ON APPARENT AND REAL DISELECTRIFICATION OF SOLID DIELECTRICS PRODUCED BY RÖNTGEN RAYS AND BY FLAME.1

The fact that air is made conductive by flame, by ultraviolet light, by Röntgen rays, and by the presence of bodies at a white heat has been shown experimentally by many experiments. We propose in this communication to give some results bearing on this conductivity of air, based chiefly on experiments of our own.

We have examined more particularly the behaviour of paraffin and of glass.

In our first experiments with paraffin we used a brass ball of about an inch diameter, connected to the insulated terminal of an electrometer by a thin copper wire soldered to the ball. The ball and the wire were both coated to the depth of about one-eighth of an inch with paraffin. The ball was then placed in a flame of paraffin, with an aluminium window, both of which were in metallic connection with the case of the electrometer. By this means we avoided all inductive effects.

The electrometer was so arranged as to read 140 scale divisions per volt.

After testing the insulation the paraffined ball was charged positive, and the rays were played on it. After two minutes the electrometer reading was steady at 0.5 of the initial reading. The electrometer was then discharged by metallic connection, and again charged positively. Its reading remained steady after three minutes at 0.63 of the initial charge. In the third and fourth experiments the readings after three minutes were 1 and 1.2 of the initial charge respectively.

The ball was next charged negatively. When the rays were played on it a steady reading was obtained after four minutes at 18 of the initial charge. In the second, third, and fourth experiments the steady readings after four minutes were 75, 70, and 78 of the initial charges respectively.

The paraffin was then removed and the brass ball polished with emery paper; whether the charge was positive or negative, it fell in about five seconds to one definite position, 50 scale divisions on the positive side of the metallic zero, when the Röntgen rays were played on the charged ball.

These experimental results demonstrate that the Röntgen rays produced sensible conductance between the brass ball, when it was coated with paraffin, and the surrounding metal sheath; and that they did produce it when there was only air and no paraffin between them. From experiments by I. J. Thomson, Righi, Minchin, Benoist and Hurnescu, Borgmann and Gerchun, and Röntgen,2 we know that air is rendered temporarily conductive by Röntgen rays, and Körntgen's comparison of the effect of the rays with that of a flame shows that our experimental results are explained by the augmentation of the electrostatic capacity (quasi-condenser) of the brass ball by the outside surface of its coat of paraffin being put into conductive communication with the surrounding lead sheath and the connected metals.

In our second experiments we have endeavoured to eliminate the influence of the varying capacity of this quasi-condenser. For this purpose, we placed a strip of metal connected to the insulated terminal of the electrometer inside an aluminium cylinder; the space between the metal and the cylinder was first filled with air, afterwards with paraffin. The aluminium was connected to the case of the electrometer, and inductive disturbances were avoided by surrounding the copper wire connecting the metal to the insulated terminal with a lead sheath in metallic connection with the electrometer sheath (see diagram).

In our first experiments with this apparatus we had air, instead of the main mass of paraffin, separating the insulated metal from the surrounding aluminium tube, as shown in the diagram. We had only small disturbing effects with the insulating supports for the ends of the metal, and not played on by the Röntgen rays. When the metal thus supported was charged, whether positively or negatively, the Röntgen rays

1 By Lord Kelvin, Dr. M. Smoluchowski de Smolian, and Dr. J. Carruthers Beaty. Read before the Royal Society of Edinburgh, February 9, 1897.

deselectrified it in about five seconds; not, however, to the metallic zero of the electrometer, but to a "rays-zero" depending on the nature of the insulated metal and of the metal surrounding it.

With paraffin between the aluminium cylinder and the insulated metal within, as shown in the diagram, the following results were obtained:

December 30, 1896. 5:30 p.m.—Interior metal charged negatively. Total charge 356.

Rontgen lamp in action and no screen ... 39 scale divisions discharged in 5 mins.
R. L. not acting ... 25 ... 5
R. L. again acting and no screen ... 17 ... 5
5:45.—Interior metal charged positively. Total charge 244.
K. L. in action and lead screen ... 1 scale division discharged in 3 mins.
R. L. in action and no screen ... 6 ... 3
R. L. not acting ... 0 ... 3
Dec. 31, 1896. 10:54 a.m.—Interior metal charged positively.
Total charge 163.
R. L. not acting ... 2 scale divisions discharged in 3 mins.
R. L. acting & no screen ... 23 ... 3
11:0—R. L. stopped ... 15 ... 2
R. L. again acting, no screen ... 3 ... 2
R. L. stopped ... 25 ... 3
11:12.—Interior metal charged negatively. Total charge 342.
R. L. not acting ... 10 scale divisions discharged in 3 mins.
R. L. acting & no screen ... 21 ... 3
R. L. stopped ... 115 ... 3
R. L. acting, no screen ... 105 ... 3

These results are quite in accordance with those found in similar experiments by Rontgen; and they show that if paraffin is sufficiently conductive, it is only to so small an extent that it is scarcely perceptible by the method we have used.

To make a similar series of experiments with glass, we used a piece of glass tubing 9.5 mm. thick, length 70 cm., and 1 cm. external diameter. The inside of this tube was coated with a deposit of silver, which was placed in metallic connection with the insulated terminal of the electrometer. The outside of the glass was covered with wet blotting-paper coated with paraffin.

With this arrangement we obtained the following results:

Feb. 8, 1897.
Insulated terminal of electrometer charged to - 333 scale divisions from the metallic zero.

4:23.—Rontgen lamp, acting ... 05 sec. div. lost in 3 mins.
Charged to + 164 scale divisions from the metallic zero.

4:36.—Rontgen lamp, not acting ... 1 sc. div. lost in 7 mins.

[Charging and discharging experiments with the Rontgen lamp.

[Fig. 1. A.T., Aluminium tube; B.T., Lead tube; K.L., Rontgen lamp; L.S., Lead sheaths; E, Electrometer; Z, Z., Zinc cylinder.]

We next removed a part of the wet blotting-paper from the outside of the glass, and, after having charged the insulated interior metal deposited on the inside of the glass, we heated the exposed part with a spirit flame, in this way making the glass a conductor. Thus with a charge of + 280 scale divisions the metallic zero, the loss in 30 seconds, during which time the glass was heated in the spirit flame, was 60 scale divisions; in the next minute, with no further heating, the loss was 20 scale divisions. Re-application of heat gave complete discharge in 2½ minutes. Thus we see that our method is amply sensitive to the conductance produced in glass by heating.

We conclude that the Rontgen rays do not produce any conductance perceptible in the mode of experimenting which we have here followed.

A similarity in effects produced by flame and by Rontgen rays is brought out by the following experiments.

Two similar sticks of paraffin, which we shall call A and B respectively, each of about four sq. cm. cross section, were coated throughout half their lengths with tinfoil. These tinfoils ought to be each metallically connected to the other.

A and B were then heated to a sufficiently delicate test for their electric state, a metal disc of three cm. diameter was fixed horizontally to the insulated terminal of the electrometer.

The two pieces of paraffin were first deselectrified by being held separately in the flame. Their non-tinfoiled ends were then pressed together, and their electric state again tested after separation. It was found that they were still free from electric charge. After this B was charged by being held over the pointed electrode of an inductive electric machine. The quantity of electricity given to it in this way was roughly measured by noting the electrometer reading when the paraffin was held at a distance of 4 cm. above the metal disc connected to the insulated terminal of the electrometer.

The free ends of A and B were again held together, and, after separation, both pieces were tested separately. The charged one, B, had suffered no appreciable loss, and the other, A, induced an electrometer reading of a few scale divisions in the same direction, when held as near as possible to the metal disc without touching it. This showed that an exceedingly minute quantity of electricity had passed from B to A when they were in contact.

A was then deselectrified by being held alone in the flame. The ends of A and B were again put together, and in this position were passed through the flame. They were tested with their ends still pressed together, and it was found that when held as near as possible to the metal disc without touching it, no reading was produced on the electrometer. After this they were separated and tested separately; and it was found that B, when held over the disc, gave a large reading in the same direction as before it had been passed through the flame, and A (which was previously non-electrified) gave a reading of about the same amount in the opposite direction.

The same results were obtained when Rontgen rays were substituted for the flame.

The explanation clearly is this: the flame or the Rontgen rays put the outer paraffin surfaces of A and B temporarily in conductive communication with the tinfoils; but left the end of B, as it was against the end of A, with its charge undisturbed. This charge induced an equal quantity of the opposite electricity on the outer surfaces of the paraffin of A and B between the tinfoils; half on A, half on B.

When the application of flame or rays was stopped, this electrostatic charging of the outer paraffin surfaces became fixed. B, presented to the electrometer, showed the effect of the charge initially given to its end, and an induced opposite charge of half its magnitude on the electrometer. After this B was separated and tested on the electrometer only the effect of its half of the whole opposite charge induced on the sides by the charge on B's end.

We have here another proof that paraffin is not rendered largely conductive by the Rontgen rays. Had it been made so, the charge given to one piece would have leaked through the paraffin to the outside, and have been carried away either by the tinfoil or by the conductive air surrounding the non-tinfoiled parts.

To show that the induced charges were fixed on the sides, the two sticks, A and B, were next coated with tinfoil throughout their whole length, only one end of each being, when they were next brought together, said to be charged and pressed against that of A, and the two were held either in the flame of a spirit-lamp or in the Rontgen rays. When taken out of the flame or the Rontgen rays, and then separated and tested separately, it was found that B had retained its charge practically undiminished, and that A had acquired a very slight charge of the opposite kind.

[SENSIBILITY OF ELECTROMETER, 140 SCALE DIVISIONS PER VOLT.]
Instead of placing the two ends of the paraffin in immediate contact, four pieces of metal of 1/10 of a mm. thickness were placed end to end there was now an air contact, four pieces of metal of i/10 of a mm. thickness were obtained.

A Manual of Physiology, by W. Snodgrass, arranged to meet the requirements of the syllabus of the Science and Art Department; John Perry; A New Elementary Geography, based on Frey's Complete Geography, and revised and largely re-written from the original and recently expanded by Andrew J. Herbertson, illustrated.

Mr. Batsford announces—A Text-Book on Sanitary Engineering, by C. E. Moore.

In Messrs. A. and C. Black's list are to be found:—Ferrets: their Management in Health and Disease, by Nicholas Everitt, illustrated; On the Threshold of Three Closed Lands, viz. Tibet, Nepal and Bhutan, by J. A. Graham.


Messrs. Cassell and Co., Ltd., will publish:—Cheap editions of The Life of the Sun, by Sir Robert S. Ball, illustrated; and Cassell's Concise Cyclopaedia, the completion of Cassell's Natural History, edited by P. Martin Duncan, three volumes, illustrated; a New Cyclopaedia of Technical Education, six volumes, illustrated; new issues in serial form of The Story of our Planet, by Prof. T. G. Bonney, illustrated; and Robinson's Applied Chemistry, by Prof. H. R. Lewis, illustrated; A System of Medicine, by many writers, edited by Dr. Thomas Clifford Allbutt: Vol. ii. containing Infections (continued); The Intoxications and the Parasites, also the General Diseases of Obscure Causation, such as Rheumatism, Gout, Diabetes, Rickets, Scrofula, &c.; Farm Insects and Diseases, by Dr. William Somervell, illustrated; and A Synopsis of Metallic Chemistry, by R. Elliott Steel, illustrated.


Messrs. J. M. Dent and Co.'s list contains:—The First Crossing of Spitzbergen, by Sir Martin Conway, illustrated; Pictureque Barma, by Mrs. Ernest Hart, illustrated.

Mr. Heine mann will issue:—The New Africa: a Journey up the Chobe and down the Okavango Rivers, by Dr. A. Schulz and A. Hammar; Rhodesia, by Dr. F. Du Toit, illustrated.


Messrs. Longmans' announcements include:—The Life and Times of Thomas Wallsey, by S. Squire Sprigg; Papers and Notes of the Geological Survey of India, by Prof. W. H. R. Blyth; The Life and Times of Isaac Newton, by Dr. William Somervell, illustrated; A Manual of Midwifery, edited from his unpublished MSS. by Prof. H. Carvill Lewis, illustrated; Man's Place in the Cosmos, and other Essays, by F. D. Barnett; Differential Equations, by D. A. Murray; A Guide to the Clinical Examination of the Blood for Diagnostic Purposes, by Dr. R. C. Calot, illustrated.


The announcements of Messrs. Macmillan and Co., Ltd., include:—The Ancient Volcanoes of Britain, by Sir Archibald Geikie, 2 vols., illustrated; The Dahlia, by many writers; Infinitesimal Analysis, by Prof. William Benjamin Smith, Vol. i., Elementary; On Laboratory Aris, by Prof. Richard Threlfall; Mathematical Theory of Electricity and Magnetism, by A. G. Webster.

Messrs. Methuen & Co. promise:—British Central Africa, by A. H. Johnston, illustrated; Scouting Sketches in Rhodesia, by Lieut. Colonel Baden-Powell, illustrated; From Tonkin to India, by Prince Henri of Orleans, translated by Hamley Bent, illustrated; Three Years in Savage Africa, by Lionel Debe, illustrated; The Hill of the Graces; or, the Great Stone Temples of Tripoli, by H. S. Cowper, illustrated; The North-West Provinces of India, their Ethnology and Agriculture, by Dr. R. B. Woodes, illustrated; and The South African Inn at Zermatt and the Matterhorn, by Dr. R. Ussher; Magnetism and Electricity, by R. Elliott Steel, illustrated.