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Multiple choice tests have been increas-
ingly used in recent years as educa-

tional measurement tools. The test-taker is 
supplied with test questions with several pos-
sible answer options from which they should 
choose the correct one. Such tests offer 
undeniable advantages to the organisation 

of the assessment process, which is free from 
subjective scoring, which can be performed 
quickly or even automatically. At the same 
time, multiple choice items are often criti-
cised. The issue most frequently raised is that 
those being tested have a tendency to guess.

Even though the number of responses 
to a test item from which the answer can be 
chosen depends on the format of a test item 
and on the assessment procedure, there are 
usually not very many alternatives. For the 
most commonly used item format, in which 
only one correct answer is selected from 
the several proposed, the number of possi-
ble responses is equal simply to the number 
of possible answers. If this number is small 
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(there are usually four or five alternatives) 
then even someone choosing the answers 
completely at random (with an equal proba-
bility of choosing any of the alternatives) has 
a relatively high chance of supplying the cor-
rect response (25% or 20% correspondingly). 
This gives rise to the common suspicion 
that this type of test may distort educational 
measurement results, some test-takers being 
falsely assessed as possessing skills that they 
do not actually have (Espinosa and Gardeaza- 
bal, 2010; Shrock and Coscarelli, 2008).

How do contemporary psychometric 
models allow us to accommodate the influ-
ence of possible guessing on test results? 
It should be noted that guessing seems to 
have highly varied significance, depending 
on the aim of the measurement. Criterion- 
-referenced testing, which is aimed at deter-
mining the level at which an evaluated 
person meets the requirements for specific 
educational standards, seems to place much 
greater requirements than norm-referenced 
testing, the main aim of which is to sort 
test-takers according to the scale of the mea-
sured trait. If it is assumed that all test-tak-
ers have “equal opportunities” for guessing, 
then it seems that the occurrence of guessing 
should not significantly distort predictions 
for position on the scale. Nevertheless, it is 
worth asking how significant it is to results 
and which statistical model should be used 
to analyse test results and calculate estimates 
of the measured trait.

This article addresses the influence of 
guessing for norm-referenced testing. Using 
a simulation study, the characteristics were 
compared for two IRT models widely used 
for calibrating multiple choice tests, one such 
affords a model for guessing. The basic ques-
tion concerns how much the choice of one of 
these models influences the obtained (point) 
estimates of the measured trait and subse-
quent implications for secondary analysis. 
To put it clearly, we want to ask about the 
acceptability of results from a model which is 

clearly the wrong choice, i.e. a 2PLM in a case 
where there is guessing. While this question 
is maybe somewhat controversial, it is still of 
practical importance, as in many situations 
there are reasons to prefer a simpler model. 
Regarding recovery of item parameters the 
answer to this question is simply negative, 
however, for properties of estimates of the 
latent trait, the answer is not so clear. 

It is interesting that, even though such 
questions were posed in the 1970s and 1980s 
(Barton and Lord, 1981; Hambleton, 1982), 
this issue seems never to have been deeply 
probed using simulation. There is some 
research regarding somewhat similar prob-
lems. For example Han studied the proper-
ties of the Fixed Guessing 3PLM, comparing 
item fit of some real data with this model and 
a typical 3PLM. Brown, Templin and Cohen 
(2014) addressed the proper use of the like-
lihood ratio test to choose between 2PLM 
and 3PLM. San Martín, Pino and De Boeck 
(2006) introduced the Ability-Based Guess-
ing 1PLM and tested its properties on Chil-
ean examination data. Woods (2008) studied 
the consequences of ignoring guessing in the 
estimation of latent trait density using the 
complicated Ramsay-curve item response 
theory models. However, with the exception 
of the very narrow study (by today’s stan-
dards) by Yen (1981), there is lack of research 
to address the issue that is of interest in this 
paper, that is the properties of estimates 
of the latent trait when used in secondary 
analysis. The problem with the work of Yen 
is also that it employed the joint maximum 
likelihood estimation method, which is no 
longer used for 2PLM and 3PLM.

Numerous works also exist that concern 
penalties for incorrect responses to multiple 
choice items when using the total raw score 
as an estimator of a latent trait, however this 
is clearly a separate topic. Nevertheless, it is 
worth mentioning that the results obtained, 
in this respect only demonstrate a marginal 
effect from the value of the applied penalty 
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on the correlation between the measured 
trait and the corrected (penalised) total score 
(Espinosa and Gardeazabal, 2010). This may 
suggest that it is not critical to reflect guess-
ing in a model used to calculate latent trait 
estimates.

In the first part of this paper, the two 
models are compared, accompanied with 
discussion of other IRT models that can be 
applied to guessing. In the second part we 
discuss the principles and the procedure for 
the simulation study conducted.

Guessing in IRT models

This study investigated the only two from 
a wide range of IRT models presently avail-
able. These two models are suitable for 
modeling responses to binary scored items 
(0 or 1), in particular in multiple choice 
tests. These are the two-parameter logistic 
(2PLM) and the three-parameter logistic 
(3PLM) models. Both models assume that 
responses to test items are observable indi-
cators for a trait presumed to be a continu-
ous latent variable, so that it is not directly 
observable. For the needs of estimating the 
parameters for the model, it is necessary to 
make an assumption about the distribu-
tion of the trait in the tested population. 
As a rule, a standard normal distribution 
is assumed. At the same time, it is also 
assumed that the relationship between 
a measured trait and the response to each 
test item is probabilistic and depends on the 
level of the trait and the parameters of the 
test item. In the 2PLM this relationship is 
described by the following function:
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where: Xi – the score of i-th test item;  θ – the 
value of the latent trait; ai – the discrimina-
tion parameter of the i-th test item; bi – the 
difficulty parameter of the i-th test item.

In the 3PLM the relationship with the value 
of the latent trait is described by the follow-
ing formula:
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where: Xi – the score of i-th test item;  θ – the 
value of the latent trait; ai – the discrimina-
tion parameter of the i-th test item; bi – the 
difficulty parameter of the i-th test item; ci 
– the (pseudo)guessing parameter of the i-th 
test item.

The plots of these formulae can be found in 
Figure 1. It should be easily noticeable that 
the main difference between these two mod-
els is in their description of the probability of 
a correct response by people with a relatively 
low level of the latent trait (compared to the 
difficulty of the test item). In the 2PLM it 
is assumed that this probability gradually 
decreases alongside decrease of the trait 
level until it reaches a value close to zero. The 
3PLM assumes that no matter how low the 
level of the trait is, the probability of a correct 
response to an item will never be lower than 
the level determined by the value of the c- 
-parameter (in Figure 1 it equals 0.2). One of 
the most obvious explanations for the non-
zero value of this parameter is the occur-
rence of guessing.

It is also worth pointing out that the 
value of this parameter (estimated from 
the data), is in practice, often significantly 
lower than the reciprocal of the number of 
alternatives which could be chosen and can 
generally vary considerably between items 
of the same format. For example when ana-
lysing Polish examinations sat at the end of 
lower-secondary school between 2002 and 
2012, 28.5% of multiple-choice items in 
humanities tests and 56.4% items in maths 
and science tests were found to have an upper 
bound for 95% confidence intervals for c-pa-
rameter lower than the reciprocal of the num-
ber of alternatives. At the same time, 54.0% of 
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items in humanities tests and 25.6% of items 
in maths and science tests had lower bounds 
for 95% confidence intervals greater than 
the reciprocal of the number of alternatives1. 
However it is worth noting, that also tests in 
which values of the c-parameter are close to 
the reciprocal of the number of alternatives 
can be found (Han, 2012). This complex pic-
ture points to an understanding that choices 
made in response to a  relatively difficult 
item are not completely random even if they 
involve guessing. To underline this fact, some 
authors suggested that this parameter should 
be called “pseudo-guessing” (Lord, 1974).

Generally, guessing is a rather compli-
cated phenomena, as this can include both 
selecting answers totally at random, as well 
as so called partial guessing, i.e. a process in 
which some knowledge is used to eliminate 
some options as clearly wrong (Han, 2012; 
San Martín et al., 2006). There is also no con-
sensus about which IRT models should be 
used to deal with the problem. San Martín 
et al. proposed a complicated model for abil-
ity-based guessing, however they showed 
that it is not always superior to the 3PLM in 
terms of model fit for real examination data. 
On the other hand, in some tests the values 
of the c-parameter can lie reasonably close 
to the reciprocal of the number of alterna-
tives. In such cases, as Han (2012) pointed 
out, it would be beneficial to use the fixed 
guessing (FG) 3PLM, that is a model in which 
the c-parameter is not estimated, but fixed to 

1   In the period 2002–2011 the examination had the same 
structure with 20 binary scored multiple choice items in 
the humanities test and 25 binary scored multiple choice 
items in the maths and science test, along with 9 and 11 con- 
structed response items, respectively. In all multiple 
choice items there were four alternatives to choose. 
Maximum possible test score was 50 points in both tests. 
Each test was taken by about 400–500 000 of students 
per year. Estimation of item parameters was performed 
including both multiple choice and constructed response 
items with the 3PLM for multiple choice items, the 2PLM 
for binary scored constructed response items and the 
Samejima graded response model for polytomous con-
structed response items.

the value of the reciprocal of the number of 
alternatives (it is worth noting that the level 
of guessing becomes here a property of the 
item format, not of the particular item, as it 
is in the classical 3PLM). However in practice 
it must be always verified if the FG 3PLM fits 
the specific data well.

Taking this into account, the empha-
sis is on the traditional 3PLM in this arti-
cle and which is also the most frequently 
applied in practice. Importantly, here the 
problem of model fit and model selection 
with regard to specific, real data is not con-
sidered. Also, the nature of guessing itself 
is ignored. Here, guessing is important pri-
marily as a rather technical phenomenon 
that renders the 2PLM inconsistent with 
data generation process. The goal was to 
identify the consequences of such incon-
sistency on the properties of the estimates 
of the latent trait.

What would happen if the 2PLM was used 
to try to describe the generation of the item 
response according to the 3PLM with a value 
of the c-parameter distinctively larger than 
zero? In Figure 1, solid lines represent the 
item characteristic curves (ICCs) – curves 
describing the probability of giving a cor-
rect answer as a function of the latent trait) 
for two items, both characterised by a dis-
crimination parameter value of 1.3, guess-
ing parameter value of 0.2, and difficulty 
parameter values of -1 (left upper panel) and 
1 (right upper panel). Dashed lines represent 
ICCs from 2PLM, the parameter values of 
which were selected to minimise the sum 
of the squared differences between the real 
probability of a correct response (from the 
3PLM) and the analogous probability pre-
dicted from the 2PLM. It has been assumed 
that in the population tested the trait has 
a standard normal distribution. As a result, 
in optimisation, greater importance is given 
to the differences between the curves close 
to the 0 point on the X axis (i.e., where there 
are a large number of individuals), than to 
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the differences at the points located further 
towards the sides (where, according to the 
assumptions made, there were far fewer 
tested individuals).

It might be remarked here that the dis-
crimination and difficulty parameters 
obtained from the 2PLM significantly dif-
fered from the true values (from the 3PLM). 
With a high value of guessing parameter (0.2) 

this should not be particularly surprising. 
It is also worth noting that discrimination 
shrinks in the direction of zero and item dif-
ficulty is clearly lowered (underestimated). 
However at the same time, at least in the case 
of the easier of the two items analysed, the 
ICC from the 2PLM well approximates the 
course of the real ICC for a very wide range 
of values of the measured trait. Of course, 

Figure 1. Upper panels: ICCs of two 3PLM items and best fit (according to the criterion of the least sum 
of squared differences in the population) 2PLM ICCs (the crosshatched field emphasises the differences 
between the curves). Lower panels: Fischer information curves corresponding to the ICCs from the 
upper panels.

param. 3PL: a = 1.30; b = -1.00; c = 0.20
param. 2PL: a = 1.10; b = -1.41

param. 3PL: a = 1.30; b = -1.00; c = 0.20
param. 2PL: a = 0.77; b = 0.53

Information curves Information curves
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large discrepancies appear on the left side of 
the diagram, however, they appear below the 
value of the trait at -2 standard deviations 
and thus cover only a small percentage of the 
tested population (~2.5%).

The modeling of a  difficult item with 
the 2PLM was more challenging. Since it is 
necessary to provide a closer fit in the lower 
section of the curve, significant differences 
also appear for the high trait intensity. Nev-
ertheless even here, within a considerably 
wide range of values around ±1 standard 
deviation from the mean value (about 70% 
of the tested population) differences in the 
shape of the curves are very minor and do 
not exceed 3 percentage points.

The next question is how such differ-
ences affect estimates of the latent trait val-
ues calculated according to the model and 
on their standard errors. It is known that in 
the 2PLM, when all test-takers attempt the 
same set of items, the sum of the discrimina-
tion parameters for correctly answered items 
determines the arrangement of test-takers 
according to the level of the measured trait 
(Birnbaum, 1968). Thus, it can be concluded 
that the weight that is applied to an item 
when predicting the value of the latent trait is 
related to the “quality” of the item, which in 
the 2PLM is identified particularly with the 
value of the discrimination parameter2. As 
far as the 3PLM is concerned, it is no longer 
possible to determine the arrangement of the 
test-takers using a similarly simple formula. 
Nevertheless, in this case we may also say 
that the better “quality” the item, the more 
information about the measured trait it pro-
vides. In the 3PLM, the test item has good 
measurement properties when it has a high 
discrimination parameter and a low guessing 
parameter (Birnbaum, 1968).

2  It is worth noting that as long as all test-takers are 
responding to the same items, when predicting the value 
of the latent trait, item difficulty is not taken into account 
whatsoever.

Therefore, the lower discrimination from 
2PLM in the example given in Figure 1 can 
be interpreted as an “adjustment” providing 
information on the low measurement quality 
of a test item when some of this information 
cannot be provided by the guessing param-
eter, absent from the 2PLM. At the same 
time, differences in the difficulty parameter 
values will have no effect on the latent trait 
estimates, since difficulty parameters have 
no influence in this respect. This allows the 
assumption that the latent trait estimates 
provided by the 2PLM can be quite similar 
to those obtained from the 3PLM, even when 
the 2PLM clearly does not describe the pro-
cess of generating scores properly for some 
test items (it does not consider the guessing 
parameter).

In terms of the expected differences of 
the standard errors for latent trait estimates, the 
information curves, presented in the lower 
panels of Figure 1 are of value. The higher 
the value of the information curve, the lower 
the standard error of estimates for people 
with a given score of the trait. In this case, 
the differences between the two models appear 
evident. The 2PLM has a clear tendency to 
underestimate standard errors within a range 
of low values of the measured trait (i.e. within 
the range where the probability of a correct 
response depends mainly on the value of the 
guessing parameter), as well as within the 
range of very high values of the trait (however 
in this case the differences are slight).

Description of the simulation study

For the purposes of more rigorous verifica-
tion of the relationship of interest, a simula-
tion study of the properties of both models 
was conducted. Two problems were of inter-
est. First the strength of the linear relation-
ship between the estimates of the latent trait 
from the 2PL and 3PL models and the real 
values of the latent trait, as well as between 
the estimates from these two models. The 
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relationship between the standard error val-
ues calculated with the 2PLM and 3PLM, 
and how the differences between the stan-
dard errors from the two models are related 
to the value of the measured trait were also 
investigated.

Secondly, the question of how choice 
between 2PL and 3PL models influenced 
properties of the latent trait estimates in 
further analysis was addressed. This can be 
understood considering the typical situa-
tion in which correlation between the esti-
mates of the latent trait and another (directly 
observed) variable is taken as the estimator 
for the (latent) correlation between the latent 
trait and this variable. This is analogous to 
the widely known problem of attenuation 
of a  correlation coefficient described by 
classical test theory (Zimmerman and Wil-
liams, 1997). More specifically, the relative 
bias of such an estimator of the latent cor-
relation was investigated. Also, the relation-
ship between the real probability of making 
a type I error (that is incorrectly rejecting the 
hypothesis that there is no latent correlation) 
and the assumed significance level of the test 
were checked. 

The relationships between the above 
parameters and selected qualities of tests 
were observed. The following options were 
reflected in the analysis:

■■ Test length, interpreted primarily as an 
indicator of test reliability. Two options 
were analysed: (a) a  test of 10 items and 
(b) a test of 20 items; 

■■ Number of observations (test-takers), on 
which the estimation was based. Two 
options were analysed: (a) 500 observa-
tions and (b) 5000 observations;

■■ Number of items subject to guessing. For 
each given test length all the possible situ-
ations were considered, i.e. from 0 (gues-
sing did not occur in any of the items) to 
all items in the test;

■■ Guessing level. Two levels: (a) guessing 
parameter of 0.15 and (b) 0.25.

The last two characteristics were used 
to describe the “intensity” of guessing, 
understood as an indicator for the extent to 
which the 2PLM is inconsistent with data 
generation. The number of items subject 
to guessing may seem a rather unrealistic 
characteristic for a test, if it is assumed that 
a test comprises only multiple choice items. 
The design reflected the common test situa-
tion in which there are both multiple choice 
and constructed response items. Although 
test composition with many constructed 
response items and few multiple choice 
items might be seen as rather implausible, 
the inclusion of such situations in the design 
offers a more complete picture of the rela-
tionships analysed.

For correlation of the latent trait with 
another variable, four distinct values of the 
latent correlation were considered: 0 (no cor-
relation), 0.3, 0.5 and 0.7.

From several possible methods for latent 
trait estimation, based on the previously 
estimated model parameters, the expected 
a  posteriori (EAP) method was chosen, 
as it is currently the most commonly used 
method. Other estimation methods would 
be expected to have very similar character-
istics for the relationships investigated in this 
study. For estimation of item parameters, 
the marginal maximum likelihood (MML) 
method was used. All calculations were car-
ried out using the R statistical package, ver-
sion 3.1.0, and the mirt library version 1.3.

The basic principle of the simulation was 
to apply guessing to the data generation pro-
cess, analyse this data using a model includ-
ing the guessing parameter (3PLM) and 
a model without (2PLM) and then to com-
pare the results. The following steps were 
taken in every iteration of the simulation:
1.	First, the number of observations (500 or 

5000) was chosen to which the latent trait 
values were assigned that had been ran-
domly selected from a  standard normal 
distribution;
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2.	Three observed (non-test) variables were 
generated according to a  linear model:  
Xr = θ + εr . with εr ~ N(0, σr) and stan-
dard deviations σr equal 3.18, 1.73 and  
1.02 respectively (corresponding to cor-
relations of 0.3, 0.5 and 0.7 between the 
latent trait and Xr). Additionally a  fourth 
observed (non-test) variable X0 was gene-
rated from a standard normal distribution, 
that was independent of the latent trait;

3.	Next, the total number of items in the 
test, the number of guessed items and the 
level of guessing were chosen;

4.	Values for discrimination and difficulty 
parameters were selected at random and 
independently of each other. Difficulty 
parameters were taken from a  standard 
normal distribution, discrimination 
parameters – from a  log-normal distri-
bution with an expected value of 1.3 and 
standard deviation of 0.233;

5.	Independently from the values of discri-
mination and difficulty parameters 
(selected randomly) the items for which 
guessing would occur were drawn;

6.	The next step involved “taking” the test 
and assigning scores for each item to each 
observation. The scores were generated 
according to the 3PLM with the values for 
item parameters set in the previous steps;

7.	Using obtained scores the 2PLM and the 
3PLM were estimated, and EAP estima-
tes of the measured trait generated from 
these models for every observation;

8.	At the end of every iteration, the values 
of parameters that described the analysed 
relationships were calculated and recorded.

For every combination of the number of 
test-takers, test length and guessing level 
10 000 iterations were performed, giving  
80 000 iterations in total.

3  The normal distribution generating such a log-normal 
distribution has expected value of ~0,26 and standard devia-
tion of ~0,17. These values approximate the mean and stan-
dard deviation of the distribution of discrimination parame-
ters in Polish exams sat at the end of lower-secondary school.

Simulation study results

Figure 2 shows the average values of the 
squared Pearson product-moment correla-
tion between the real values of the latent 
trait and its estimates from the 2PLM and 
3PLM. It is immediately noticeable that the 
type of model has almost no influence on 
the results, even when intensive guessing 
occurs for all test items (0.25). It is interesting 
that when the number of observations (test- 
takers) is relatively small (500), the estimates 
from 2PL models reflect the real values of 
the latent trait slightly better. The situation 
changes when a larger group is considered 
(5000 observations). Nevertheless, it must 
be emphasised that these differences are 
marginal and do not seem to have practical 
importance.

Such small differences result from the 
great similarity between estimates obtained 
from both models. From the 80 000 itera-
tions analysed, the lowest recorded value 
of the squared Pearson product-moment 
correlation between the estimates from the 
2PLM and the 3PLM was 0.78. However, even 
in the most unfavourable of the scenarios 
considered (a short test, guessing at the level 
of 0.25 in all the items), the average value for 
this coefficient was 0.96, and in more favour-
able conditions it was only higher.

Returning to the factors that affect the 
strength of the relationship between the real 
values of the measured trait and its estimates, 
it can be concluded here that guessing had 
a clearly negative effect. The higher the inten-
sity of guessing, both in terms of the number of 
items in which it occurred, as well as, the value 
of the guessing parameter, the weaker the rela-
tionship between predicted and real values. 
As mentioned previously, accommodation of 
the guessing factor in the estimation model 
did not offer any improvement compared to 
the 2PLM, even when the latter was evidently 
inadequate. The strong impact of the num-
ber of items in the test on the strength of the 
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relationship between estimates and real values 
of the measured trait should not be a surprise. 
It should be noted that in the case of a longer 
test, differences in intensity of guessing had 
a  slightly reduced influence on the results  
obtained.

It might be asked whether the relation-
ship between real values of the latent trait 
and its estimates, especially from a 2PLM, is 
strictly linear. It could be steeper for higher 
values of the latent trait, where there are only 
slight discrepancies between the 2PLM and 

Figure 2. Average value of the R2 coefficient for linear models describing relationships between real 
values of the latent trait and estimates from 2PLM and 3PLM IRT models, depending on the number of 
observations, the number of items in the test and the intensity of guessing.

Figure 3. Increase of the R2 coefficient between the squared and the linear model predicting real 
values of the latent trait with its estimates (and, in case of the quadratic model, squared estimates).

n = 5 000n = 500

n = 500 n = 5 000
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Comparing standard errors of the latent 
trait estimates from 2PLM and 3PLM, there 
were large differences between the scenarios 
analysed. These results are presented in Fig-
ure 4. While for a large number of observa-
tions with no guessing, the standard errors 
computed according to the 2PLM remained 
strongly related to the errors from the 3PLM, 
the relationship rapidly weakened with an 
increase in the number of test items for which 
guessing occurred. The extent of guessing 
seems to be of slightly smaller significance. 
Test length (number of test items) had almost 
no effect on the results. In the most unfa-
vourable of the scenarios analysed – those 
with very high intensity guessing – the linear 
relationship between standard errors from 
the 2PLM and the 3PLM was weak, mean 
values of correlation coefficient were around 
0.3–0.4. At the same time it is worth noting 
that average differences between standard 
errors from the 2PLM and the 3PLM did not 
systematically differ from zero.

Based on comparison of the formal 
characteristics of the 2PLM with the 3PLM 
presented earlier, the conclusion was drawn 
that the 2PLM tended to underestimate the 
standard errors within the range of low val-
ues of the measured trait and overestimated 
them within the range of medium and mod-
erately high values of this trait. If this was 
true, it could be inferred that there would be 
a positive correlation between the real val-
ues of the measured trait and the difference 
between the standard errors from the 2PLM 
and the standard errors from the 3PLM. 
As shown in Figure 5, these assumptions 
were partially confirmed by the simulation. 
When a  large group was tested, it is clear 
that with an increased prevalence of guess-
ing, the correlation increases and thus the 
differences between the standard error from 
the 2PLM and the standard error from the 
3PLM tend to behave according to predic-
tions. However, at the same time, decreas-
ing the number of test items significantly 

the data generation model and f latter for 
lower values of the latent trait, where these 
discrepancies are greater. To answer this 
question, R2 coefficients from (strictly) lin-
ear models described above were compared 
with R2 coefficients from a regression model 
assuming a quadratic relationship, i.e., in 
which the real values of the latent trait were 
predicted by both estimates and its square. 
Figure 3 presents the relationship between 
the averaged increase of R2 coefficient in 
quadratic model and the model used, the 
intensity of guessing and the number of test 
items. The largest average increase in the 
R2 coefficient was 0.0038, recorded for the 
2PLM and a test of 10 items, all of which 
were subject to guessing at the level of 0.25 
(the largest increase of the R2 coefficient in 
a single iteration amounted to 0.043). There-
fore, for all models, the observed nonlinear-
ity for the relationship of the latent trait and 
its estimates can be considered irrelevant. 
Nevertheless, it can be concluded that the 
largest effect of nonlinearity was observed 
for 2PLM and high guessing intensity, i.e., 
when the assumptions of the model were 
not met.

Results were contradictory to those 
obtained by Yen (1981), who reported con-
siderable nonlinearity in the relationship 
between estimates of the latent trait from 
a 2PLM and 3PLM when the data genera-
tor was 3PLM. However the main problem 
arising here is incomparability of results. 
Yen used the only estimation technique 
available at that time, the joint maximum 
likelihood which is significantly different. 
This method is no longer used to estimate 
any IRT models other than Rasch, owing to 
its poor properties when used for more com-
plicated models. Yen’s procedure also did not 
involve the repetition of data generation and 
estimation through many iterations – only 
one iteration for data generation was used 
per cell. This could have led to somewhat 
mistaken conclusions.
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weakened this relationship. Furthermore, 
when only a small group of people was taking 
the test, no noticeable increase in the rela-
tionship strength with increased prevalence 

of guessing was noted. Probably, with such 
unfavourable conditions, the 3PLM estimate 
is relatively unstable and problems with item 
parameter recovery occur.

Figure 4. Average values for the R2 coefficient between estimated standard errors of the latent value 
estimates from the IRT 2PLM and the IRT 3PLM, depending on the number of observations, number 
of test items and guessing intensity.

Figure 5. Mean values for the R2 coefficient for the linear regression between the latent trait and 
the difference between the estimated standard errors of the latent trait estimates for separate 
observations from the IRT 2PLM and the IRT 3PLM (i.e. depending on the number of observations, 
the number of test items and guessing intensity).

n = 500 n = 5 000

n = 500 n = 5 000
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Turning to the use of the correlation 
between latent trait estimates and variables as 
estimators of the latent correlations between 
variables and the latent trait of interest. The 
relative bias calculated as the average ratio 
of correlation between the observed variable 
and the estimates from a given model to the 
real value of the latent correlation was anal-
ysed. Since it emerged that the relative bias did 
not depend on the correlation (if non zero), 
results were presented as averages over dif-
ferent considered values of correlation, (see 
Figure 6). The type of model used in this case 
also had no effect on the value of the relative 
bias. Without guessing, the mean value of the 
observed correlation was about 16% less than 
the latent correlation for the test of 20 items, 
and about 27% less for a smaller, 10 item test. 
The increase in the pseudo-guessing param-
eter or of the proportion of items subject to 
guessing caused the bias to increase.

To investigate the relationship between 
the real probability of a type I error (that 
is, incorrectly rejecting the hypothesis 
that there is no latent correlation) and the 
assumed significance level of the test for 

observed correlation, some further data 
aggregation was needed. A two-sided test 
with typical 0.05 significance level was 
assumed. To obtain reasonable results, situ-
ations with different numbers of items influ-
enced by guessing have been merged into 
two groups: (a) the proportion of items in the 
test affected by guessing lower than 50% and 
(b) the proportion of items affected by guess-
ing higher than 50%. As a result, for every 
combination of number of observations and 
number of test items (and type of model), for 
each such group there were about 4500 itera-
tions. The frequency of incorrect rejections of 
the null hypothesis for no latent correlation 
are shown on Figure 7. As can be seen, even 
with this many iterations for each group, the 
results were not very stable. However it may 
be stated that the probability of incorrectly 
rejecting the hypothesis that there is no 
latent correlation, is approximately equal to 
the assumed significance level regardless of 
whether the 2PLM or 3PLM is used to gen-
erate latent trait estimates.

Despite this optimistic result regarding 
the probability of making a type I error, it 

Figure 6. Relative bias of correlation coefficients between the observed variable and the measured 
latent trait depending on the number of observations, number of test items and guessing intensity.

n = 5 000n = 500
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should be noted that the power of the cor-
relation test is considerably decreased when 
using observed correlation between latent 
trait estimates and some observable variable 
as an estimator of latent correlation between 
this variable and the latent trait. This is con-
nected to the severe bias of such an estimator 
towards zero. With a constant relative bias 
(as a function of the latent correlation), the 
absolute bias of an estimator decreases and 
asymptotically approaches zero with latent 
correlation decreasing to zero. This fact 
allows the probability of making type I error 
to be approximated as equal to the assumed 
significance level.

Conclusions

This study aimed at showing the extent to 
which application of the 2PLM for calibration 
of multiple choice tests can provide reliable 
estimates for a latent trait in a situation when 
the simple model is inadequate owing to sug-
gested high prevalence of guessing in the data. 
It is somewhat surprising that in practically 
all scenarios considered, even when guessing 

was of high intensity during data generation, 
the quality of point estimates obtained from 
2PL models was no worse than for the corre-
sponding estimates from 3PL models, which, 
unlike 2PL models, accommodate guessing. 
The estimates from the two models were very 
similar and in the majority of cases, almost 
identical.

Of course, the significance of results 
obtained by this study should not be over-
valued. The issue discussed here represents 
only one of many applications for such mod-
els. If the assumptions of the model are not 
met, the estimated parameters of test items, 
cannot be relied on. There is also no doubt 
that the 3PLM (and other related models) 
is extremely useful for the diagnosis of the 
psychometric characteristics of items, as well 
as entire tests, but only if a relatively large 
number of observations can be provided. It 
may also be applied to computer adaptive 
testing (CAT), when proper recovery of item 
parameters is of obvious crucial importance 
and which cannot be assured with a 2PLM.

At the same time, when the main or only 
objective for calibration is to obtain point 

Figure 7. Frequency of incorrect rejections of the null hypothesis that there is no latent correlation 
when the standard test for significance of correlation between observed variables is used (between 
the latent trait estimates and some observed variable); two-sided test with 0.05 significance level.

n = 5 000n = 500
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estimates of the latent trait for individu-
als leading to further analysis, the choice 
between the 2PLM and the 3PLM proves 
almost completely irrelevant. Furthermore, 
the 2PLM may offer some practical advan-
tages, such as speed of estimation for large 
data sets, and much greater stability when 
the number of observations is limited. This 
latter advantage may be particularly relevant 
for easier tests (compared with the ability 
distribution of test-takers), when there is 
very little information available for reliable 
estimation of pseudo-guessing parameters 
in the 3PLM.

To conclude, choice of an appropriate 
statistical framework to model the relation-
ship between the latent trait and the (proba-
bility of) observed response is more related 
to understanding the latent trait measured, 
rather than the strictly statistical properties 
of latent trait estimates, if intended for use in 
further analysis.
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