_w = 5880 \text{ m}, y_w = 2450 \text{ m}.$

4) Rozdział ten został opracowany przez *inż. Jerzego Ciundziewickiego*, st. asyst. Zakładu Balistyki Politechniki Warszawskiej.

Chcac przy, pomocy tych elementów uzyskać dane reszty punktów toru pocisku, zastępujemy wznoszącą się gałęź toru krzywą stożkową, styczną do niej u wierzchołka oraz ściśle styczną na początku, opadającą zaś gałęź – stożkową styczną u wierzchołka oraz ściśle styczną w punkcie upadku.

W najogólniejszym wypadku równaniem tych gałęzi toru zastepczego będzie

(34) $y^2 + Bxy + Cx^2 + Dx + Ey + F = 0.$

W każdej z tych stożkowych mamy 2 punkty, przez które ma ona przechodzić, 2 styczne w tych punktach, oraz warunek piąty "ścisłej styczności".

Warunek przejścia przez punkt początkowy lub końcowy toru daje, że dla x=0, y=0, a więc w równaniu (34) F=0. Do dalszego określenia stałych potrzebne są więc jeszcze tylko 4 warunki.

Chcac warunki te wprowadzić w równanie, należy znaleźć pierwszą i drugą pełną pochodną naszej funkcji.

(35)
$$t g x = y' = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = -\frac{\frac{By + 2Cx + D}{2y + Bx + E}}{2y + Bx + E}$$

(36) $y'' = \frac{\partial y'}{\partial x} + \frac{\partial y'}{\partial y}y' = \frac{1}{(2y+Bx+E)^2} \left\{ -2C(2y+Bx+E) + \right\}$

$$+B(By+2Cx+D)+B(2y+Bx+E)-$$

$$-2(By+2Cx+D)\left|\frac{By+2Cx+D}{2y+Bx+E}\right\}$$

Dla części wznoszącej się toru będziemy więc mieli układ równań:

(37)
$$y_0' = t g \tau_0 = -\frac{D}{E}$$

entaine latere enabers price

(38) $\rho_0 = -\frac{v_0^2}{g\cos\tau} = \frac{(1+y'_0^2)^{3/2}}{v''} = \frac{1}{\cos^3\tau_0} \cdot \frac{E^3}{2(BDE-CE^2-D^2)}$

Rugując D z pierwszego i drugiego równania, mieć będziemy)

(39)
$$D = -E tg \tau_0$$

(40)
$$\frac{E}{B tg \tau_0 + C + tg^2 \tau_0} = \frac{2 v_0^2 \cos^2 \tau}{g}$$

Stożkowa przechodzi przez wierzchołek toru, t. j. $F(x_w, y_w) = 0$

(41)
$$y_w^2 + B x_w y_w + C x_w^2 + E y_w - E t g \tau_0 y_w = 0$$

Styczna jej w wierzchołku jest pozioma, więc

$$(42) \qquad \qquad B y_w + 2 C x_w - E t g \tau_0 = 0$$

Dla części opadającej toru obieramy początek układu, przez analogję do części wznoszącej się, w punkcie upadku, oś zaś odciętych skierowujemy poziomo w lewo. Wtedy równania nasze przyjmą postać:

$$D_1 = -E_1 tg \omega,$$

(44)
$$\frac{E_1}{B_1 t g \omega + C_1 + t g^2 \omega} = \frac{2 v \omega^2 \cos^2 \omega}{g}$$

(45)
$$y_w^2 + B_1 x_{1w} y_w + C_1 x_1^2 - E_1 tg \omega x_{1w} + E_1 y_w = 0$$

(46)
$$B_1 y_w + 2 C_1 x_{1w} - E_1 tg \omega = 0$$

W konkretnym wypadku, wprowadzając podane wyżej wielkości w równania (34) — (46), otrzymujemy dla części wznoszącej się toru równanie

$$(47) y^2 - 0.447 x y - 0.333 x^2 + 5019 x - 7170 y = 0$$

a dla części opadającej toru

$$(48) y^2 - 1,08 x y + 0,135 x^2 + 1360 x - 1190 y = 0.$$

UWAGA: Do tego samego celu możnaby dojść, posługując się wzorem, podanym przez Dufrenois.

Jeżeli mianowicie (rys. 7) stożkowa jest ściśle styczna w punkcie 0, co tem samem daje jej $\rho_0 = \frac{v_0^2}{g \cos \tau_0}$, i ma styczną poziomą w punkcie W taką, że kąt, jaki tworzy linja O W, z poziomem, wynosi ψ_0 , to przecina ona linję poziomą w punkcie C takim, że $X_c = O C$, wyraża się wzorem

(49)
$$X_c = \frac{2 v_0^2}{g} t g \tau_0 \frac{\sin^2(\tau_0 - \psi_0)}{\sin^2 \psi_0}$$

Wzór ten jednak nie zezwala na szybkie obliczenie reszty elementów. Y

RYS. 7.

Z krzywej y = f(x) łatwo można znaleźć kąt nachylenia toru $\tau = f(x)$. Wstawiając w równanie (35) spółczynniki równań (47), wzgl. (48), otrzymujemy dane następujące:

Gał	ęź wznosząca	Gałęź opadająca		
x = 1000 m	$y = 675 {\rm m}$	$\tau = 32^{\circ}53'$	y = 985 m	$\tau = - 39^{\circ}4'$
2000 m	1284 m	29º31'	1681 m	- 30°20'
3000 m	1795 m	23º24'	2156 m	- 21°1′
4000 m	1966 m	16°20'	2400 m	— 7°52′
5000 m	2384 m	7º37'	and the second	

- 22 -

Wykres $\tau = f(x)$ przechodzi przez punkty $(0, \tau_0)$, $(x_w, 0)$ i (x_w, ω) . Styczne na początku i końcu toru znajdziemy ze związku:

$$t g \Theta = \frac{d \tau}{dx} = -\frac{g}{v^2}.$$

Skąd:

$$tg \Theta_0 = 0,0000294653$$
 i $tg \Theta_0 = -0,000145676$.

Wielkości te, naniesione oczywiście w odpowiedniej skali, ułatwią nam wykonanie wykresu krzywej $\tau = f(x)$.

Szybkość v otrzymamy z wzoru

(51)
$$\frac{d\,\tau}{dx} = -\frac{g}{v^2}.$$

1.5

stąd

$$v = \sqrt{-g \cdot \operatorname{ctg} \cdot \theta}$$

Ażeby ułatwić i skontrolować wykres funkcji v = f(x), należy znaleźć położenie minimum i styczne w punkcie początkowym, w wierzchołku i w punkcie upadku.

Styczne znajdziemy z wzoru:

$$\frac{dv}{dx} = -\frac{cF(v) + g\sin\tau}{v\cos\tau}.$$

Oznaczając $\frac{dv}{dx}$ przez tg ζ , mamy:

 $tg z_0 = -0.14381$

tg $\zeta_{\omega} = +$ 0,015743

 $tg z_w = -0,0149$.

Ażeby znależć v_{\min} , należy wpierw znależć Θ_{\max} .

Odnajdujemy je wprost z wykresu. Rysując styczne do krzywej $\tau = f(x)$ potrzebne nam dla wzoru (52), łatwo znajdziemy Θ_{max} bezpośrednio.

Obliczona na tej zasadzie szybkość wynosi:

Gałęź	wznosząca się	Gałęź opadająca			
x = 2000	v = 358 m/sek	<i>x</i> = 1000	v = 253 m/sek		
3000	302 "	2000	238 "		
5000	254 "	3515	203 " ($v_{\rm min}$,)	
		4000	217		

Znając v, można obliczyć czasy lotu t z wzoru:

$$dt = \frac{dx}{v \cos \tau}$$

co daje kierunek stycznej w każdym punkcie.

Dla uproszczenia krzywą tę zastąpimy przez stożkową przechodzącą przez punkty (0,0), (x_w, t_w) i (x_{ω}, t_{ω}) oraz posiadającą styczne w punktach (0,0) i (x_{ω}, t_{ω}) .

Kierunki stycznych znajdziemy ze związku:

$$\operatorname{tg} \, \xi = \frac{d \, t}{d x} = \frac{1}{v \cos \tau}$$

$$tg \, \hat{\xi}_0 = 0,0021157$$

tg
$$\xi_{\omega} = 0,00585028.$$

Poszczególne wielkości toru przedstawia rys 8.

Nontra i

23 =

RYS. 8.

7. Obliczenie wpływu wiatru pionowego na tor prawie największej donośności pocisku 75 mm.

Ażeby obliczyć, jak wielki może być wpływ wiatru pionowego na obliczony w rozdziale 6-ym tor pocisku, przyjmujemy następujące założenie:

a) Pocisk natrafia w odległości x = 5000 m na komin o długości 1000 m, szybkości $w_y = 3$ m/sek.

b) Pocisk natrafia na ten sam komin dla x = 2000.

c) Pocisk natrafia na ten sam komin dla x = 8665.

d) Pocisk natrafia w odległości x = 3000 m na komin długości 3000 m, o szybkości $w_y = 12$ m/sek.

e) Pocisk natrafia na ten sam komin dla x = 6665 m.

Wielkość poszczególnych danych, potrzebnych do obliczenia wpływu podaje poniższe zestawienie:

计之外计划	The second second	in mine	A Manimus .	Second Sinks
x	У	1	t	U. C.
2000 m	1284 m	+ 29° 31′	5,21 sek	358 m/sek
3000 "	1795 "	+ 23° 24'	8,44 "	302 "
5000 "	2384 "	$+ 8^{\circ} 2'$	16,16 "	254 "
6000 "	2438 "	- 0° 50'	20,18 "	237 "
6665 "	2400 "	- 7° 52'	23,44 "	217 "
8665 "	1681 "	- 30° 21′	32,64 "	238 "
9665 "	985 "	- 39° 4'	.38.02 "	253 "

Wyniki obliczeń podaje poniższe zestawienie:

Wypadek	Długość komina	Początek komina	Sybkość wiatru	Δx_{ω}
a	1000 m	5000 m	3 m/sek	10 m
• b • •	and welling	2000 m	He for hermiter	8 m
с	and in stan	8665 m	Vern Howard with	13 m
d	3000 m	3000 m	12 m/sek	115 m
e	3000 m	6665 m	in Finkeidys	139 m.

8. Obliczęnie wpływu wiatru pionowego na tor 75 mm gr. przy torze bardzo płaskim.

Ażeby uzyskać dane porównawcze, jak wpływa płaskość toru na wielkość wpływu wiatru pionowego, wzięto ponownie przykład gr. 75 mm, lecz przy kącie rzutu 5°. Dla uproszczenia rachunku przyjęto, że pocisk wchodzi w "komin" wiatru pionowego u wierzchołka.

Dane do obliczenia są następujące:

 $egin{aligned} &x_2 = x_\omega = 3600 \,\,\mathrm{m}\,, &x_1 = x_w = 1990 \,\,\mathrm{m}\,, \ &v_1 = v_w = 400 \,\,\mathrm{m/sek}\,, & au_1 = 0^0, \ &t_2 = t_\omega = 8.8 \,\,\mathrm{sek}\,, &t_1 = t_w = 4,225\,, \ &\omega = 5^0\,43'\,, &\mathrm{tg}\,\,\omega = 0,10. \end{aligned}$

25

Długość "komina" 1610 m.

Poprawka jednostkowa dla $w_y = 1$ m/sek wynosi 5,5 m, a więc dla wiatru o szybkości 3 m/sek: 16,5 m, dla 10 m/sek: 55 m.

9. Wnioski.

Jak z powyższego widać, wpływ wiatrów pionowych na tor pocisku może być wielkością nie bez znaczenia praktycznego.

Znaczenie jego dla pocisków o dużym spółczynniku balistycznym (np. karabinowych) podkreśliliśmy uprzednio.

Ale i dla pocisków działowych może on mieć wpływ dość znaczny.

Nawet w wypadku, gdy "kominy" nie są zbyt rozległe, gdzie jednak pocisk, którego donośność wynosi 10000 m. napotyka w swej drodze 3 takie "kominy" po 1000 m długości, przy stosunkowo niedużej szybkości wznoszenia się (3 m/sek), to łączny wpływ wynosi już 30 m, a więc procentowo niewiele, ale zawsze wielkość wartą już uwzględnienia.

Toż samo odnosi się do "komina", przedstawionego w rozdziale 8-ym, gdzie nawet przy słabym wietrze wpływ na donośność już wyraźnie daje się odczuć.

Znacznie większe znaczenie może mieć wiatr pionowy przy większej jego szybkości i rozciągłości, a więc w niesprzyjających warunkach atmosferycznych.

I tak w przykładzie a), podanym w rozdziale 5), może wiatr ten zmienić donośność na 4000 m nawet o 200 m, a więc bardzo poważnie.

Jeżeli, jak w przykładzie d i e rozdziału 7, pocisk na swym torze napotka dwa takie kominy, to wpływ na donośność wyrazi się wielkością około 250 m na 10000 m, a więc liczbą istotnie poważną.

Jak więc z tego widać, o ile słabe i mało rozciągłe wiatry wstępujące mały tylko wpływ wywierać mogą na donośność, o tyle silniejsze i bardziej rozciągłe dawać mogą odchylenia bardzo dotkliwe.

W obecnym stanie naszej wiedzy meteorologicznej, strzelający nie ma żadnej możności nawet stwierdzić istnienia takich wiatrów, a tem mniej je zmierzyć. Uwzględnienie ich w strzelaniu, nawet doświadczalnem, a tem bardziej praktycznem, jest więc poprostu niemożliwe.

Przed meteorologją wojskową staje więc zadanie znalezienia metod, któreby pozwoliły na zmierzenie, lub przynajmniej przybliżone określenie takich wiatrów w chwili strzelania. Balistyka bez trudności znajdzie, jak z powyższego widać, proste środki uwzględniania tych pomiarów dla strzelania.

Niechby metody te były na początku nawet laboratoryjne, dające się zastosować tylko na poligonach doświadczalnych. Zastosowanie ich polowe niewątpliwie przyjdzie z czasem. Ale prace w tym kierunku należy już rozpocząć. Jak bowiem widać z danych liczbowych, podanych uprzednio, wiatry pionowe mogą w niekorzystnych warunkach dość poważnie zmienić tor pocisku. Trzeba więc umieć je stwierdzić i mierzyć, ażeby móc wpływ ten uwzględnić przy strzelaniu. 531.577 + 623.565.3

Ppłk. dr. FELSZTYN TADEUSZ. LEWANDOWSKI WAWRZYNIEC i ZIĘBIŃSKI MARJAN.

ODBIJANIE SIĘ POCISKU "S", WYSTRZELONEGO Z KBK., OD STALI I DRZEWA NA ODLEGŁOŚCIACH 100, 200 i 300 m.

Capitalen alaberta sitis entre sitis when alaberta hars

HI- the applier dentity oppositive of that all that interest and

WSTĘP.

Zagadnienie odbijania się pocisków karabinowych od przeszkód, lub rozbijania się na nich, ma duże znaczenie praktyczne. Znajomość bowiem kąta odbicia się umożliwia obliczenie rozmieszczenia osłon na strzelnicach w taki sposób, ażeby pocisk, odbity od jednej osłony, napewno napotkał na swej drodze drugą osłonę i w ten sposób nie wyszedł poza obręb strzelnicy. Dalej, poznanie k r y t y c z n e g o k ą t a u d e r z e n i a, poniżej którego pocisk, uderzając w daną osłonę, odbije się, zamiast wnikać w nią lub rozbijać się na niej, — zezwala na takie ustawienie płaszczyzn poszczególnych osłon, ażeby wykluczyć, lub przynajmniej zredukować, możliwość powstawania odbić, zawsze niebezpiecznych na strzelnicach.

To ostatnie zagadnienie łączy się ściśle z problemem brzegów przeszkody. Jasną jest rzeczą, że pocisk, uderzając o brzeg osłony, musi się zachowywać inaczej, niż uderzając w jej środek i że w tym wypadku szanse odbicia się są, nawet powyżej kąta krytycznego, o wiele większe. Poznanie, jak głęboko dla danego ośrodka sięga ta niebezpieczna strefa, pozwala na obliczenie prawdopodobieństwa powstania odbić na terenie strzelnicy, a tem samem na określenie celowości zastosowania takich lub innych osłon.

Dlatego też znajomość zachowania się pocisku przy zetknięciu się z najczęściej na strzelnicy stosowanemi osłonami (stal, drzewo) jest konieczna dla konstruktora strzelnic.

Ponadto jeszcze doświadczenia prowadzone w tym kierunku mogą się poważnie przyczynić do teoretycznego wyjaśnienia zawiłego problemu zachowania się pocisku u celu.

Zbyt mało jeszcze wiemy w tej dziedzinie, ażeby fragmentaryczne nasze doświadczenia dały się połączyć w jakąś regułę, choćby empiryczną, zezwalając tem samem na przewidywanie, właściwy cel wszelkiej pracy badawczej.

Właśnie jednak dlatego zebranie możliwie największej ilości danych doświadczalnych stanowić musi przesłankę wszelkiej późniejszej pracy teoretycznej.

Temu więc podwójnemu celowi: znalezieniu liczb, potrzebnych konstruktorowi strzelnic, i uzyskaniu możliwie obfitego materjału doświadczalnego z zakresu balistyki końcowej, służyć ma niniejsza praca.

Przy tej okazji uważamy za miły nasz obowiązek podziękować na tem miejscu p. inż. Henrykowi Walczakowi z Departamentu Budownictwa Ministerstwa Spraw Wojskowych, który umożliwił nam zapoznanie się z literaturą tego przedmiotu i zachęcił nas do przeprowadzenia poniższej pracy.

Systematycznych badań nad odbijaniem się pocisków karabinowych przeprowadzono bardzo mało; literatura fachowa podaje w tym kierunku bardzo słabe wiadomości.

Najobszerniejsze studjum w tej sprawie pojawiło się w książce "Organisation des champs de tir et construction des stands". Levallois-Peret, 1903. Imprimerie Wellhoff et Roche, wydawnictwo Union des Sociétés de Tir de France str. 86—110. Praca ta, oparta na studjach École Normale de Tir w Camps de Châlons, mjra (dziś gen.) Journée, Commission d'études du Génie w Wersalu i innych, podaje obszerny materjał odnośnie odbijania się pocisku od poszczególnych przeszkód. Ponieważ jednak odnosi się do pocisków tępych, o szybkościach nie przekraczających 600 m/sek, podczas gdy nasze dzisiejsze pociski mają szybkość ponad 800 m/sek i są kształtu ostrego, to też dane jej nie mogą być zupełnie decydujące dla zachowania się pocisku "S", wystrzelonego z naszego karabinka.

Tem ciekawsze więc będzie porównanie wyników niniejszej pracy z wynikami prac wyżej wymienionych.

I. PLAN PRACY.

Plan pracy obejmował:

Conta aintaint

- 1. Wyznaczenie krzywej szybkości pocisku w zależności od odległości, na odległościach od 0 do 300 m.
- 2. Wstrzelanie krzywej szybkości pocisku na odległości 10 m w zależności od ładunku prochu.
- 3. Odbijanie się pocisku od powierzchni desek:
 - a) włókna desek równoległe do płaszczyzny padania,
- b) włókna desek prostopadłe do płaszczyzny padania.
- 4, Odbijanie się pocisku od krawędzi deski:
 - a) krawędź deski równoległa do włókien,
 - b) krawędź deski prostopadła do włókien.
- 5. Odbijanie się pocisku od powierzchni płyty stalowej.
- 6. Odbijanie się pocisku od krawędzi płyty stalowej.

II. UZYSKANE WYNIKI.

1. Pomiar szybkości pocisku na odległościach 100, 200 i 300 m.

Zagadnienie odbijania się pocisków jest dla konstruktora strzelnic najbardziej interesujące w granicach do 300 m, normalnej odległości strzelnic szkolnych. Pracę naszą ograniczyliśmy więc jedynie do tych odległości. Ponieważ poza tem najważniejsze osłony znajdują się na odległościach 100, 200 i 300 m, a ponadto dla uzyskania danych porównawczych i zbadania zależności zjawisk od szybkości pozostalej pocisku wystarczy określić je w 3 punktach, to też badania nasze postanowiliśmy z góry ograniczyć do tych 3 odległości.

Ażeby jednak zbadać odbijanie się się pocisku na odległościach 100, 200 i 300 m, trzebaby ustawić badane deski lub płytę stalową na tych odległościach, co byłoby zbyt uciążliwe, wymagałoby bowiem zbyt dużej ilości pocisków, ażeby trafić w żądane miejsce. Można tego uniknąć w sposób następujący: pomierzyć szybkości pocisku na tych odległościach i dobrać odpowiednio mniejsze ładunki prochu w ten sposób, ażeby szybkość pocisku na odległości np. 10 m była równa szybkości pocisku na odległościach 100, 200 i 300 m; wtedy wystarczy wykonać pomiary na odległości 10 m. Wykonanie zadania tym sposobem jest jednak obarczone pewnym błędem z tego powodu, że pocisk na odległości 10 m ma daleko gorszą stabilizację niż na 100. 200 i 300 m. Błąd ten jednak jest napewno nieduży. Ponadto mniejsza stabilizacja sprzyja odbijaniu się pocisków. Wnioski więc wysnute na zasadzie tych prób będą napewno ostrzejsze, niż gdyby wyprowadzić je na zasadzie odbijania się pocisku na odległościach właściwych. Z punktu widzenia bezpieczeństwa strzelnicy stanowią one przeto niejako górną granicę, t.j. najniekorzystniejszy wypadek. Z tego też względu, dla celu praktycznego, ktory przedewszystkiem przyświecał naszej pracy, będą one zupełnie wystarczające.

Ten zresztą sposób pracy jest konieczny, jeżeli się nie chce stracić zbyt wiele amunicji i czasu, by uzyskać trafienie w kilku milimetrowe krawędzie na odległości 300 m.

Celem wyznaczenia krzywej szybkości pozostałej od 0 do 300 m. należało pomierzyć szybkość na odległościach 25, 60, 100, 200 i 300 m. Schemat urządzenia do tego pomiaru podaje rys. 1.

Rys. 1. Schemat urządzenia do pomiaru szybkości pocisku,

Przy pomiarze szybkości na odległościach $L^1 = 25$, 60, 100, 200 i 300 m zastąpiliśmy "siatkę II" przez drewnianą płytę z przerywaczem igiełkowym, ze względu na mniejszy koszt urządzenia i łatwiejszą i szybszą obsługę. Siatki I nie można zastąpić płytą, gdyż pocisk po przejściu przez deskę traci na szybkości. Urządzenie to daje pewne opóźnienie w przerwaniu prądu elektrycznego; opóźnienie to wyznaczamy w ten sposób, że na odległości $L^1 = 10$ m strzelamy przez dwie siatki, odległe od siebie o S = 20 m (drucik przy wylocie lufy i siatka na odległości 20 m), a potem drugi raz przez siatkę i płytę drewnianą.

Dla odległości $L^1 = 25$, 60, 100, 200 i 300 ustawiamy siatkę i płytę w odległości S = 30 m.

Dla pomiarów użyto karabina wz. 29 i amunicji "S", złożonej ze składników wzorcowych.

a) Pomiar szybkości v₁₀ i wyznaczenie opóźnienia płyty drewnianej.

Pomiar szybkości wykonano na aparacie Boulange; h — wysokość spadku w mm t i t^1 — czas spadku w sek., odpowiadający wysokości spadku h, wzięty z tabel. (t^1 dla dwóch siatek, t — dla siatki i płyty).

> Ładunek prochu L = 2,95 g. $L^1 = 10$ m S = 20 m $T = 2,4^{\circ}$ C H = 767.6 mm Hg wilgotność powietrza $w = 82^{\circ}/_{\circ}$.

Dwie siatki (wyniki średnie z 10 strzałów).

 $t^1 = 0.0245365$ sek.

 $v_{10} = 815,13 \text{ m/sek}.$

Przyjmujemy $v_{10} = 815.1 \text{ m/sek}.$

Siatka i płyta.

Średnio z 10 strzałów t=0.0259885 sek, a więc opóźnienie płyty wynosi $t_0=t-t^1=0.0259885-0.0245365=0.001452$ sek. a dla dalszych pomiarów $t^1=t-t_0$.

b) Pomiar szybkości v_{25} .

L = 2.95 g; $L^1 = 25$ m, s = 30 m, $T = 2.4^{\circ}$ C; H = 767.6 mm Hg, $w = 82^{\circ}/_{\circ}$

 v_{25} średnie z 10 strzałów = 798,16 m/sek.

Przyjmujemy $v_{25} = 798,2 \text{ m/sek}.$

c) Pomiar szybkości v₆₀.

k = 2.95 g, $L^1 = 60$ m, s = 30 m, $T = 4.6^{\circ}$, H = 757.2; $w = 77^{\circ}/_{\circ}$; wiatr: kier. 27.5 dg, szybkość 12 m/sek., v_{60} średnie z 10 strzałów = 763.45 m/sek. Przyjmujemy $v_{60} = 763.5$ m/sek.

d) Pomiar szybkości
$$v_{100}$$
.

L = 2.95 g, $L^1 = 100$ m, s = 30 m, $T = 15^{\circ}$, H = 764, $w = 53^{\circ}/_{\circ}$; wiatr: kier. 20 dg. szybkość 3 m/sek, v_{100} średnie z 10 strzałów = 731,67 m/sek. Przyjmujemy $v_{100} = 731.7$ m/sek.

e) Pomiar szybkości v_{200} .

L = 2,95 g, $L^1 = 200$ m, s = 30 m, $T = 17^{\circ}$, H = 761, $w = 66^{\circ}/_{\circ}$; wiatr: kier. 17.5 dg, szybk. 3 m/sek. v_{200} średnie z 10 strzałów = 659,00 m/sek. Przyjmujemy $v_{200} = 659,0$ m/sek.

f) Pomiar szybkości v_{300} .

L = 2.95 g, $L^1 = 300$ m, s = 30 m, $T = 18^{\circ}$, H = 755, $w = 45^{\circ}/_{\circ}$; wiatr: kier. 12.5 dg, szybk. 4 m/sek. v_{300} średnie z 10 strzałów = 594.95 m/sek. Przyjmujemy $v_{300} = 595.0$ m/sek.

 g) Wyznaczenie szybkości pozostałej dla poszczególnych odległości na zasadzie pomiarów.

Dla obliczenia konieczna jest znajomość szybkości początkowej.

W tym celu wykonywamy na zasadzie danych wstrzelanych wstępny wykres (rys. 2) szybkości i z niego znajdujemy przez ekstrapolację szybkość początkową

 $v_0 = 827$ m/sek.

Następnie poprawiamy otrzymane szybkości na warunki atmosferyczne: wiatr i gęstość powietrza.

Wykonywając pomiar szybkości przy wietrze, znajdujemy szybkość w powietrzu ruchomem; z tej szybkości dopiero wyliczamy szybkość w stojącem powietrzu, zakładając, że spółczynnik balistyczny C jest ten sam w obydwu wypadkach (C — zależy również od szybkości pocisku).

Dla $v_{60} = 763.5$ m/sek mamy wiatr o szybkości 12 m/sek i kierunku $\vartheta = 27.5$ dg = 247.5° (rys. 3).

 $T = 4.6^{\circ} \text{ C}$; H = 757.2 mm Hg; $w = 77^{\circ}/_{\circ}$.

3

Rys. 2. Wstępny wykres szybkości pocisku w zależności od odległości.

34

Składowa w_x w kierunku strzału:

 $w_x = -12 \cos (\vartheta - 44^\circ) = -12 \cos (247.5 - 44) = -12 \cos 203.5 =$ = ~ 11 m/sek.

Przybliżony czas przelotu pocisku na odległości 60 m wynosi:

$$t = \frac{60}{\frac{v_0 + v_{60}}{2}} = \frac{60}{\frac{827 + 763.5}{2}} = 0.0754 \text{ sek.}$$

W stosunku do powietrza pocisk wykonał więc drogę:

 $L = L^1 - \Delta L$

gdzie ΔL oznacza drogę, wykonaną przez początek układu, przyjęty jako związany na stałe z powietrzem i z nim razem się poruszający, czyli przyrost odległości L, spowodowany wiatrem:

$$\Delta L = w_x$$
, $t = +11$, 0,0754 = $\infty + 0.8$ m,

a więc

L = 60 - 0.8 = 59.2 m.

Szybkość pocisku względem powietrza:

$$v_0^1 = v_0 - w_x;$$

 $v_0^1 = 827 - 11 = 816$
 $v_{59,2}^1 = 7635 - 11 = 752,5$

Stosując metodę Siacci'ego (prawo oporu powietrza Siacci III) mamy

$$D(v_L) = D(v_0) + C L$$

$$D(v_{1_{59,2}}) = D(v_0) + (C_{59,2})^1 L$$

$$D(752,5) = D(816) + (C_{59,2})^1 L$$

$$3716.1 = 3454.5 + (C_{59,2})^1 L$$

$$(C_{59,2})^1 \cdot L = 261.6 \cdot L$$

$$(C_{59,2})^1 = \frac{261,6}{L} = \frac{261,6}{59,2} = 4,419;$$

Spółczynnik ten należy sprowadzić na warunki "normalne". Jako warunki normalne przyjęliśmy warunki następujące:

$$T^{0} = 15^{\circ}$$
; $p = 760 \text{ mm Hg}$. $w = 50^{\circ}/_{\circ}$

ciężar 1 m³ powietrza wynosi

stad

$$\delta_t = \frac{1,293 \cdot H}{760} \cdot \frac{273}{T} = 0,174 \frac{\varpi \cdot E}{T}$$

gdzie E oznacza prężność pary nasyconej w temperaturze T. Ciężar 1 m³ powietrza w warunkach normalnych wynosi więc

$$\hat{\delta}_0 = \frac{1.293 \cdot 760}{760} \cdot \frac{273}{288} - 0,174 \frac{0.5 \cdot 12.8}{288} = 1.2217;$$

$$\log \delta_0 = 0.08696;$$

$$\log \delta_0 = \overline{1.91304}.$$

Ciężar 1 m³ powietrza w czasie pomiaru szybkości $v_{59,2}$ wynosił

$$b_{59,2} = \frac{1.293 \cdot 757.2}{750} \cdot \frac{273}{277.6} - 0.174 \frac{0.77 \cdot 6.36}{277.6} = 1.2638;$$

 $\lg \partial_{59,2} = 0,10168;$

$$\frac{C_0}{C} = \frac{\delta_0}{\delta}; \quad C_0 = C \frac{\delta_0}{\delta};$$

$$\underline{(C_{59,2})^{1}}_{0} = (C_{59,2})^{1} \quad \frac{\partial_{0}}{\partial_{59,2}} = 4.419 \quad \frac{1.2217}{1.2638} = \underline{4.2717}.$$

Ażeby móć porównać szybkości wstrzelare z szybkościami wyrównanemi, należy zredukować szybkość uzyskaną 763,5 na spc-
kojne powietrze. W tym celu przyjmujemy dość prawdopodobne założenie, że spółczynnik balistyczny pocisku jest ten sam dla powietrza w spoczynku, co i dla powietrza ruchomego.

$$(C_{59,2}) = (C_{59,2})^1$$

że więc jak poprzednio

$$(C_{59,2})$$
. $L = 261, 6.$

Przyjmując więc, jak to uprzednio uzasadnialiśmy, $v_0 = 827$, otrzymujemy

$$D(v_{5(1,2)}) = D(v_0) + (C_{5(2,2)})L$$

a więc

$$D(v_{59,2}) = D(827) + 261.6 = 3409.8 + 261.6 = 3671.4$$

co odpowiada szybkości

 v^1

$$v_{59,2} = 763.2 \text{ m/sek}$$

Dla innych odległości przebieg rachunku przedstawia się analogicznie.

Dla

$$v_{100} = 731, 7 \text{ m/sek}$$

 $w_x = \infty + 2,2 \text{ m/sek}$
 $\Delta L = \infty + 0,3 \text{ m}$
 $L = 100 - 0,3 = 99,7 \text{ m}$
 $v_0^{-1} = 827 - 2,2 = 824,8 \text{ m/sek}$
 $v_{0,7} = 731,7 - 2,2 = 729,5 \text{ m/sek}$
 $D(v_{99,7}) = 3804,8$
 $\underline{v_{99,7}} = 731,6 \text{ m/sek}$
 $(C_{99,7}) = 3,962$
 $\delta_{99,7} = 1,229$
 $\underline{(C_{99,7})_0 = 3,9383}$

 $v_{200} = 659 \text{ m/sek}$ $w_x = +1.2 \text{ m/sek}$ $\Delta L = +0.3 \text{ m}$ L = 198.7 m $v_0^1 = 827 - 1.2 = 825.8$ $v_{199.7}^1 = 559.0 - 1.2 = 657.8$ $D(v_{199.7}) = 4124.5;$ $v_{199.7} = 658.9 \text{ m/sek}$ $(\hat{o}_{199.7})_0 = 1.2131;$ $(C_{199.7})_0 = 3.6042.$ $v_{300} = 595.0 \text{ m/sek}$

Dla

 $w_x = -1.5 \text{ m/sek}$ $\Delta L = -0.6 \text{ m}$ L = 300.6 m. $v_0^1 = 827 + 1.5 = 828.5 \text{ m/sek}$ $v_{1:00.6}^1 = 595.0 + 1.5 = 596.5 \text{ m/sek}.$ $D(v_{300.6}) = 4425.2$ $v_{2:00.6} = 595.3 \text{ m/sek}.$ $(C_{300.6}) = 3.378;$ $\delta_{300.6} = 1.201$ $(C_{300.6})_0 = 3.4362.$

Przy wstrzeliwaniu szybkości v_{10} i v_{25} wiatru nie było, gdyż pomiar odbywał się w pomieszczeniu zamkniętem. Znalezione spółczynniki balistyczne poprawiamy więc jedynie na ciężar powietrza. Warunki strzelania były następujące:

 $T = 2.4^{\circ}C;$ H = 767.6; $w = 82^{\circ}/_{\circ};$

$$\delta_{10} = \delta_{25} = \underline{1,2918}$$

$$v_{10} = 815,1$$

$$D(v_{10}) = 3458,1$$

$$(C_{10}) = 4,830$$

$$(\underline{C_{10}}) = 4,5679;$$

$$v_{25} = 798,2$$

$$D(v_{25}) = 3526,6$$

$$(C_{25}) = 4,672;$$

$$(\underline{C_{25}}) = 4,4184;$$

Z otrzymanych spółczynników balistycznych C_0 wykreślamy krzywą (rys. 4 krzywa I) spółczynnika balistycznego w zależności od odległości. $C_0 = f(L)$;

Na podstawie krzywej $C_0 = f(L)$ obliczamy krzywą szybkości $v_L = f(L)$ (rys. 4. krzywa II).

L	C_L	$D(v_L)$	UL	
0	4,650	3409,8	827,0	1
25	4,441	3520,9	799,6	
60	4,268	3623,2	774,7	
100	3,977	3807,5	730,9	$D(\eta_{1}) = D(\eta_{2}) + C_{1} I_{1}$
150	3,755	3973,0	692,7	$D(0_{L}) = D(0_{0}) + C_{L} + L$
200	3,602	4130,2	657,7	
250	3,498	4284,3	624,5	- Charles and the second second second
300	3,432	4439,4	592,4	

Jak z powyższej tabeli widać, v_{25} jest nieco większe od szybkości normalnej (790 m/sek), leżąc na górnej granicy szybkości możliwych przy produkcji amunicji karabinowej.

Rezultat ten należy uznać za korzystny dla zamierzonej pracy. Przy ustalaniu bowiem warunków bezpieczeństwa lepiej jest zawsze stosować warunki leżące na górnej granicy.

Przebieg krzywej I i II na rys. 4 okazuje jeszcze jedną godną uwagi właściwość.

Rys. 4.

Obliczmy tor na 300 m na zasadzie powyższych danych metodą graficzną *Cranza**).

Dla obliczenia tego postępujemy następująco:

Obliczamy czasy t na poszczególne odległości przy pomocy wzoru $t = \frac{1}{C} [T(u) - T(v_0)]$, gdzie na poszczególne odległości określamy C z tabeli, odpowiadającej ryż. 4.

*) Cranz "Äussere Ballistik" tom I wyd. Teubner Lipsk 1917 str. 199 i następne.

Uzyskujemy tą drogą w każdym punkcie t możliwie bliskie rzeczywistości, ponieważ z jednej strony opory powietrza poznano bardzo dokładnie przez bezpośredni pomiar v pozostałych — co przecież jest jedyną metodą określenia wielkości oporu powietrza, z drugiej zaś bardzo duża płaskość toru pozwala bez żadnego błędu stosować metodę Siacci'ego.

Biorąc różnicę Δt na poszczególne odległości i tworząc dla nich $\frac{g}{2}\Delta t^2$, właściwe metodzie graficznej Cranza, uzyskujemy tor

pocisku możliwie bliski rzeczywistości.

Obliczony w ten sposób kąt rzutu τ_0 wynosi 9'17,9". Przy pomocy tabel Faselli, biorąc to τ_0 i v_0 z rys. 4 ($v_0 = 827$ m/sek) otrzy-

mujemy
$$C = \frac{1}{C^1} = 3,455.$$

A więc, gdyby — jak się to zwykle czyni — na zasadzie tego C i wstrzelanego v_{25} , obliczyć v_0 , to otrzymalibyśmy

$$D(v_0) = 3520.8 - 25 \cdot 3.455 = 3434.5$$

stad

$$v_0 = 820,9 \ge 821$$
.

Obecnie, przeliczając ponownie przy pomocy tego v_0 i znalezionego τ_0 , nowe C, otrzymalibyśmy C = 3,248.

Ponawiając rachunek na v_0 , otrzymalibyśmy ponownie

$$D(v_0) = 3520.8 - 25 \cdot 3.248 = 3439.7$$

a stąd $v_0 = 819.6$ co (uwzględniając, iż przy ponownem przeliczeniu C się nieco zmiejszy) zaokrąglamy w dół do 819.

Ponowne przeliczenie $C = \frac{1}{C^1}$ z tabel Faselli daje C = 3.171.

Obecnie przybliżenie jest ukończone, bo ponowne przeliczenie $v_0 = 819,1 \cong 819$, zgodnie z tem, co przyjęliśmy uprzednio.

Przeliczając obecnie przy pomocy $v_0 = 819$ i C = 3,171 szybkości pozostałe, otrzymamy

$$v_{100} = 742.3$$
, $v_{200} = 669.6$, $v_{300} = 601.7$.

Porównywając dane te z liczbami umieszczonemi w tabeli do rys. 4. przekonywujemy się, że tą drogą otrzymujemy szybkości pozostałe za duże, a szybkości początkowe za małe.

Zjawisko to jest typowe dla pocisku o dużych stosunkowo ruchach nutacyjnych w chwili wylotu, którego spółczynnik balistyczny, duży u wylotu, dość szybko maleje na skutek zaniku nutacji początkowej.

Tłumaczy nam ono, dlaczego t.zw. "redukcja", t.j. przejście z v_{25} (albo v_{50}) do v_0 , obliczone z torów daje nam zawsze wielkości mniejsze, niż wstrzelane doświadczalnie.

Ponadto wykazuje wyraźnie, że nawet przy torach bardzo płaskich, jakiemi są tory karabinowe, przy których stosowanie metody Siacci'ego jest w zupełności uzasadnione, obliczanie szybkości pozostałych na zasadzie wstrzelanych kątów rzutu daje w rezultacie wartości dalekie od rzeczywistości. Jeżeli więc chcemy wnioskować o działaniu jakiegoś pocisku na pewnej odległości, to należy to czynić je dynie na zasadzie liczb wstrzelanych. Wnioskowanie bowiem wyłącznie na zasadzie szybkości obliczonych może doprowadzić do bardzo grubych omyłek.*)

2. Wstrzelanie krzywej szybkości pocisku na odległości 10 m w zależności od ładunku prochu.

Schemat urządzenia ten sam, co poprzednio, tylko L=10, s=20 m, siatka I — ramka z drucikiem przy wylocie lufy, siatka II — płyta drewniana, lub siatka druciana. Warunków atmosferycznych nie uwzględniamy ze względu na małą odległość strzelania. Temperatura prochu była stała i wynosiła 15°C.

L = 2,95 g, siatka II — siatka druciana.

średnie $v_{10} = 815,13$

L = 2,85 g siatka II — płyta drewniana.

średnie $v_{10} = 785,02$

Ł-2,70 g siatka II – płyta drewniana.

^{*)} Uwaga ta odnosi się oczywiście wyłącznie do amunicji karabinowej, gdzie wpływ nutacji początkowej jest duży. W amunicji działowej bowiem, przy strzelaniach zwłaszcza na dalsze odległości, wpływ ten zanika tem bardziej, im większa jest odległość strzału.

średnie $v_{10} = 737.55$ L = 2,60 g siatka II — płyta drewniana. średnie $v_{10} = 706.85$ L = 2.40 g siatka II — płyta drewniana. średnie $v_{10} = 652.41$ L = 2.20 g siatka II — płyta drewniana. średnie $v_{10} = 598.31$

Otrzymane wyniki wyrównywamy graficznie w formie wykresu $v_{10} = f(E)$, który przedstawia nam krzywa III rys. 4. Następnie z wykresu, posługując się krzywą II i III, określamy odpowiednie ładunki dla normalnych szybkości

V100, V200 i V300

i otrzymujemy następujące rezultaty:

dla	$v_{10} = (v_{100})$	norm.	odpowiada	ładunek	2,67	g.
	$v_{10} = (v_{200})$		н		2,42	g.
11	$v_{10} = (v_{300})$	"		U	2,19	g.

3. Odbijanie się pocisku od powierzchni desek.

a) Włókna desek równoległe do płaszczyzny padania.

Do badań posługiwaliśmy się suchemi deskami sosnowemi grubości 1 cala.

Schemat urządzenia przedstawia rys. 5, gdzie oznaczają:

- » kąt między linją strzału a powierzchnią deski,
- ζ rzut kąta pomiędzy torem pocisku po odbiciu od deski a powierzchnią deski, na płaszczyznę pionową, przechodzącą przez linję strzału;

$$\lg \zeta = \frac{y}{x}$$

 x — odległość punktú wyjścia pocisku z deski od ekranu,
 y — odległość śladu pocisku na ekranie od powierzchni deski,
 a — odległość śladu pocisku na ekranie od plaszczyzny pionowej, przechodzącej przez linję strzału,

 ψ — rzut kąta zboczenia pocisku na powierzchnię deski

$$\operatorname{tg} \psi = \frac{a}{x}$$

b — długość śladu pocisku na desce,

i — ilość przebić w serji.

Wyniki pomiarów dla szybkości v_{100} (rys. 6 i 7)

. ე .0	x mm	y mm	<i>a</i> mm	ت ە 0	ψo	<i>b</i> mm	i
4º12'	552	65	43	6º43'	4º28'	200	
"	322	43	25	7°37′	4º27'	180	
1)	472	59	11	7º 8'	1°20′	210	
11	582	49	34	4º44'	3º21'	190	
	462	52	37	6º26'	4º35'	170	
9º44'	657	244	123	20°24'	10º36'	280	
	647	249	86	21° 4'	7º34'	260	d.
	687	237	112	19° 3'	9º16'	250	
"	637	260	92	22°13′	8º13'	280	あった いろう ちょうちょう
	697	261	30	20°32'	2º28'	300	

Rys. 5. Schemat urządzeń,

Rys. 6. Wykres $\xi = f(\vartheta)$ dla szybkości v_{100}

Rys. 7. Wykres $\psi = f(\vartheta)$ dla szybkości v_{100}

Przy kącie $\vartheta = 11^{\circ}10'$ już cała serja (5 strzałów) przebija deskę. Pocisk po odbiciu stale koziołkuje. Wykres zależności $\zeta = f(\vartheta)$ przedstawia rys. 6. Krzywa ta wykreślona jest dla maksymalnych kątów odbicia ζ_{max} , gdyż te przedewszystkiem mogą mieć większe znaczenie praktyczne.

Część krzywej dla ³ między 10° a 12° została poprowadzona przez analogję do następnych wykresów, w których punkty dla tej części krzywej udało się otrzymać.

Kąt ψ jest bardzo zmienny. Rzeczą charakterystyczną jest, że dla $v_{100} \psi$ największe jest mniejwięcej równe kątowi ϑ i że zboczenie po odbiciu następuje zawsze w prawo.

	-9- F-				100		
ֆ	x	У	а	5	ψ	b	i
4°12'	702	80	43	6º31'	3º30'	210	
	772	86	69	6º22'	5°7'	185	
	772	95	48	7°1′	3°34'	200	
	602	75	6	7°6′	0°34'	190	
,1	1022	87	33	4º52'	1°51'	200	
9º40'	792	189	147	13º26'	10°32'	160	
	642	140	90	12º18'	7°59'	290	
	847	221	140	14º39'	9º24'	200	
	847	280	20	18º18'	1º21'	190	
	827	293	145	19º31'	9°57′	210	
12º20'	697	277	64	21°42'	5°15'	360	-
n	897	287	73	17°33'	4°40'	160	Anta II
	887	272	105	17°4'	6°46'	170	
	907	282	255	17°16'	15°42'	190	
	and the second				and the second		1

Wyniki pomiarów dla szybkości v_{200} rys. 8 i 9.

13º30'

Rys. 8. Wykres $\zeta = f(\vartheta)$ dla szybkości v_{200} ,

Rys. 9. Wykres $\psi = f(\vartheta)$ dla szybkości v_{200} .

Wyniki pomiarów dla szybkości v_{300} rys. 10 i 11.

θ	x	у	а	2	ų	Ь	i
4º12'	912	84	18	5°16'	1º8'	170	
11	882	87	35	5°38′	2º16'	190	
	872	91	11	5°58'	0°43′	195	
н.	882	-89	22	5°46'	1º26'	180	
	832	84	39	5°46'	2°24′	190	
2003 C 110	1	-	1122	1	20 1 - 1 - 1	1	
9°40′	802	158	—45	11°9′	-3º13'	230	in a
	842	183	65	12º16'	4º25'	210	
	802	264	-25	18º13'	-1º47'	240	
	542	139	130	14º24'	13º29'	300	
	632	172	200	15°31′	17°34'	280	
				E Clark			

10.000	商生的	a. the	59-51	「松海索」	la ser liter	1999	なま
Ð.	x	у	а	ζ	ų	b	i
12º20'	877	269	154	17°48'	10º26'	260	
	897	209	110	13º8'	7°00′	180	
	897	219	-23	13º43'	-1º28'	310	1200
13º30'	647	316	116	25°58'	10°9'	430	
	747	140	42	10º37'	3º13'	250	
13	737	102	—9	7°53′	-0°42′	250	
						N. S. S.	2
14°52'	807	272	131	18º38'	9°14′	190	A ST
	787	242	58	17°6'	4°14'	210	
							3
16°00'	y at street	14- 10.	1.000		The Hold	からない	5

Rys. 11. Wykres $\psi = f(\vartheta)$ dla szybkości v_{300} .

I tu znów widać dużą zmienność kąta ψ , przyczem największe wartości ψ są zawsze równe, lub niedużo większe od kąta ϑ .

Przy odległości 300 pojawiają się już ψ ujemne, czyli zboczenia pocisku w lewo.

Ogólnie można powiedzieć, że kąt ⁹ graniczny, przy którym następuje jeszcze odbicie pocisku od deski, wzrasta wraz z malejącą szybkością, zmieniając się między 11° – 16°.

Największy kąt odbicia, jeżeli brać wznoszącą się część krzywej, wynosi na odległości 100 około 2,2 razy, na odległości 200 około 2,0, a na odległości 300 około 1,8 razy więcej, niż kąt uderzenia.

Z temi wielkościami granicznemi kąta uderzenia i odbicia liczyć się musi konstruktor przy budowie osłon drewnianych na strzelnicach, jeżeli pocisk pada na deski równolegle do ich włókien.

Ponadto należy się liczyć ze zboczeniem pocisku od płaszczyzny padania do 18°.

Uwaga.

Przy tej okazji postanowiliśmy wykonać jeszcze jedno dodatkowe doświadczenie.

Ponieważ często bardzo określa się miejsce, skąd padł pocisk, wedle śladu, jaki pozostawił on na desce, przeto postanowiliśmy zbadać w czasie naszych prób słuszność tego rodzaju postępowania.

W tym celu wykonaliśmy pomiar kąta ϑ_1 pomiędzy płaszczyzną deski a drutem, wstawionym w otwór wejściowy pocisku w deskę. (Rys. 12).

Trzy egzemplarze w ten sposób wykonane, przy kącie uderzenia

 $\vartheta = 9^{0}56' \text{ daly } \vartheta_{1} = 7^{0}15' \\ \vartheta_{1} = 6^{0}26' \\ \vartheta_{1} = 7^{0}29'.$

Przy określaniu kierunku strzału na podstawie otworu w desce należy więc zwrócić uwagę na to, że w taki sposób określony kąt ϑ_1 jest dość znacznie mniejszy od rzeczywistego kąta ϑ i to przy bardzo starannem i ostrożnem mierzeniu tego kąta u wlotu deski.

Przekrój przez te deski wzdłuż płaszczyzny strzału przedstawia fotografja 1.

Na fotografjach 2 i 3 pokazane są ślady pocisków na ekranie.

Na fotografji 4 uwidocznione są pociski, które zostały się w desce; tor ich przedstawiony jest na rys. 13.

Rys. 13.

(× 0.36).

シュート いたい たい シング いたい きょういん ひというたい

b) Włókna desek prostopadłe do płaszczyzny padania.

Sposób ułożenia desek do prób przedstawia rys. 14.

Rys. 14. Schemat ułożenia desek — oznaczenia jak na rys. 5.

	Wyniki	pomiarów	dla	szybkości v_{100}	o rys. 15	5 i 16.	1.50
ֆ	x	У.	а	ζ	ψ	Ь	i
4º30'	697	68	12	5°35'	0°59'	180	Sec.
	547	59	4	6°9'	0°25'	180	
-18 -	517	48	24	5°18′	2º39'	170	
146.5	767	91	23	6°46′	1º43'	180	
	737	82	29	6º21'	2º15'	170	
12	3-1-151		1	「「ない」ないの語	12 million	1	3/6-1
9°30′	657	201	146	17°2′	12º32'	240	
10-1-1-	727	201	102	15°28′	7°59′	210	5. S. S.
	677	176	70	14º36'	5°54'	200	
	577	143	103	13°56′	10°8′	200	
- u	697	170	23	13º33'	1°53′	170	
	199 197 1 1	<u></u>			and a		-
10°50'	647	351	165	28°30'	14º19'	220	
1.3	747	324	136	23º28'	10°20'	180	
	677	279	144	22º26'	12º1'	220	
	757	333	76	23°45'	5°44'	170	
1	627	322	102	27°12′	9º14'	260	
1	1.1.1	1784 P	1		1271 11	12.2	1.1.1
12º00'	667	208	117	17º21'	9º57'	230	
	797	210	118	14º47'	8º26'	200	- 23 -
	647	160	158	13º54'	13°44'	290	
1.1.1					1-1-1-1		2
						the second se	

Wyniki prób są następujące:

12°30'

5

投 1 5

Rys. 15. Wykres $\zeta = f(\vartheta)$ dla szybkości v_{100} . Wykres $\psi = f(\vartheta)$ dla szybkości v_{100} .

Rys. 16.

Wyniki pomiarów dla szybkości v_{200} rys. 17 i 18.

					Contraction of the	N. S.	
ð	x	У	а	ζ	ψ	Ь	i
4º30'	877	119	17	7°44'	1°7′	140	
	857	101	7	6°43'	0°28′	140	
	837	95	7	6º29'	0°29′	170	
11	977	115	7	6°44′	0º25′	170	
33	697	80	0	6º33'	0º0′	140	od'si
9º30'	767	222	81	16°9′	6º2'	240	1
	687	186	70	15°10'	5°49'	200	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
51	757	140	38	10°29'	2°59′	170	
	747	215	99	16°4'	7º33'	190	
	827	187	43	12º45'	2°59′	180	

al The set	13 710 100	The last and	ALC: NO		The Contract of	1 della	il a la la
Ð	x	у	а	ξ	ψ	Ь	i
11°30′	737	231	93	17º24'	7 °11 ′	200	
	<u>697</u>	198	54	15°52'	4º26'	260	
"	767	210	155	15°19'	11°26'	250	1000
	787	205	71	14º36'	5°10'	220	Ca. Set
"	717	175	.44	13º44'	3°30′	290	Aller
12º10'	757	282	91	20º26'	6º51'	220	
1.	787	241	156	17°2'	11º13'	210	
	697	207	36	16º33'	2°58′	270	
"						2	
13º30'		ALL F	the Lowis	1	121	in the second	5

13°30'

Rys. 17. Wykres $\zeta = f(\vartheta)$ dla szybkości v_{200} .

Rys. 18. Wykres $\psi = f(\vartheta)$ dla szybkości v_{200} .

1.2.2.1	1	a prover of	見たきいい	50 -	AL HEREY	See. S	Jaikh -
Ð.	x	У	а	ζ	ψ	b	i
4º30'	937	121	12	7º21'	0º44′	130	
	887	100	7	6º26'	0º27'	120	
1	1037	72	3	3°58′	0°10′	170	
	647	68	13	6°00'	1°9′	150	
	807	45	9	3º12'	0°38′	160	Tt
	11 · · ·	States V			City - Mills	1.1.1.	1141
9º30'	727	226	85	17°17'	6º40'	200	
	867	201	53	13º4'	3º30'	160	
	987	194	22	11°8′	1º17'	140	
	737	179	60	13º13'	4º39'	170	
	787	178	46	12º45'	3º21'	170	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.1.3.			and the second s		
12º30'	727	288	22	21º38'	1º44'	180	
	687	231	71	18º36'	5°54'	200	5-174-1y
	747	210	45	15°43'	3º27'	150	al ala
	717	172	81	13º30'	6º27'	200	
							1
- 11-1-		2	Partie -	242172	A Contraction For	And We	- Alter
15°00'	867	478	225	28°52'	14°33′	160	
**	857	388	141	24°22'	9º21*	210	
H		- 5-1-7					3
1 Barth	11-1 - 27	and Whenter and	The second	1 Vertige	お たけで	27 22-1	55 E.L

Wyniki pomiarów dla szybkości v_{300} rys. 19 i 20.

16°00'

	W.								
Spitting	Charles The	States a	dintert.	BERIO	CIT HE	and line	Willis Latte	H HILE	C. DEC.
11-1	N III					調測			回野
	開閉	翻翻		調報	調購		STATE AND A	o) in a cost	1010
日日日		間語		2	調調			finales:	
20			-					ing and	Here
田田									
	STORE .		1711		1716-551		Partiarte April 1	1 Constant	(Contraction of the local data
	11222078	日本	244						
124			201200						
		THE REAL							
							er firititentite	in letterin	100000177-
COTO:	STATISTICS.	and a second second		Nationer	ACCRETED IN	Angertanne.	Restatte Basetell		
10110	South Law		ALC: NO.	COLUMN TALL	Total State	1111117	BULLER CO.	1 CONTRACT	
Contraction of			-	Contraction of the	-			110011110	
14HB	900 A	「日本に	1.111	1211211	西田	11211		1 1000	曲史
出版	a right	中国	+ statu	비병원	10	Z HE	当時回日	推进制	田田
	1 37833	2203212	DOZUT:	HE HE	文字词	Contraction of the local distribution of the	Television III	打井山	
111-44-076	- tente		101 1007	isiiii i	2 H L	生生	や世界市世	相由由	her the
主要		招用手	1,100		電視.	-14L		記録	(Ellier
主義	上町	湖町	1	的制度	相比	当時	0 11 12 11	Televen	Getti
田田	里田:	ŦŦ.	調理	In the	豊都	皆罪	COLUMN DE	HHHM	Right C
1000	1	学業		曲44	品田	里田		the little	推調
TELE	田田	理由	1,441	14	4444年	Statting.	CHILLING CHILL	Interest.	Better
田田田	主書	24H		(HORE)	地田山		CONTRACTOR OF	OL BRIDE	-
(iiiiiii)	日田		11	自由記	物理	- mail	mundisis	- Line	1.214
100	1	"日田"	12	in a la c	可能出	日本日	al fait atta	Jan III	H. F.
1	山田					1111			
REIM	the fire			1000	印刷中	States.	Contration of the	T total	Little 172
Indian	states.	17	1.1	HET HILL	TIL	-		1	-
PILLIP A.	2010	diniti -	The He	155 1111	AT HE	Cillert.	Sinformation in	-	THE R.L
The state of		Coldina.	生白田	TOTAL	ACTIN	Trailer .	14-24 (310) 15:51 (4)	in the second	Diff. Hall
City -	1. 41-	Lind Aut	1 51 111	inter an		A DESIGN	and all provident		L-C-L
(TRACTOR	1	and the			- Hr	and a second	State Instance	(1)	the last
Pierte A	COLUMN ST	addining and		Pilitan .	Tiller	AUSTRACE	Note of the second second	11 Merilian	
	日譜	開設	期期		비밀	Call I	11		1

Rys. 19. Wykres $\zeta = f(\vartheta)$ dla szybkości v_{300} . Rys. 20. Wykres $\psi = f(\vartheta)$ dla szybkości v_{300} .

Na fotografjach 5 i 6 pokazane są ślady pocisku na ekranie. Porównywając dane te z danemi poprzedniemi (włókna desek równoległe do płaszczyzny padania) widzimy, że kąt graniczny ³ pozostaje prawie ten sam (12 — 16°), 'lecz że ζ jest przy włóknach poprzecznych większe, niż przy włóknach równoległych, średnio o 10%.

57

Kąt ψ jest tu stale dodatni (w kierunku obrotu pocisku) i naogół mniejszy, nie przekraczając w najgorszym wypadku 14^{1/0}/₂.

Dane powyższe zezwalają nam orjentować się w zachowaniu się pocisku padającego na ścianę z desek. Poniewaź siła przyciągania ziemi gra w tych zjawiskach niewątpliwie rolę minimalną, możemy bez dużej omyłki zastosować uzyskane powyżej wyniki i w wypadku ściany drewnianej pionowej (osłony strzelnic, np, wewnętrzne ściany okien, t. zw. otworów strzelniczych).

Zależnie od kąta padania pocisku, konstruktor może określić na zasadzie powyższych danych, z jakim kątem odbicia pocisku należy się liczyć i czy wogóle zajdzie odbicie, czy też — korzystniejsze niewątpliwie — wnikanie pocisku.

Eat 6 (\(0.20) m 9-0020'

Fot. 7 (× 0.21)

59

Obrót pocisku dookoła osi w prawo pociąga za sobą — jak to widać z wielkości kąta ψ, zboczenie pocisku z płaszczyzny padania przeważnie w prawo, a więc wdół dla ściany lewej, a w górę dla prawej.

4. Odbijanie się pocisku od krawędzi deski.

Zagadnienie przedstawia się obecnie inaczej niż poprzednio. Stawiamy ścianę drewnianą prostopadłe do linji strzału (wedle poprzednich określeń $\vartheta \sim 90^{\circ}$). Jest to np. łata drewniana ochraniająca płyty stalowe, zbrojące linję kryjącą wału tarczowego, jak to niekiedy stosuje się na strzelnicach, lub drewniana rama tarczy. Pocisk więc zasadniczo wnika w tę przeszkodę. Niebezpieczne są tu przedewszystkiem krawędzie, te więc miejsca, gdzie pocisk zamiast wnikać, odbija się.

a) Krawędź deski równoległa do włókien (boczna krawędź).

Stosowane przy tych pomiarach urządzenie przedstawia schematycznie rys. 21. Pomiary przeprowadzono jedynie dla v_{100} i v_{300} , ażeby uzyskać wartości skrajne, dające obraz zmienności zjawiska wraz z szybkością pocisku.

 $tg \zeta = \frac{h}{1098};$

Rys. 21. Schemat urządzenia,

Wyniki pomiarów dla szybkości v_{100} (rys. 22).

		Allow and the second			
Nr.	x	у	1,1 x	h	ζ
1	4	—13	4,5	17,5	55'
2	7	0,0	7,5	7,5	24'
3	0,0	—35	0,0	35	1°50'
4	16	11	17,5	6,5	20′
5	5,5	0,0	6	6	19′
6	11	6	12	6	19'
7	7	1,5	7,5	6	19'
8	3,5	- 4,5	4,0	8,5	27'
9	2,0	22	2,0	24	1º16'
10	4	— 1.5	4,5	6	19'
11	8	8,5	9,0	0,5	2'
12	3	-11,5	3,5	15	47'
13	2	19	2	21	1º 6'

	- 1				
Nr.	x	у	1,1 x	h	ζ
THE VIEW			a filler a		
14	0,5	—35	0,5	35,5	1°21'
15	7	- 8	7.5	15,5	49'
16	1	22	1	23	1º12'
17	3,5	—13	4	17	54'
18	-2,5	26	2,5	23,5	1º14'
19	9,5	7	11,5	4,5	14'
20	9	9	10	1	3'
21	-2,5	19	2,5	16,5	52'
22	-4	-11	4,5	6,5	30,
23	0,5	46	-0,5	45,5	2º23
24	5	-14	5,5	19,5	1º 1'
25	8,5	5	9,5	4,5	14'
26	4,5	— 5	5	10	31'
27	1	—34	1	35	1°50'
28	3,5	-11,5	4	15,5	49'
29	-2	-23	-2	21	1º 6'
30	2,5	29	2,5	31,5	1º39'
31	-2	-23	-2	21	1° 6'
32	7	1,5	7,5	6	19'
33	-1	—30	-1	29	1º31'
34	4,5	-12	5	17	54'
35	11	. 3	12	9	28'
36	16	18	17,5	—0,5	- 2'
37	1	—38	1	39	2º 3'
38	2	-28	2	30	1º35'

6.1 —

-

the year and		The second of the		And College and	in the second
Nr.	x	у	1,1 x	h	ζ
		S. C. C.		and the second second	
39	6,5	1	7	6	19'
40	7	3	7,5	4,5	14'
41	0,5	27	0,5	27,5	1º27'
42	14	16	15,5	0,5	- 2'
43	28	29	31	2	6'
44	15	21	16,5	4,5	14'
45	25	25	27,5	2,5	8′
46	27	27	30	3	9'
47	18	18	20	2	6'
48	11,5	4	12,5	8,5	27'
49	13,5	10	15	5	16'
50	26	30	28,5	-1,5	— 5'

Rys. 22. Wykres $\zeta = f(x)$ dla szybkości v_{100} dla bocznej krawędzi deski.

Wyniki pomiarow dla szybkosci v_{300} rys. 23.								
Nr.	x	y.	1.1 <i>x</i>	h	ζ	1000		
1	—2	37	-2	35	1°50'			
2	7	- 8	7,5	15,5	49'			
3	7	- 4,5	7,5	12,0	38′			
4	4,5	- 2,0	5	7	22'			
5	4	—12,5	-4,5	8	25'			
6	10	6,5	11	4,5	14'			
7	9	9	10	1	. 3'			
8	3,5	—19,5	4	15,5	49'			
9	7	-11	7,5	18,5	58′			
10	8	7	9	2	6'			
11	3	—26	3,5	29.5	1°33'			
12	7	— 8	7,5	15,5	49'			
13	2,5	—17,5	-2,5	15,0	47'			
14	9,5	3	10,5	7,5	23'			
15	18	19	20	1	3'			
16	4,5	- 7	5	12	38′			
17	5,7	- 5,5	6	11,5	36'			
18	8,5	6	9,5	3,5	11'			
19	—2,5	20	2,5	23,5	1º14'			
20	3		3,5	19,5	1° 1'			
21	—3	—19,5	3,5	16	50′			
22	15	14,5	16,5	2	6'			
23	16	10	17,5	7,5	23'	部に		
24	0,5	—55	0,5	55,5	2°50′			
25	3,5	26,0	4	30	1º34'			
26	F 2		2	30,5	1°36′			
27	8,5	5	9,5	4,5	14'			
28	-3	-18,5	-3.5	15	47'			

Nr.	x	y	1,1 x	h	ζ.
	2 Contraction	N. 1. 263	and the		- 10
29	6,5	4,5	7	2,5	8'
30	—3	—15,5	-3,5	12	38′
31	1	-37.0	1	38	2°00′
32	-4	— 8,5	4,5	4	12'
33	7	3	7,5	4,5	14'
34	2		2	45	2º22'
35	17	24	18,5	—5,5	-17'
36	12,5	14	13,5	0,5	- 2'
37	4,5	—12,5	5	17,5	55′
38	—3	—14	—3,5	10,5	33
39	6,5	— 2,5	7	9,5	30′
40	5,5	-13	6	19	1º00'
41	0,5	-40	0,5	40,5	2º 8'
42	15	15,5	16,5	1	3′
43	16	14	17,5	3,5	11′
44	17	19	19	0,0	0,0′
45	22	22	24	2	6'
46	13	19	14	5	—16'
47	14	15	15,5	0,5	2'
48	18	22	20	-2	-6'
49	3,5	— 6	4	10	32'
50	—3 [°]	—10	3,5	6,5	21'

- 64 -

Rys. 23. Wykres $\zeta=\!\!f(\mathbf{x})$ dla szybkości $v_{\scriptscriptstyle 300}$ dla bocznej krawędzi deski.

b) Krawędź deski prostopadła do włókien (czołowa).

11	1					
Nr.	x	ν	1.1x	h	ζ	
1	1	—27	-1	26	1º22'	
2	5,5	— 5	6	11	35'	
3	0,0	-32	0,0	32	1°41′	
4	1	—30	1	31	1º38'	
5	-4	- 5		05	2'	
6	4	—18	4,5	12,5	39′	
7	13	10	14,5	4,5	14'	
8	11	11	12	1	3'	
9	9,5	8	10,5	2,5	8'	
10	-3	-19	3,5	15,5	49′	
11	8,5	3	9,5	6,5	20'	
12	1,5	-17	1,5	18,5	58″	
13	8,5	5	9,5	4,5	14′	

Wyniki pomiarów dla szybkości v_{100} rys. 24.

		1-1 Lot the		and the second	a service a
Nr.	x	у	1,1 <i>x</i>	h	ž
14	1	-29	1	30	1º34'
15	5	-11	5,5	16,5	52'
16	5,5	—9	6	15	47'
17	1	—31	-1	30	1º34'
18	7,5	2,5	8	10,5	33′
19	17	18	18,5	0,5	2'
20	13	12	14,5	1,5	5'
21	7,5	2	8	6	19′
22	2.5	-22	2,5	24,5	1º17'
23	10,5	4	11,5	7,5	24'
24	8,5	2	9,5	7,5	24'
25	8	—3	9	12	38'
26	1	—28	1	29	1º31'
27	-4	—10	4,5	5,5	17'
28	4,5	-11	5	16	50′
29	19,5	24	21,5	2,5	-8'
30	18	15	20	5	16'
31	21	22	23	1	3'
32	1,5	16	13,5	1,5	2'
33	4	6	10	4	13'

	Star Inde				
Nr.	x	у	1,1 <i>x</i>	h	ζ
	E FRANK R	ATTAL TON	Martin E.	1.15 3.95	the second
34	-2	-23	—2	21	_1° 6'
35	0,0	-33	0,0	33	1º43'
36	10,5	8	11,5	3,5	11'
37	3	—16	3.5	19 .5	1° 1'
38	5	— 7	5,5	12,5	39'
39	9	4	10	6	19'
40	1	-28	1	29	1º31'
41	21,5	22	23,5	1.5	5'
42	—3		—3,5	14,5	46'
43	17	20	18,5	—1,5	5'
44	4,5	— 7	5	12	38'
45	16	13	17,5	4,5	14'
46	5,5	— 6	6	12	38'
47	10	6	11	5	16'
48	28,5	32	31,5	—0,5	2'
49	19	22	21	-1	-3'
50	17	14	18,5	4,5	14'

. Rys, 24. Wykres $\zeta = f(\mathbf{x})$ dla szybkości v_{100} dla czołowej krawędzi deski.

				300 - /		
Nr.	x	у	1,1 <i>x</i>	h	ζ	
	25	20	0.7	2	<i>C</i> !	
1	25	29	21	-2	-0	
2	17,5	16	19	3	9'	
3	17	15	18,5	3,5	11'	
4	2,5	25	2,5	27,5	1º27'	
5	4	—13	4,5	17,5	55'	
6	—3	— 8,5	—3,5	5,0	16'	
7	2		2	39,5	2° 4'	
8	13	9	14,5	5,5	17'	
9	-0.5	-42,5	-0,5	42	2º12'	
10	5, 5	-22,5	6	28,5	1°30′	
11	-0,5	57	—0,5	56,5	2°58′	
12	-1,5	—52		50,5	2º39'	
13	0,5	48	0,5	47,5	2º29'	
14	5	—15	5,5	20,5	1° 5'	
15	9,5	11	10,5	9,5	30'	
16	3	—3 ,5	3,5	35	1°50′	
17	3	-13		9,5	30′	
18	10	4	11	7	22'	
19	1		1	45,5	2º23'	
20	-1		1	38,5	2° 1'	
21	6.5	9,5	7	16,5	52'	
22	0,0	-18	0,0	48	2º31'	
23	11	- 1	12	13	41'	
24	10	7	11	4	13'	

Wyniki pomiarów dla szybkości v_{300} rys. 25.

- 19 - 21	1. 1. 1. 1.	Mart Barry	No Adding	the second	1. 1. 1. 1.
Nr.	x	У	1,1 x	h	ζ
The dia	2				4
25	13,5	10	15	5	16'
26	2	38	2	40	2° 6'
27	4	—29	4,5	33,5	1°45'
28	3,5		4	36	1°53′
29	3	—34	3,5	37,5	1°58'
30	—3,5	- 6	4	2	6′
31	7	- 7	7,5	14,5	46'
- 32	8	- 4,5	9	13,5	43'
33	—3,5	-21	4	17	54'
34	8	— 3	9	12	38′
35	12	11	13	2	6'
36	9	0,0	10	10	31′
37	12	10	13	3	9'
38	6	- 8	6,5	14,5	46'
39	9,5	4,5	10,5	6	19′
40	14	9,5	15,5	6	19'
41	2,5	-25	2,5	27,5	1º26'
42	6	—13	6,5	19,5	1º 1'
43	20,5	21	22,5	1,5	5′
44	24	25	26,5	1,5	5'
45	22,5	26	25	-1	-3'
46	21	24	23	-1	3'
47	20	20	22	2	6'
48	18,5	17	20,5	3,5	11'
49	20,5	22	22,5	0,5	2'
50	20	23	22	-1	-3'

Rys. 25. Wykres $\zeta = f(x)$ dla szybkości v_{300} dla czołowej krawędzi deski.

Otrzymane wyniki wskazują, że największy kąt odbicia pocisku od krawędzi jest wtedy, gdy ostrze pocisku pada na samą krawędź. Kąt ten zresztą jest nieduży, w żadnym wypadku nie przekracza 3°. Zaznaczyć należy, że pociski, których ostrza padają w pobliżu samej krawędzi

$$(x = -2 do + 4 mm),$$

koziołkują.

Wraz z malejącą szybkością kąt odbicia wzrasta.

Wpływ ułożenia włókien na wielkość kąta odbicia jest minimalny.

Przestrzeń niebezpieczna krawędzi deski, t. j. ta, która jeszcze powoduje odbicie, wynosi około 12 mm dla bocznej krawędzi (włókna równoległe do krawędzi), 16 — 18 mm dla krawędzi czołowej. Z tego więc punktu widzenia lepiej jest ustawiać deski w niebezpiecznych miejscach strzelnicy w ten sposób, by krawędź była zawsze równoległa do włókien.

Należy zauważyć, że i poza strefą, określoną wyżej jako niebezpieczna, przejście pocisku przez deskę zmienia jego kierunek lotu. Zmiana kierunku lotu jest stosunkowo nieduża ($\sim 20'$), zachodzi jednak w obu kierunkach, a więc zarówno do góry jak i wdół. Jest ona zresztą normalnym wpływem niejednorodności deski i nieosiowego położenia pocisku na torze.

Rys. 26. Schemat urządzenia.

5. Odbijanie się pocisku od powierzchni płyty stalowej.

Do prób użyto płyty kontaktowej aparatu Boulangé o wymiarach 670 imes 670 imes 20.

- ζ₁ kąt najniższego odłamka rozbitego pocisku.
- ζ_s kąt środka ciężkości odłamków.
- ζ₂ kąt najwyższego odłamka.
- σ kąt stożka rozsypu odłamków.

$$\operatorname{tg} \zeta_1 = \frac{h_1}{x}; \quad \operatorname{tg} \zeta_s = \frac{h_s}{x}; \quad \operatorname{tg} \zeta_2 = \frac{h_2}{x};$$

 $\sigma = \sigma_1 + \sigma_2;$ tg $\sigma_1 = \frac{a_1}{x};$ tg $\sigma_2 = \frac{a_2}{x}.$

.9.0	<i>x</i> mm	h ₁ mm	h _s mm	h_2 mm	ζ1 ⁰	ζs ⁰	ζ2 ⁰	1
4º26'	840	- And	24		Yar Se	1º38'	E.C.	
	1000		22			1º16′		
"	1020		22			1º14'		
	950		25			1º31'	-	
	1000		21			1º12'		
7º15'	800	15	15	33	1°4'	1º4'	2º22'	
	800	17	17	199	1º7'	107		
8º34'	890	18	18	91	1º10'	1º10'	5050'	
	830	19	19		1º19'	1º19'		
9º18'	860	20	20	69	1º20'	1º20'	4º36'	
н	860	11.	19			1º16'		
	820	3	20	67	13'	1º24'	4º30'	
	810	14	15	77	59′	1º4'	5º26'	
	800	13	13	20	56'	56′	1º26'	
9 °39′	810	16	19	80	1°8′	1º20'	5º40'	
	810	15	19	76	1°4′	1º20'	5º23'	
	830	21	21	81	1º27'	1º27'	5°36'	
41	770	12	12	28	54'	54'	2º5'	
	730	12	12	60	56'	56'	4º42'	
10º2'	920	18	25	100	107'	1º34'	6º12'	
	890	4	20	87	16′	1º17'	5º36'	
	860	23	25	155	1º32'	1º40'	10º13'	
	900	9	22	66	34'	1624'	4º12'	
"	900	7	20	94	28'	1º17'	5º58'	
14º58'	960	7	19	146	25'	1º8'	8º40'	
	960	2	23	148	7'	1º22'	8º46'	
	980	4	24	142		1º24'	8º15'	
	970	-3	22	147	1.5	1018'	8º38'	

Wyniki pomiarów dla szybkości v_{100} .
1 1 2 2			Trans I	1 12	F. M. F. W. B. 7.	50
$\vartheta^{,0}$	x mm	h ₁ mm	h _s mm	h_2 mm	ζ_1^0 ζ_s^0	ς ⁰ 2
14º58'	960	0	26	106	1º33'	6º18'
19º34'	600	- 3	21	162	2º0'	15º6'
Siet. Vi	640	— 3	21	165	1º53'	14º25'
24º24'	580	- 4	18	160	1º47′	15º25'
2 9º12 ′	530	- 7	11	83	1º11'	8º54'
39º12'	590	-11	15	87	1º28'	8º24'
49°8'	600	20	30	75	2º52'	707'
59º6'	600	-11	21	65	2º0'	6º11'
64º4'	600	11	16	112	1º32'	10º35'
9 0 °	780	-11	18	120	1º17º	8º46'
				5		

Krzywa I. rys. 27.

14	ϑ^0	x mm	a ₁ mm	a_2 mm	σ1 ⁰	σ ₂ ⁰	a ₀
		+ Sine				. Ar	
	1001'	1080	48	50	2º33'	2º39'	5º12'
	12º20'	790	291	207	20º14'	14º42'	34º56'
	14º50'	440	272	272	31º44'	31º44'	63º28'
	Selen				e . Cal	1 - The Martin	S. Sandi
	17º0'	290	369	278	51º48'	43º48'	95º36'
	19º24'	280	315	315	48º20'	48º20'	96º40'
	21º50'	270	305	293	49°53′	48º25'	98º18'

73

74

Rys. 27.								
Wykres	$\sigma = f(\vartheta)$	dla	szybkości	v_{100}	krzywa	I		
		dla	szybkości	v_{200}	krzywa	II		
		dla	szybkości	v_{300}	krzywa	III		

Wyniki pomiarów dla szybkości v_{200} .

ð	x	<i>h</i> ₁	hs	h_2	ζ1	ζs	ζ2
4º26'	730	Same L.	20	N. WER		1º34'	ALL ALL
	850		27			1º46'	1. 185
	730		20			1º34'	
- ilitin	720		20		STA .	1º35'	DE AL
	680	176.0	22			1º52'	1.12.1
9º39'	670	15	22	132	1º17'	1º53'	1109'
1911	770		11			0º49'	ALL SALS
Contraction of the	750		. 14			1º 4'	
	750		14	40		1º 4'	3º4'

			in at -	Later Lang	Lub plant	1 m m m m m m m m m m m m m m m m m m m	STATE IS STOLED
Ð.	x	h_1	hs	h_2	ζ1	ζ^s	ζ2
9º39'	750	1	13	20		1º59'	1º32'
10°2′	850	1 and an	20	170		1º21'	11º19'
	740		12	95		0º56′	7º19'
1970-94 H	870	17	21	41	107'	1º23'	2º42'
" 2-10	840		20	47		1º22'	3º12'
	790	9	15	75	0º39'	1º5'	5º26'
10º14'	720	8	15	. 113		1011'	8º56'
"	700	5	14	94	0º25'	1º9'	7º39'
н-	710	15	15	36	1013'	1º13'	2054'
	70 0	7	13	14	0º34'	1°4'	1º9'
n	750	11	11	22	0°50′	0º50'	1º41'
10º46'	720	0	17	97	0′	1º21'	7º43'
u	690	-3	15	155		1º14'	12º41'
11	720	15	18	84	1 ⁰ 12′	1º26'	6º41'
	6 8 0	12	16	89	1º1′	1º21'	7º30'
	690	13	16	36	105'	1º20'	2º59'
11º21'	710	—3	19	97		1º32'	7º48'
	710	10	19	112	0°49'	1º32'	8º59'
	690	-24	15	113		1º15'	9º18'
н	600	8	13	47	0º46'	1º14'	4º29'
u	620	12	17	130	107'	1º34'	11º51'
11º48'	700	16	16	155	1º18'	1º1 9'	12º29'
	750	14	24	129	1º4'	1050'	9º46'
	710	10	21	70	0º49'	1º42'	5°39'
	750	4	18	125	0º18′	1º23'	9º29'
and a start	710	12	20	144	0°58′	1º37'	11º28'
14º58'	890	4	26	170	0º16'	1º40'	10º49'
	900	13	22	173	0°50′	1º24'	10°53'
	920	0	19	185	0'	1011'	11023'

-

		Krz	ywa II rys	s. 27.	1947	1000	
÷Ð	x	<i>a</i> ₁	<i>a</i> ₂	σ1	0 ₂	٥	
10°0″	1020	25	8	1º24′	27'	1º51'	
12º20'	820	387	188	25º17'	12º56′	38º13'	
14º50'	340	341	202	45° 5'	30º43′	75°48'	
17º0'	245	366	326	56º12'	530 3'	109º15'	
19º24 '	240	362	256	56º27'	47° 4'	103º31'	
21°50′	185	353	326	62º21'	60º24'	122º45	

	T. P.			76 —			
Ð.	x	h_1	h _s	h_2	ζ1	Ls.	ζ2
1 2	Nelle-		1 a				1200
14º58 ′	910	0	21	175	0'	1º19'	10º53'
	880	4	23	163	0º16'	1º30'	10º30
19º34'	860	0	29	153	0'	1º56'	10°5'
н	890	0	26	150	0′	1º40'	9º35'
24º24'	560	—6	19	100		1º56'	10º8'
29º12'	510	—3	17	94		1º55'	10º27'
39º12′	560	-7	15	70		1º30'	7°8'
48°8'	560	12	13	80		1º20'	8º8'
54º10'	600	0	22	86	0′	2º6'	8º10
59º6 '	570	-6	9	90		0º54'	8º59'
90 °	780	15	28	122		2º0'	8º54'
1. Canal	100	. to 2	the ?			1.1	

			a - 12						
1	ֆ	υ	h ₁	hs	h_2	51	ζś	ζ2	1
	a the second	and the second second		i mi	1. 19:10				
	4º26'	650		26	4155	- A.	2°17'		
	н	670		22			1°53′		
	п	630		23			2º5'		
	51	670		22			1º53'		
	н	640		24			2°9'		
	10º2'	740		13	in here		1º1'		
		700		15			1º14'		
		700		14		a line in	1º9'		
		670	N. A.	13			1071		
		730		13			1º1'		
	10º46'	670		14	60	1. 27	1º12'	5º8'	
		610		14			1º19'		
		590	5	17		0º29′	1º39'		
		680	10	12	51	0 °50 ′	1º2'	4º18'	
		650		21	24		1º51'	2°7'	
	11º21'	680		14 ·	. 98		1º11'	8º12'	
		640		24	46		2091	4º7'	
	11	720		15	42		1º12'	3º20'	
	a	790		12			0º52'		
	'n	610	12	24	63	1°8'	2º15'	5°54′	
	11º48'	650	9	26	140	0º48'	2º17'	12º10'	
		670		15	64		1º17'	5º28'	
	u	680		15	96		1º16'	8º3'	
		730	9	15	44	0º42′	1º11'	3º27'	
		710	6	21		0º29′	1º42'		
	12º16'	660	19	27	125	1º39'	2º20'	10º44'	
	and the	650	2	26	56	00111	2017'	4056'	

Wyniki pomiarów dla szybkości v_{300} .

and the second	1	1. 11	1. 1. 1. 1.	()== 10.00	1.151	1200	N 12 3 2 3 1
ઝ	x	h_1	hs	h_2	ζ1	ζs	22
12º16'	700	3	22	63	0º15'	1º48'	5°9'
	690	-11	19	90		1°35'	7º27'
	670		17	100	18 1 2	1º27'	δ ⁰ 29′
14º58'	940	-10	27	125		1º39'	7º35'
	930	-21	26	102		1º36'	6°16′
	970	10	23	113		1º22'	6º39'
	940	0	27	121		1º39'	7º21'
	920	17	25	130	1°4′	1º34'	8º3'
19º34'	820	4	19	133	0º17'	1º20′	9º13'
	830	6	21	162	0°25′	1º27'	11º3'
	839	2	22	174	0º8′	1º31'	11º51'
24º24'	480	-12	12	123		1º26'	14º23'
	520	6	16	148		1º46′	15053'
29º12'	500	-3	12	85		1º22'	9º39′
39º12'	570	0	9	100		1º2'	9º57'
4908'	545	—3	21	65		2º13'	6°48′
54º10'	590	3	18	69	0º18′	1º45'	6°41'
59%6'	575	—7	12	·55		1º12'	5º28'
90 °	780	—18	24	138		1º43'	10º3'
1997 N. 19	24.5	T	Crzywa I	II rvs 2	27.	-	
9	10				-	-	
Ū.	X	<i>a</i> ₁		12	01	0	02

U.	X	u_1	u_2	^о 1	0	02	
4000/	010	100			F2/	10=7/	0
10.0	910	- 17	14	104	53	1.21	
12º20'	815	317	132	21º16'	9º13'	30°29′	
14º50'	445	243	105	28º40'	13º17'	41°57′	
17º00'	205	282	114	53º58'	29º6'	83º4'	
19º24'	220	351	219	57°54'	44º54'	102º48'	
21°50′	190	273	239	55°8'	51º28'	106º36'	

Z otrzymanych wyników widać, że pocisk zaczyna się rozbijać

dla	v_{100}	przy kącie	$\vartheta = 7^\circ \div 9^\circ 30'$
dla	v_{200}		$\vartheta = 9^{\circ}30' \div 10^{\circ}15'$
dla	v_{300}	11	$\vartheta = 10^{\circ}30' \div 12^{\circ}30'.$

Próba skuteczności rozbitego pocisku wykazuje, że odłamki przebijają jeszcze deskę 1", stawianą tuż przed ekranem, w następujących granicach:

dla	v_{100}	przy	kącie	ֆ	<	65°
dla	v_{200}			ֆ	<	60°
dla	v_{300}			ϑ	\$	55°

Granice te wyznaczone są z dokładnością $\sim 5^{\circ}$.

Kąty ζ_1 i ζ_2 mają znaczenie tylko orjentacyjne, nie ilościowe, dlatego, że odłamki od chwili rozbicia się pocisku lecą nie po linjach prostych, lecz łamanych z powodu wzajemnego odbijania się; potwierdza to fakt, że mamy szereg ujemnych wartości h_1 . Skutkiem tego powstaje błąd w wyznaczeniu tych kątów.

Co do zależności kąta odbicia od kąta padania należy stwierdzić, że dopóki pocisk odbija się cały, dopóty kąt odbicia nie przekracza 1° do 2° i to zupełnie niezależnie od kąta padania.

To samo zachodzi dla środka ciężkości odłamków dla kąta padania aż do 90°; w wyjątkowych jedynie wypadkach kąt odbicia przekracza 2°, nie dosięgając nigdy jednak 3°.

W ten sposób działanie płyty stalowej polega na tem, że zmusza ona padający pocisk do pójścia wzdłuż powierzchni płyty. Wskazówka ta może być cenna dla konstruktora strzelnicy, ponieważ poważnie zmniejsza kierunki niebezpieczne przy odbiciu się pocisku od płyty kontaktowej.

Z chwilą, gdy pocisk zaczyna się rozbijać, odłamki zwiększają oczywiście górny kąt odbicia ζ_2 . Nie dała się stwierdzić żadna prawidłowość w zawisłości tego kąta od kąta padania. Średnio wynosi on około 8°, w wyjątkowych wypadkach może dochodzić do 12°, a nawet do 15°. Są to jednak jedynie już odłamki słabe, o mniejszej sile działania i niewątpliwie niedużym zasięgu. Jak drobne mogą być te odłamki, widać wyraźnie na fot. 7 (str. 59), przedstawiającej ekran ustawiony 25 mm przed płytą kontaktową przy kącie padania 90° i na fot. 14. Pomiar zależności kąta stożka rozsypu odłamków (5) od kąta padania wykonano tylko dla ϑ w granicach od 10° do 22°; dla $\vartheta < 10^{\circ} \sigma = 0$, gdyż pocisk jest jeszcze cały; dla 22° $< \vartheta < 90^{\circ}$ kąt σ rośnie silnie, ale wykonanie pomiarów dla kątów $\sigma > 120^{\circ}$ napotyka na znaczne trudności. Krzywe I, II i III rys. 27 zależności $\sigma = f(\vartheta)$ dla różnych szybkości wskazują bardzo szybki wzrost tego kąta wraz z kątem padania, a więc i bardzo silnie wzrastającą fragmentację pocisku.

Proces ten widoczny jest wyraźnie na fotografjach śladów na ekranie. Na fotografjach 8, 9, 10, 11, 12, 13 i 14 przedstawione są kolejne stadja rozbijania się pocisku dla szybkości v_{300} . Odległość ekranu od punktu rozbicia pocisku wynosi ~ 700 mm. Na fotografjach 15, 16, 17, 18, 19, 20 i 21 podane są kolejne stadja rozbijania się pocisku dla szybkości v_{100} , przyczem ekran był w odległości ~ 200 — 400 mm od punktu rozbicia pocisku; próby te służyły do obliczenia kąta σ . Na fotografjach 22, 23, 24, 25, 26 i 27 zestawione są ślady rozbitych pocisków dla różnych szybkości przy tym samym kącie padania pocisku ϑ . Na fotografjach 28, 29, 30, 31. 32, 33, 34, 35, 36 i 37 przedstawione są pociski i odłamki pocisków, które utkwiły w drzewie po odbiciu od płyty stalowej.

Fotografje 8 — 27 wykazują jaskrawo, że przy kącie padania od 12[°] pocisk zaczyna się już rozbijać na kawałki, nie mogące ranić na dalekiej przestrzeni.

Potwierdzają to fotografje 28 — 37.

Przy kącie padania 4°46' pocisk odbija się prawie bez zniekształcenia i może mieć jeszcze bardzo poważne działanie.

Przy kącie padania 6°45' pocisk zaczyna się już nietylko zniekształcać, ale i rozbijać, oczywiście silniej przy większej szybkości pozostałej. Donośność pocisku rozbitego musi się oczywiście nieco skrócić, choć np. pocisk na fot. 33 (odpowiadającej v_{300}) może mieć jeszcze donośność bardzo poważną.

Przy kącie padania 7°34' i 9°31' rozbijanie się pocisków wzrasta, lecz zawsze główne odłamki mogą jeszcze daleko dolecieć.

Przy kącie 14°58' z pocisku pozostaje jedynie poszarpany płaszcz z drobnemi pozostałościami ołowiu wewnątrz. Lot takiego pocisku nie może już być daleki i mało jest szans, by mógł on wyjść poza teren strzelnicy. Doświadczenie potwierdza ten wniosek. Przy licznych bowiem badaniach bezpieczeństwa strzelnic stwierdzono, że odnalezione poza terenem strzelnicy pociski odbite mają wygląd podobny do fot. 28, 29, 30 i 33.

Pocisków podobnych do podawanych na fotografjach 31, 32 i 34—37 nígdy poza terenem strzelnicy nie znajdowano.

Fot. 8 (\times 0.5) v_{300} $\vartheta = 4^{0}26'$.

Fot. 9.(\times 0,21) v_{300} $\vartheta = 10^{0}46'$ 5 strzałów.

Fot. 12 (× 0,21) v_{300} $\vartheta = 14^{0}58'$ 3 strzały.

Fot. 17 (× 0,95) v_{100} $\vartheta = 10^{0}$ 1 strzał.

Fot. 20 (× 0,21) v₁₀₀ &=17° 1 strzał.

Fot. 21 (× 0.21) v100 & = 21050' 1 strzał.

Fot. 22 (× 0.21) $v_{100} \ \vartheta = 14^{0}58' \ 2$ strzały.

Fot. 23 (× 0,21) v_{200} $\vartheta = 14^{0}58^{!}$ 2 strzały.

En al Contractor and a series

Fot. 26 (× 0.21) v_{200} $\vartheta = 12^{\circ}20'$ 1 strzał.

Fot. 29 (× 1.2) $\dot{v}_{100} = 4^0 46'$,

Fot. 30 (× 1.2) $v_{100} = 4^{126}$.

Fot. 31 (\times 1.2) v_{100} $\vartheta = 6^{0}45'$.

Fot. 32 (× 1.2) v_{200} $\vartheta = 6^0 45'$.

Fot. 33 (× 1.2) v_{200} $\vartheta = 6^0 45'$.

1-21-2

Fot. 34 (× 1.2) v_{100} $\vartheta = 7^{0}34'$.

Fot. 35 (× 1.2) $v_{100} = 9^{0}31'$.

Fot. 36 (×1.2) $v_{200} = 14^{0} j\xi'$.

Fot. 37 (× 1.2) v_{300} $\vartheta = 14^{0}53'$.

6. Odbijanie się pocisku od krawędzi płyty stalowej.

Badanie to ma cel podobny do badania odbijania się pocisku od krawędzi deski. Chodzi mianowicie o określenie roli płyty stalowej, jako krawędzi górnej wału tarczowego.

Dla określenia zachowania się pocisku w zależności od rodzaju płyty, użyto dwie płyty stalowe: jedną bardzo twardą (płyta kontaktowa aparatu Boulangé), drugą zwykłą miękką płytę stalową.

a) Płyta stalowa kontaktowa.

Schemat urządzenia do prób i znaczenie poszczególnych znaków podaje rys. 28.

x — odległość osi strzału od krawędzi (mm)
 a — odległość ekranu II od krawędzi (mm)

92

- ψ kąt między osią strzału a prostopadłą do ekranu II (stopnie)
- ζ₁ kąt najniższego odprysku (stopnie)
- ζ₂ kąt najwyższego odprysku (stopnie)
- ζ_s kąt odbicia pocisku nieznacznie rozbitego (stopnie)
- σ- szerokość rozprysku (stopnie)

a

$$tg \zeta^{1} = -\frac{1_{1}}{a}$$

$$tg \zeta'' = -\frac{1_{2}}{a}$$

$$tg \zeta_{s}' = -\frac{1_{s}}{a}$$

$$tg \frac{\sigma}{2} = \frac{b}{2\frac{a}{\cos\zeta''}}$$

$$\zeta_{1} = \phi + \zeta'$$

$$\zeta_{2} = \phi + \zeta''$$

$$\zeta_{s} = \psi + \zeta_{s}'$$

$$= 180 \text{ mm} \qquad \psi = 45^{\circ} 40'$$

Wyniki pomiarów dla szybkości v_{100} .

							and the second se		
Nr.	x	11	1 <i>s</i>	12	ζ1	ζs	ζ2	b	σ
1	20,5	170	esta l	285	89º2'	1	103º22'	an de	10 200
2	0,5	-70		160	24º24'		87º20'		12.120
3	2	15		235	47°15'		98 °11′		
4	3	60		285	64º7'		103º22'		
5	5	155		255	86º24'		100º27'		
6	6.5	155		275	86º24'		102º27'		
7	0	65		225	25°48′		97°0′		
8	2,5	—115		25	7º7'		53º35'	1	
9	0,5	-60		195	27º13'		92°56'		

Nr.	x	11	1 <i>s</i>	12	ζ1	ζs	ζ2	Ь	σ
10	0,5	65		255	25º48'	in the second	100°27'		
11	0,5	—25		215	37º44'		95º48'	Ou the	
12	4	125		280	80º28'		102º56'	1	
13	7	155		285	86º24'		103º22'		
14	6,5	160		275	87º19'		102º27'		
15	4.5	135		275	82º33'		102º27'		
16	6	155		285	86º24'		103º22'		
17			—167			2º48'			
18	9,5	170		275	89º2'		102º27'		
19	-3			85		4º22'	20º24'	50	14º20'
20	5,5	155		270	86º24'		101°58′		
21	7,5	170		285	89º2'		103º22'		
22	5	145		275	84º33'		102º27'		
23	8	160		275	87º19'		102º27'		
24	6,5	150		260	85°30'		100°58'		
25	3	-176	-155	—38	1º17'	4º56'	33º44'	45	13º40′
26	2,5	-151	-121	5	5°40'	11º45'	47º15'	300	79º40′
27	0	-60		205	27º13'		94º22'	* .	
28	3,5	85		275	70°56'		102º27'		
29	-0,5	95		110	17º48'		87008'		
30	5,5	145		290	84º33'		103050'		97
31	2,5		—134	10		8°57'	48°51'	200	58º10'
32	6	150	+	280	85º30'		102056'		
33	8	155		280	86º24'		102º56'		1
34	3	85	100 m 11-2	265	70º56'		101º27'		
35	7	155	1.16	260	86º24'		100°58'		
36	7	155	749] = -	245	86º24'		99º20'		
37	4,5	125		255	80°28'		100027'		
38	0,5		2421	240	28º39'		98º46'		

- 4	1. 210 7		St. Wearer	4 4 4 5	C. L.Y.	12752	a da ser	212121	102
Nr.	x	11	1,	12	ζ1	ζs	ζ2	b	σ
39	3	55		245	62º41'		99º20'		1000 500
40	—2	—125		25	10°52'		53º35'	400	113º20'
41	1,5	5	Seine	255	44° 5'		100º27′		
42	5,5	145		275	84º33'		102º27′	- State	
43	-2,5		—130	2	5°50'	9º47'	46°18'	140	30° 0'
44	2,5	35		255	56°24'		100°27′		
45	6	160		265	87º19'		101º27'		
49	2,5	35		255	56º24'		100°27′		
47	2	25		250	53º35'		99º54′		
48	1	15		190	40°54'		92°11′		
49	12.5	175		265	89º53'		101º27'		
50	6	155		285	86º24'		103º22'		induced him

.

95

Wyniki pomiarow dla szybkości v_{300} .

Nr.	x	11	1 <i>s</i>	12	ζ1	ζs	ζı	b	σ
1	42	179		275	90°32′		102º27′		
2						3º28'			
3	-0.5	96		111	17º35'		77º20'		
4	13	165		280	88º12'		102º55'		
5	4,5	120		250	79º22'		99 ⁰ 54′		
6	-0.5	-87		75	19051'		68º18'		
7	-2	-120	-110	5	11º58'	14 ⁰ 12'	47º15'	200	58º10'
8	0	88		135	19º36'		82º33'		NE ?
9	-1.5	-105		40	15º25′		58º12'	475	104°10'
10	3		-155	98		4º56'	17º 7'	50	14º0'
11	2,5	15		260	50°26′		100°57′		
12	12	163	i.	285	87º50'	TEL S	103º22'		
13	-2			5		10º52'`	44° 5'	255	.70°40'
14	3,5	55		285	62º41'		103º22'		NOR!
15	8	160	1.	275	87º19'	a data	102º27'	12.5	
16	2	-35		255	34º40'	14 (E	100°27'	AT .	

W tabelach powyższych w rubryce "b" puste miejsca oznaczają, że szerokość ta nie była zmierzona, gdyż rozprysk nie mieścił się na ekranie (szerokość ekranu = ~ 500 mm, zatem b > 500mm).

Z krzywej II rys. 29 i krzywej II rys. 31

$$\zeta_1 = f(x)$$

widać, że działanie brzegowe krawędzi kończy się zarówno dla szybkości v_{100} jak i v_{300} przy $x = \sim 6$ mm.

Pocisk wyłupuje krawędź, jeżeli oś strzału znajduje się w odległości x = 0.5 do — 3 mm od krawędzi, przyczem największe wyłupanie zachodzi dla $x = \sim 0.5$ mm; wynosi ono

 $a_1 = a_2 = 2.4$ mm.

Wyłupanie ma kształt podany na rys. 33.

Rys. 29. Wykres $\zeta = f(x)$ dla szybkości v_{100} dla płyty kontaktowej.

Rys. 30. Wykres $\sigma = f(x)$ dla szybkości v_{100} dla płyty kontaktowej.

Rys. 31. Wyk:es $\zeta = f(x)$ dla szybkości v_{300} dla płyty kontaktowej.

7

Rys. 33. Wyłupanie krawędzi płyty kontaktowej.

Rys. 32. Wykres $\sigma = f(x)$ dla szybkości v_{300} dla płyty kontaktowej.

Na fotografjach 38 — 47 podane są kolejne stadja rozbijania się pocisku dla szybkości v_{100} .

Z fotografji 41 i następnych widać, że już przy x = -2,5 mm pocisk zaczyna się rozbijać na części mniej niebezpieczne i że przy $x \sim -2$ mm odłamki pocisku przestają być niebezpieczne, bo napewno nie wychodzą poza obręb strzelnicy.

Jeżeli porównamy działanie płyty stalowej z deską, to przekonamy się, że przestrzeń niebezpieczna deski wynosi ~ 20 mm (a nawet 24 mm jeżeli dodać jeszcze te 4 mm, przy których wprawdzie ostrze pocisku przechodzi nad deską, ale płaszcz jego zawadza o deskę), podczas gdy przestrzeń niebezpieczna płyty wynosi 6 mm, lub (biorąc jak i poprzednio owe 4 mm) 10 mm, a więc 30%, lub 40% przestrzeni niebezpiecznej deski. Uwzględniając dalej, że od — 2 mm począwszy odbicie od płyty stalowej przestaje być niebezpieczne, bo są to już odpryski rozbite, nie mogące wyjść poza strzelnicę, należy stwierdzić, że faktycznie przestrzeń niebezpieczna płyty stalowej wynosi wszystkiego 2 mm, a więc $8\frac{10}{2}\%$ przestrzeni niebezpiecznej deski. Charakterystyczną rzeczą jest dalej, że kąt odbicia pocisku od krawędzi płyty stalowej jest dość duży, około 10°, podczas gdy przy płycie drewnianej odbicia były bardziej płaskie, nie przekraczające 3°.

Fot. 38 (\times 0.18) x = -3.5 mm

Fot. 40 (\times 0.18) x = -3 mm

Fot. 41 (\times 0,18) x = -2.5 mm

Fot. 42 (\times 0.18) x = -2.5 mm

b) Płyta stalowa ochronna (o wymiarach 810×810×10).

Charakterystyka: stal miękka wyżarzona o zawartości

C = 0.15 do 0.2%

i właściwościach: wytrzymałość

 $R = 45 \text{ do } 50 \text{ kg/mm}^2$

i twardość

H = 127 do 144.

Schemat urządzenia ten sam, co dla płyty kontaktowej,

 $a = 320 \text{ mm} \quad \psi = 45^{\circ}40'.$

Wyniki pomiarów dla szybkości v_{100} .

Nr.	x	11	1 <i>s</i>	12	ζ1	ζs	ζ2	b	σ
N. P. L	112.4.6		APTE:	- Carl	1202	13	H. H.	a series of	The second
1	7,5	258		352	6º47'		93º24′	150	17º54'
2	-1	258	-238	87	6º47'	9°1′	60°53′	380	59º30'
3	6			342	27°0'		92º34′	180	21º45'
4	3	173	et a se a la	332	17º15'		91º41'	285	34º20'
5	3,5	-203		272	13º16'		86°01′	245	32º27'
6	5,5	—188		352	15012'		93º24′	205	24º20'
7	7	-178		322	16º33'		90º30′	150	18º53'
8	3	—268		352	5º42'		93º24'	320	37º10′
9	2	—198		282	13º54′		87º6′	430	53º30'
10	1	—183		132	15º52′		69º6′	320	49º16'
11	3	—168		302	17056'		89º2'	315	39º20'
12	—3		-293	—103	0°50′	3°10′	27°48′	145	24º17'
13	—3	—328	-298	103	000′	2º40'	27º48'	150	25º7'
14	0,5	—198		112	13054'		64º59'	530	76º2'
15	1,5	-243		152	8º25'		71º6′	390	5805'
16	1	-291		222	2º21'		80º26′	580	73º20'

1	Nr.	x	11	1 <i>s</i>	1 ₂	ζ1	ζs	ζ2	Ь	σ	
	18:5	12.2		Welter -	alere -		AN ET				
	17	4	238		332	900		91º44′	260	31º28′	
	18	3,5	-278		282	4º38'		87º04'	270	35°12′	
	19	6	258		362	6°46′		94º12'	240	27°52′	
	20	-1,5	-308	-238	-8	1°50′	14º0'	44º14'	300	50º15'	
	21	1	293		262	3º15′	14 17	84°55'	520	64º16'	
	22	0	233		152	9º35′		7107	570	78º10'	
	23	0.5	313		242	1º16′		82º47'	470	60°45′	
	24	1	-238	and the	282	9°0′		87°5′	450	55°35′	
	25	1,5			292	10º10'		88 °4′	400	49°30′	
	26	3,5	-218		302	11º22'		89º2'	245	31º10′	
	27	2	-233		272	9°34′		86º2'	310	40°26′	
	28	5	-228		352	10º10′		93º22′	220	26º2'	
	29	2,5	-223	and and the	272	10º46′		86º3′	250	33º6′	
	30	0,5	-238		122	9º0′		66º33'	410	61º48′	
	31	4	-233		332	9º35'		91º44'	230	28º0'	
	32	2	-233	SIF, R. F.	322	9º35'		90°50′	300	36º30′	
	33	3				0º50′	2º38'	42º27'	110	19º30'	
	34	6,5	-148		352	20º50'		93º22'	180	21º25'	
	35	-2,5		-263	—3	0º50′	6º13'	45º8'	145	25º32'	
	36	-1	—318	218	-23	0º50′	11º22'	41º33'	360	58º35'	
	37	4,5			352	20°50′		93º22′	280	32°48′	
	38	-1	-268	213		5°42'	12º0'	40º39'	540	80°0′	
	39	1		1466	202	12º37'		77º55'	380	5308'	
	40	1.5			202	13º54'		77055'	315	43°2'	
	41	4.5	-193		352	14º32'	41124	930221	200	23 ⁰ 44′	
	42		-320	-278	-218	0°40′	4º38'	11024'	105	15º25'	
	43	-1.5	-258	—198	92	6 ⁰ 46′	13054	61043	310	50°0'	
	44	4.5	-218		352	11024'	1192.7	930221	250	290251	

352

11º24'

93º22'

250

29025'

4,5

-218

— 105 —

Nr.	x	11	1 <i>s</i>	1 ₂	ζ1	ζs	ζ2	b	σ
45	—0,5	253	—168	62	7º18′ 1	7°58′	56º38′	550	80º20'
46	0.5			122	15º12'		66º32′	360	55º24'
7	0	248		92	7°52′		61º43′	430	65º42′
48	-0.5	253		102	7º18′		63º22′	540	77º36′
49	7	-183	i ku	352	15° 5 3′	·	93º22′	140	{16 ⁰ 45′
50	1	-228		132	10º10'		68º7'	300	46º44'

106 -

Krzywe II i III rys. 34 podaje największy i najmniejszy kąt lotu odłamków w zależności od odległości x od krawędzi, krzywa I rys. 34 podaje kąt odbicia pocisku mało rozbitego, krzywa na rys. 35 podaje szerokość rozsypu odłamków. Na fotografjach 48—50 pokazane są kolejne stadja rozbijania się pocisku o krawędź.

Na fotografjach 58, 59, 60 i 61 pokazane jest działanie pocisku na krawędź.

Odległość x od krawędzi, przy której działanie brzegowe ustaje, wynosi ~ 8 mm. Przy x > 8 mm pocisk wgniata wgłębienie w płycie, sam zaś się rozbija; odłamki idą w tył. Bardzo często ołów z tylnej części pocisku w dość dużym kawałku pozostaje we wgłębieniu w płycie (dla szybkości v_{100}).

Takie kawałki pokazane są na fotografji 62.

Wgłębienie w płycie ma kształt pokazany na rys. 36.

Dla	szybkości	v_{100}	d = 13 mm	h = 11,5 mm
		v_{200}	d = 13 mm	h = 6.5 mm
	"	$v_{\rm eoo}$	d = 11,5 mm	h = 3,5 mm

W porównaniu do płyty twardej, działanie płyty miękkiej różni się tem, że przestrzeń, gdzie działanie powyższe występuje, wynosi 8 (albo 12 mm przy liczeniu 4 mm na ½ średnicy pocisku) zamiast 6 (lub 10 mm), a rozbijanie się pocisku na części, nie mogące wyjść poza strzelnicę, zaczyna się przy 1 mm, zamiast — 2 mm. Przestrzeń brzegowa istotnie niebezpieczna wynosi więc 3 mm, zamiast 2 mm, jak to było przy płycie bardzo twardej. Kąt odbicia się pocisku, jak i przy płycie twardej--duży, jedynie drobne odpryski mają tor bardziej płaski, niż przy płycie twardej.

Natomiast zniszczenie płyty jest o wiele większe, i to zarówno przy urywaniu brzegów, jak i przy działaniu na środek płyty.

Rys. 34. Wykres $\zeta = f(x)$ dla szybkości v_{100} dla płyty z miękkiej stali.

Rys. 35. Wykres $\sigma = f(x)$ dla szybkości v_{100} dla płyty z miękkiej stali.

Rys. 36. Wydrążenie w płycie stalowej.

Fot. 49 (\times 0.184) x = -3 mm

Fot. 51 (\times 0.184) x = -1.5 mm

Fot. 52 (\times 0.184) x = -0.5 mm

Fot. 55 (\times 0,184) x = 3 mm

Fot. 56 (\times 0,184) x = 4 mm

Fot. 58 (× 0.5). Fragment krawędzi płyty z miękkiej stali.

Fot. 60 (\times 0,5). Fragment krawędzi płyty z miękkiej stali.

÷

Fot. 61 (\times 0,5). Fragment krawędzi płyty z miękkiej stali.

Fot. Nr. 62 (× 1.2) 1. v_{100} płyta miękka 2. v_{100} płyta twarda 3. v_{300} płyta miękka.

III. Porównanie z wynikami obcemi.

Próby francuskie, o których mowa w cytowanej powyżej książce "Organisation des Champs de Tir" przeprowadzone były z pociskami o ostrzu tępem (owalnem) i przy

 $v_0 < 600$ m/sek.

Tem ciekawsze więc będzie porównanie wyników przez nas osiągniętych z temi wynikami.

Przedewszystkiem w naszych próbach przy odbijaniu się pocisków od środowiska przenikliwego (drzewo) potwierdza się prawo sinusów, wedle którego odbicie zamienia się na przenikanie z chwilą, gdy

 $v\sin\vartheta > V$,

gdzie V jest pewną wielkością stałą, charakterystyczną dla danego materjału. Istotnie, biorąc w naszych próbach na odbijanie się od drzewa

$$V = 155 \text{ m/sek},$$

otrzymujemy kąt graniczny 12° dla v_{100} , $13^{1/2^{0}}$ dla v_{200} i $15^{1/2^{0}}$ dla v_{300} , co jest dość zgodne z poczynionemi obserwacjami.

Rzecz charakterystyczna tylko, że o ile dla sosny V wynosiło przy pociskach tępych 60 m/sek¹), to przy pociskach kształtu "S" wynosi ono 155, a więc $2^{1}/_{2}$ razy więcej.

Charakteryzuje to wyraźnie znaczenie ostrza przy odbijaniu się i wykazuje, jak niebezpiecznie jest przenosić wzory empiryczne, wyprowadzone przy pociskach pewnego kształtu, na pociski kształtu zupełnie innego.

Wedle naszych danych, kąt odbicia wynosi przeciętnie 2 razy więcej niż kąt padania.

Praca francuska (l. c. str. 102) podaje, że do 10° kąta padania²) kąt odbicia²) jest mniejszy od padania, a między 10° a 45° mniejwięcej mu równy.

Ta niezgodność naszych prób z danemi dawnemi pochodzi z jednej strony niewątpliwie z odmiennego kształtu pocisku, wybitnie sprzyjającego odbijaniu się (co podkreśliliśmy już wyżej), z drugiej zaś strony z tego, że próby francuskie, o których mowa, przeprowadzone były po większej części pociskami ołowianemi o małej szybkości.

Prób odbijania się od krawędzi drzewa, analogicznych do naszych, nie spotykaliśmy w literaturze.

Odnośnie działania stali na odbijanie się pocisku, próby nasze w zupełności potwierdziły dawniej już poczynione obserwacje, że pocisk, uderzając o płytę stalową. zmienia swój tor w ten sposób, że idzie dalej cały — lub rozbity, prawie równolegle do płaszczyzny odbijającej.

Kąt padania, począwszy od którego pocisk zaczyna się rozbijać na płycie stalowej, wyniósł dla pocisków tępych $1^{\circ} - 2^{\circ}$. Wedle naszych prób, dla pocisków ostrych wynosi on około $7^{\circ} - 10^{\circ}$. I tu znów ostrze sprzyja odbijaniu się pocisku.

Zachowanie się pocisków, uderzających prawie prostopadle w płytę, jest prawie takie same dla pocisku "S", jak i dla tępych. Pocisk rozbija się na drobne cząsteczki, rozsypujące się przeważnie na boki (w naszych próbach kąt maksymalny ζ_2 nie przekraczał w tym wypadku 10°).

¹) Wedle danych francuskich V wynosi:

90 m/sek dla drzewa dębowego i pocisków wydłużonych

" " " kulistych

60 ,, ,, sosnowego (topolowego) i pocisków "jakiegokolwiek kształtu" (l. c. str. 100).

²) Kąty liczone do powierzchni.

120

Krawędziowe działanie płyty stalowej okazało się w próbach naszych takie same prawie, jak w omawianych próbach francuskich, w których "niebezpieczna" przestrzeń krawędzi określona została na 5 – 6 mm, a więc zupełnie podobnie, jak u nas. Zgodność ta jest tem ciekawsza, że wydawaćby się mogło, iż ostrze i tu wpływa na zwiększenie możliwości odbijania się pocisku. Zaobserwowaną zgodność można tłomaczyć tem, że przy uderzeniu o płytę, ostrze się rozbija, wskutek czego w dalszym locie pocisku kształt jego przestaje odgrywać rolę.

Wygląd pocisków rozbitych w próbach francuskich (rys. 37) jest bardzo podobny do naszego.

W próbach francuskich brak szczegółowej analizy, jaka odległość od krawędzi jaki powoduje stopień zniszczenia. Z tego też powodu pod tym względem trudno jest ustalić jakiekolwiek porównanie.

W próbach francuskich określono kąt odbijania się pocisków od krawędzi w ten sposób, że ustawiono w odległości 5 m od krawędzi tarczę pionową, na której zbierano ślady pocisków. W ten sposób na 100 pocisków otrzymano 166 śladów, z których

13º/o	miało	kąt	odbicia	zawarty	między	0 — 5°40'
33º/0		11	1 - in Ciele	"	A BULLED	5°40′ — 11°20′
22º/0		"				11°20′ — 16°40′
15º/o	1 . UY	.,	and the second	·	at a the	16°40' - 21°45'
10º/0	.,	,,	With the state	,	n 7	21°45′ — 25°30′
3º/0						25°30′ — 31°
3º/0			an pate	Entering to	1 5 6 1	31° — 35°
1%/0		11			**	ponad 35°.

Ponadto stwierdzono, że pocisk po odbiciu zbacza w lewo (karabin ma lufę lewoskrętną).

Rys. 37. Wygląd pocisków odbitych od krawędzi płyty stalowej wedle prób francuskich. Nasze próby przeprowadzono w inny sposób tak, że tej ostatniej obserwacji nie mogły sprawdzić. Również i kąty odbicia były mierzone w inny sposób. Porównanie jest tem trudniejsze, że w wielu wypadkach rozpylenie się pocisku uniemożliwiało pomiar kąta odbicia.

Chcąc jednak mieć choć przybliżone dane porównawcze, przeliczyliśmy odbicia w ten sposób, że jako ślad odbicia bierzemy ζ_s tam, gdzie je zaobserwowano, w przeciwnym zaś razie przyjmujemy, że $\zeta_s \cong \zeta_1 + \frac{\zeta_2 - \zeta_1}{9}$, co w przybliżeniu odpowiada rzeczywistości.

Rozłożenie odbić, przy tem założeniu, przedstawia poniższe zestawienie:

Kąt odbicia	Płyta stalo	Płyta stalo- wa miękka	
	<i>v</i> ₁₀₀	v_{300}	v ₁₀₀
$\begin{array}{c} 0^{0}-5^{\circ}40'\\ 5^{\circ}40'-11^{\circ}20'\\ 11^{\circ}20'-16^{\circ}40'\\ 16^{\circ}40'-21^{\circ}45'\\ 21^{\circ}45'-25^{\circ}30'\\ 25^{\circ}30'-31^{\circ}\\ 31^{\circ}-35^{\circ} \end{array}$	6°/0 4°/0 6°/0 2°/0 8°/0	12°/0 12°/0 	8°/0 8°/0 30°/0 32°/0 14°/0 8°/0
ponad 35°	74 ⁰ /0	50º/o	1000 100 100 100 100 100 100 100 100 10

Widać więc, że płyta stalowa miękka daje obraz dość podobny do prób francuskich, choć i tu następuje pewne przesunięcie w górę średniego kąta odbicia (około 8° w próbach francuskich, około 16° w naszych).

Natomiast płyta stalowa twarda powoduje wyraźne podniesienie się kąta odbicia, skoro ponad 50%, odbić daje kąty wyższe niż 35%.

Ogółem więc można stwierdzić, że próby nasze dały wyniki potwierdzające i uzupełniające wyniki prób francuskich, wskazując równocześnie, że ostrze smukłe w dużym stopniu, większym niżby tego można było się spodziewać a priori, powiększa wszelkie niekorzystne czynniki odbić.

Tem może należy tłumaczyć częsty objaw, że strzelnice, zupełnie bezpieczne dla otoczenia tak długo, jak długo używano na nich pocisków tępych, stają się niebezpieczne z chwilą wprowadze-

nia do nich pocisków ostrvch.

Fakt ten nakłada na nowoczesnego konstruktora strzelnic obowiązek znacznie staranniejszego przestrzegania bezpieczeństwa, niż to było na strzelnicach dawniejszych.

Próby nasze nie miały oczywiście pretensji do całkowitego wyjaśnienia zjawisk, zachodzących przy odbijaniu się pocisków.

Cel nasz był o wiele skromniejszy. Chodziło nam tylko o szczegółową i systematyczną analizę pewnego wycinka tych zjawisk, przyczem wybraliśmy z rozlicznych możliwości te, które dla celów praktycznych mieć mogą największe znaczenie.

Dopiero po wykonaniu szeregu prac analogicznych możnaby było uzyskać całkowity przegląd nader skomplikowanego zjawiska odbijania się pocisków.

IV. WNIOSKI DLA BUDOWY STRZELNIC.

Chcąc ułatwić konstruktorowi strzelnic ewentualne korzystanie z niniejszej pracy, postanowiliśmy na końcu podać krótkie streszczenie rezultatów naszej pracy.

1) Odbijanie się pocisków od ścian.

Przy padaniu pocisku na ścianę drewnianą (sosnową), można — prawie że niezależnie od kierunku włókien — ustalić dla pocisków ostrych kąt graniczny, po przekroczeniu którego pocisk przestaje się odbijać, na zasadzie wzoru

$$v \sin \vartheta = 155 \text{ m/sek},$$

gdzie v oznacza szybkość uderzenia pocisku, a ϑ kąt padania.

Daje to dla pocisku karabinowego "S" na odległość 100 m kąt krytyczny 12°, na 200 m kąt $13\frac{1}{2}$ ", a na 300 m kąt ∞ $15\frac{1}{2}$ ".

Kąt odbicia jest w tym wypadku 1,8—2,2 razy większy od kąta padania dla włókien desek równoległych do płaszczyzny padania a 2,0—2,4 razy większy od kąta padania dla włókien prostopadłych, nie przekraczając w najgorszym wypadku 29°—30°. Ponadto, na skutek obrotu, pocisk odbija się na prawo od płaszczyzny padania (a więc na dół dla ściany lewej, a w górę dla prawej) o kąt mogący w najniekorzystniejszym wypadku dochodzić do 18°.

Przy ścianach stalowych kąt odbicia się wynosi przy pociskach odbitych przeciętnie 2°, nie przekraczając nigdy 3°. Przy rozbijaniu się pocisku na odłamki, które zaczyna się już przy kącie padania około 5°, a staje się całkowitem po przekroczeniu $12^{\circ}-14^{\circ}$, poszczególne odłamki mogą mieć kąt odbicia większy (średnio 8°), lecz nie są to odłamki niebezpieczne, mogące wyjść poza strzelnicę. Dlatego też dla celów praktycznych zupełnie wystarcza, jeżeli przyjmiemy kąt 12° jako kąt calkowitego rozbijania się pocisków, a kąt 3°-5° jako maksymalnie możliwy kąt odbicia.

2) Odbijanie się pocisków od krawędzi.

Dla deski "niebezpieczna część krawędzi" (t. j. ta część. która powoduje odbijanie się pocisków) wynosi dla krawędzi równoległych do włókien około 12 mm, a prostopadłych do nich 16— 18 mm. Do liczby tej należy jeszcze przy obliczeniach prawdopodobieństwa odbijania się pocisków dodać ~ 4 mm na pół średnicy pocisku, t.j. na ten wypadek, kiedy tor ostrza pocisku przechodzi ponad krawędzią, lecz płaszcz pocisku zawadza o krawędź.

Z wypadkiem krawędzi deski należy się liczyć zawsze, ilekroć deska nieosłoniona może być narażona na uderzenie pocisku, a więc np. przy ramach tarczowych.

Kąt odbicia w tym wypadku nie przekracza 3° tak, że przy uderzeniu np. w górną krawędź, wał kulochwytny, którego szczyt odległy od deski o 300 m, ma wysokość ~ 16 m ponad nią (a nawet nieco mniej jeżeli uwzglęlnić obniżenie się toru pocisku na tej przestrzeni) zapewnia wstrzymanie każdego odbitego pocisku.

Z temi samemi odchyleniami należy się również liczyć i przy krawędziach bocznych.

Przy przechodzeniu pocisku przez deskę grubości 1" należy się liczyć ze zmianami kierunku rzędu $\sim 20'$.

Dla krawędzi stalowej "przestrzeń niebezpieczna" wynosi 6 mm (płyta twarda) do 8 mm (płyta miękka), przyczem jak poprzednio należy dla obliczenia prawdopodobieństwa powstawania odbić doliczyć pół średnicy pocisku, t. j. ~ 4 mm. Jeżeli jednak jako "przestrzeń niebezpieczną" liczyć tę jedynie, przy której mogą pociski wyjść poza obręb strzelnicy, to wynosi ona (uwzględniając już średnicę pocisku) 2 mm (płyta twarda) do 3 mm (płyta miękka).

Kąt odbicia jest dużo większy niż dla deski, sięgając nawet do 30°. W granicy nie bezpiecznej, t. j. tej, gdzie pocisk odbija się cały, lub rozbija za części duże, mogące jeszcze wyjść poza strzelnicę, kąt odbicia wynosi dla całych pocisków do 10°, a dla poważnych ich odłamków do 15°.

Skutkiem tego szanse wyjścia tych odłamków poza teren strzelnicy są o wiele większe, niż przy odbijaniu się od deski.

Twardość płyty nie ma decydującego wpływu na jej krawędziowe działanie. Jedynie wytrzymałość płyty twardej jest oczywiście o wiele większa, niż miękkiej, co widać zwłaszcza przy odłupywaniu krawędzi — znacznie większem przy płycie miękkiej, niż twardej.

Ze stanowiska jednak bezpieczeństwa strzelnicy twardość płyty nie gra, jak z prób naszych wynika, decydującej roli.

and the the interface I a apprender sign or all press det

to the second state of the second state of the second state of the

worth were do under all the second second the second

Inż. CIUNDZIEWICKI JERZY i CZERWIŃSKI IGNACY.

WYKREŚLNA METODA WYZNACZA-NIA ŚRODKÓW CIĘŻKOŚCI I MOMEN-TÓW BEZWŁADNOŚCI POCISKÓW.

Dla konstruktora nowych pocisków, jako też dla balistyka, niezmiernie ważną rzeczą jest dokładna znajomość położenia środka ciężkości badanego lub też projektowanego pocisku, oraz znajomość momentów bezwładności w odniesieniu do osi przechodzącej przez środek ciężkości, prostopadle do osi symetrji pocisku, oraz w odniesieniu do samej osi symetrji pocisku.

Znajomość momentów bezwładności potrzebną jest do następujących celów:

1) Do obliczania skorup pocisków.

2) Do studjowania ruchu pocisku dookoła środka ciężkości podczas jego lotu w powietrzu (badanie stabilizacji pocisku na torze).

3) Do obliczeń z balistyki wewnętrznej, przy których ruch obrotowy pocisku dookoła swej osi musi być wzięty pod uwagę.

4) Może znaleźć duże zastosowanie jako podstawa przy badaniu nowych pocisków artyleryjskich dużych kalibrów, przez zastąpienie ich przez pociski z dowolnego materjału; stosuje się to w tym wypadku, gdy chodzi jedynie o zachowanie się pocisku na torze, a nie o działanie pocisku u celu; naprzykład wypadek ten zachodzi przy strzelaniu balistycznem przy ułożeniu tabel strzelniczych, gdy chodzi specjalnie o zmniejszenie kosztów wspomnianego strzelania. Chodzi nam wtedy o skonstruowanie takiego pocisku zastępczego, aby wielkości charakteryzujące jego lot były takie, jak dla pocisku stalowego, t. j.: kaliber, długość pocisku, jego kształt oraz ciężar, położenie środka ciężkości i oba momenty bezwładności, ponieważ jedynie identyczność łączna tych wielkości będzie powodowała identyczny ruch obu pocisków (rzeczywistego i zastępczego) dookoła środka ciężkości.

Istnieją sposoby określania momentów bezwładności i środków ciężkości pocisków gotowych (Cranz T. III wyd. II str. 17—24), lecz konstruktor przy projektowaniu nowego pocisku, a po większej części i balistyk, mają do czynienia jedynie z rysunkiem pocisku.

Analityczne wyznaczanie środka ciężkości i momentu bezwładności pocisku jest niezmiernie kłopotliwe i dość niedokładne.

Sposób wyznaczania momentu bezwładności gotowego pocisku, który został opisany przez Cranz'a, a w naszej literaturze w Nr. 8 z 1931 roku Wiadomości Techniczno-Artyleryjskich, nie daje w praktyce zadawalających rezultatów (zbyt mała dokładność, zwłaszcza względem osi podłużnej; pomiar i obliczenie wyników trwały dla jednego pocisku około 18 godzin, a dla pocisków małokalibrowych metoda opisana okazała się całkowicie nieodpowiednią).

Mamy zamiar w tem miejscu podać krótki opis metody określania położenia środka ciężkości i momentów bezwładności pocisków dowolnego kalibru, dającej bardzo dobre wyniki, posługując się jedynie planimetrem i rysunkiem pocisku.

Niech dany będzie rysunek pocisku badanego.

Objętość pocisku V wyrazi się wzorem:

$$V = \pi \int_{0}^{l} y^{2} dx$$

gdzie y oznacza rzędną bieżącą zarysu pocisku.

Wykreślmy krzywą:

$$y^2 = f(x) = Y$$

(rvs. 1)

wtedy:

$$\frac{V}{\pi} = \int_{0}^{t} Y dx = \text{polu } A \, m \, B \, C \, O \, .$$

Kreślimy krzywą całkową krzywej Y; niech to będzie 1-1'. Rzędna 1"1' przedstawia w skali pole OAmBC t. j. objętość pocisku V.

Momentem statycznym objętości pocisku względem osi y-ków będzie pole 11'1'''.

9

— 130 —

(Elementarny moment statyczny będzie:

 $Ydx.x=dy_1.x$

gdzie przez y1 oznaczono rzędną bieżącą krzywej 11').

Momentem statycznym powyższej objętości względem osi N—N będzie pole 11'1".

Momentem statycznym objętości pocisku względem dowolnej osi D-D będzie algebraiczna suma powierzchni $a \ 1 \ b$ i $c \ 1' \ b$.

Chodzi nam tu o wyznaczenie takiego położenia osi D-D, aby pole $a \ 1 \ b$ było równe polu $c \ 1' \ b$.

Wykreślmy krzywą 22' — całkową krzywej 11' oraz linję 2'2''' całkową prostej 1'1'''.

Prosta 2'2''' będzie styczną w punkcie 2' do krzywej 22' (jest to sposób jej wykreślania). Rzędna 2'2'' będzie momentem statycznym pocisku względem osi N-N, a rzędna 2'''2 względem osi yy. Prosta pionowa, przechodząca przez punkt E, przejdzie przez środek ciężkości badanego pocisku. Rzeczywiście, dla tego położenia osi, pole 1 b a równe jest polu bc1'. (Pole 1 1'1'' równe jest polu ac1'1'', ponieważ krzywa całkowa krzywej 11' i linji 1'c ma wspólną rzędną 2'2'', a zatem pole 1 ab równe jest polu 1' bc).

Inny dowód powyższego: rzędna a'b' przedstawia w skali pole ab1, rzędna b'c' — pole b1'c. Gdy oś DD przechodzi przez środek ciężkości, muszą być te rzędne sobie równe; zachodzi to jedynie w wypadku, gdy prosta przechodzi przez punkt E.

Obliczenie momentów bezwładności.

a) Moment bezwładności względem osi symetrji pocisku. Element tego momentu bezwładności będzie:

$$dJ = ky^4 dx$$

gdzie

$$k = \frac{\pi \gamma}{2g}$$

Wykreślmy krzywą:

$$y_1 = y^4 = f_1(x)$$

wtedy:

$$J = k \cdot \int_{o}^{l} f_1(x) \, dx$$

t. j. pole ograniczone krzywą Y_1 , osią x, y i rzędną x=1 przedstawi nam szukany moment bezwładności (w skali).

 b) Moment bezwładności względem osi poprzecznej pocisku. Uważamy za stosowne przytoczyć w tem miejscu, celem wyjaśnienia dalszego, następujące twierdzenie z dynamiki ciała sztywnego:

Moment bezwładności względem osi jest równy sumie momentów względem dwóch płaszczyzn, przechodzących przez tę oś i prostopadłych do siebie. (Nauka o ruchu prof. Zygmunta Straszewicza wyd. II str. 212).

Zatem elementarny moment względem osi poprzecznej będzie się składał z dwóch części dJ_1 i dJ_2 , gdzie dJ_1 jest momentem bezwładności elementu objętości względem płaszczyzny poprzecznej, przechodzącej przez oś, a dJ_2 jest takimże momentem elementu względem płaszczyzny symetrji pocisku.

Ponieważ:

$$dJ_2 = 0.5 \, dJ$$

zatem:

elementarny moment względem dowolnej osi poprzecznej wyrazi się wzorem:

$$d J_1 + d J_2 = k_1 x^2 y^2 d x + 0.5 k y^4 d x$$

gdzie

$$k_1 = \frac{\pi \gamma}{g}$$

Powróćmy do naszego rysunku. Rzędna bieżąca wykresu 2 2' 2" przedstawia nam zmienność momentu statycznego objętości części pocisku, znajdującej się z lewej strony osi, rzędna wykresu, 2 2' 2''' — takąż zmienność części, znajdującej się z prawej strony osi.

Oznaczmy przez y_2 rzędną bieżącą tego drugiego wykresu wtedy:

$$d J_1 = k_1 y^2 d x \cdot x \cdot x = k_1 d y_1 \cdot x \cdot x = k_1 d y_2 \cdot x$$

Należy znaleźć odciętą, odpowiadającą dy_2 , Poprowadźmy przez krańce dy_2 dwie styczne do 22'. Niech punktami styku będą p i p', a p'' punkt przecięcia się obu stycznych; jest on oddalony o x od osi yy. Pole trójkąta o podstawie dy_2 i wierzchołku w p'' da nam połowę szukanego elementarnego momentu bezwładności dJ_1 . Pole 22'2" (rzędna 3"3') przedstawia połowę części J_1 , momentu bezwładności pocisku względem osi NN (krzywa 33' jest całkową krzywej 22', a 3'3"' — całkową prostej 2'2"), pole 22'2"' (rzędna 3'3"') jest połową tej części momentu bezwładności pocisku względem osi yy.

Dla dowolnej osi DD połową momentu bezwładności J_1 będzie suma pól b' 2 a' i b' 2' c' (odcinków a'' b'' i b'' c'').

Krzywą całkową danej krzywej otrzymamy w sposób następujący: dzielimy odcinek OC na dowolną ilość części, przez punkty podziału prowadzimy rzędne, następnie planimetrujemy pole zawarte między krzywą, osią yy, xx i wykreśloną rzędną. Odkładamy w skali w kierunku rzędnych wielkości otrzymanego pola (odcięte zadanej krzywej); w ten sposób otrzymujemy dowolną ilość punktów krzywej całkowej.

Zakład Balistyki Politechniki Warszawskiej posiada przyrząd "integraf" Abdank-Abakanowicza, wykonany przez Coradi'ego w Zurichu, umożliwiający odrazu wykreślanie krzywej całkowej danej krzywej.

Fotografję "integrafu" przedstawia rys 2.

Przykład. Niech będzie do określenia środek ciężkości i oba momenty bezwładności skorupy pocisku.

Niech rys. 3 przedstawia $y^2 = f(x)$ tej skorupy (analogja do krzywej $A \ m B$ rys. 1).

n in htt

Uważamy powierzchnię E n M G n' F za sumę algebraiczną powierzchni dodatniej E n M H i powierzchni ujemnej F n' G H.

Wykreślmy krzywe całkowe 1 1' i 1 1" (rys. 4), odpowiadające powierzchniom E n M H i F n' G H, a zaczynając od punktu 1' wykreślmy po raz drugi krzywą całkową pola ujemnego F n' G H; z łatwością zauważymy, że różnica dwóch odpowiednich rzędnych tej krzywej 1' 1" i krzywej 1 1" jest stała i przedstawia wspom-

nianą powierzchnię. Uwaga. Krzywe 1 1" i 1' 1" odgrywają tu tę samą rolę, co

krzywe, posiadające te same oznaczenia na rysunku 1.

Całkując powtórnie (rys. 5) otrzymamy krzywe 2 2", 2 2' i 2' 2"; punkt przecięcia się krzywych 2 2" i 2' 2" leży na pionowej, przechodzącej przez środek ciężkości rozpatrywanej skorupy.

Nakoniec trzecie całkowanie (rys. 6) daje nam możność otrzymania składowej J_1 momentu bezwładności względem dowolnej osi poprzecznej.

Odcinek tej osi, zawarty między krzywemi 3 3" i 3' 3", jest miarą połowy tego momentu bezwładności (ze względów wyjaśnionych na rys. 1).

Dla znalezienia składowej J_2 momentu względem tejże osi lub momentu względem osi symetrji pocisku, wykreślamy $y^4 = f(x)$ skorupy (rys. 7) i kreślimy krzywe całkowe powyższej funkcji (rys. 8); rzędna końcowa LK tego wykresu będzie szukanym momentem (w skali).

Przy wykreślaniu krzywych rys. 4 zastosowano bazę $a_1 = 14$ cm

	 	" 5	 11	$a_2 = 16$	"
"	 "	" 6	 "	$a_3 = 10$	11
н	 	, 8	 	$a_4 = 20$	11

W rozpatrywanym przykładzie ciężar skorupy równy jest rzędnej 1 1''', pomnożonej przez bazę całkowania a_1 , π i ciężar właściwy tworzywa skorupy γ .

Ciężar skorupy:

G = 1 1''' cm, $\pi \gamma a_1 = 14,75$. π . 0,00786. 14 = 5,1 kg.

Z wykresu znajdujemy, że środek ciężkości leży o 120 mm od dna skorupy.

Rys. 7 i 8 (w skali 1:3).

Moment względem osi symetrji pocisku J:

$$J = 10.a_4 \cdot \frac{\pi \gamma}{2 \,\mathrm{g}} \cdot 10.x = 10.20 \cdot \frac{0.00786 \,\pi}{2.9.81} \cdot 10.18 = 0.000454 \,\mathrm{kg.m.sek^2}$$

gdzie 10 jest skalą wykresu na osi rzędnych. (rys. 7).

Składowa część J_1 momentu głównego wyrazi się iloczynem: 3 baz a_1, a_2 i a_3 przez $k_1 = \frac{\pi \gamma}{g}$, oraz odpowiedni podwojony odcinek x_1 w cm, zawarty między krzywemi 3 3" i 3' 3". $J_1 = a_1, a_2, a_3 \cdot \frac{\pi \gamma}{2}, x_1 = 14.16, 10 \cdot \frac{\pi 0.00786}{2} \cdot 2.322, 10^{-4} =$

$$= a_1 \cdot a_2 \cdot a_3 \cdot \frac{x_1}{g} 2 \cdot x_1 = 14 \cdot 16 \cdot 10 \cdot \frac{x_{0,00780}}{9,81} \cdot 2 \cdot 3,22 \cdot 10 =$$

=0,00363 kg.m.sek².

Składowa J_2 tego momentu:

 $J_2 = 0.5 J = 0.000277 \text{ kg. m. sek.}^2$

Całkowity moment względem osi poprzecznej:

 $J_1 + J_2 = 0,003907$ kg. m. sek.²

Na zakończenie powyższego artykułu należy parę słów powiedzieć o dokładności, jaką się osiąga pracując integrafem.

Do określenia dokładności przyrządu wybiera się zazwyczaj krzywą, której pole można dokładnie zcałkować lub wyliczyć.

Kształt powierzchni, służącej do zbadania dokładności przyrządu, należy obrać jako powierzchnię mechanicznie całkowalną, możliwie podobną do powierzchni zadanej, ponieważ błąd procentowy przyrządu zależy między innemi i od kształtu powierzchni całkowanej.

Do badania tego wzięto półkole, którego pole wynosiło 397 cm². Mechaniczne całkowanie przy długości bazy 10 cm, po 10-cio krotnem opisaniu krzywej, dało: 397,4; 397,5; 397,4; 397,5; 397,3; 397,6; 397,4; 397,5; 397,2; 397,4. Średnio: 397,42 cm².

Średnio błąd kwadratowy pojedyńczego pomiaru wynosił: 0,1135 cm² t. j. 0,0286%.