
2019 volume 13 issue 1

2019 volume 13 issue 1

Editors
Zbigniew Huzar (Zbigniew.Huzar@pwr.edu.pl)
Lech Madeyski (Lech.Madeyski@pwr.edu.pl, http://madeyski.e-informatyka.pl)

Department of Software Engineering, Faculty of Computer Science and Management,
Wrocław University of Science and Technology, 50-370 Wrocław, Wybrzeże Wyspiańskiego 27,
Poland

e-Informatica Software Engineering Journal
www.e-informatyka.pl, DOI: 10.5277/e-informatica
Editorial Office Manager: Wojciech Thomas
Typeset by Wojciech Myszka with the LATEX 2ε Documentation Preparation System

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publishers.

© Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2019

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
www.oficyna.pwr.edu.pl;
e-mail: oficwyd@pwr.edu.pl; zamawianie.ksiazek@pwr.edu.pl

ISSN 1897-7979

Print and binding: beta-druk, www.betadruk.pl

http://madeyski.e-informatyka.pl
http://www.e-informatyka.pl
http://dx.doi.org/10.5277/e-informatica
http://www.oficyna.pwr.edu.pl
mailto:oficwyd@pwr.edu.pl
mailto:zamawianie.ksiazek@pwr.edu.pl
http://www.betadruk.pl

Editorial Board
Co-Editors-in-Chief

Zbigniew Huzar (Wrocław University of Science and Technology, Poland)
Lech Madeyski (Wrocław University of Science and Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (NTNU, Norway)
Apostolos Ampatzoglou (University of
Macedonia, Thessaloniki, Greece)
Sami Beydeda (ZIVIT, Germany)
Miklós Biró (Software Competence Center
Hagenberg, Austria)
Markus Borg (SICS Swedish ICT AB Lund,
Sweden)
Pearl Brereton (Keele University, UK)
Mel Ó Cinnéide (UCD School of Computer
Science & Informatics, Ireland)
Steve Counsell (Brunel University, UK)
Norman Fenton (Queen Mary University
of London, UK)
Joaquim Filipe (Polytechnic Institute
of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover,
Germany)
Francesca Arcelli Fontana (University
of Milano-Bicocca, Italy)
Félix García (University of Castilla-La Mancha,
Spain)
Carlo Ghezzi (Politecnico di Milano, Italy)
Janusz Górski (Gdańsk University of Technology,
Poland)
Tracy Hall (Lancaster University, UK)
Andreas Jedlitschka (Fraunhofer IESE,
Germany)
Barbara Kitchenham (Keele University, UK)
Stanisław Kozielski (Silesian University
of Technology, Poland)
Ludwik Kuźniarz (Blekinge Institute
of Technology, Sweden)
Pericles Loucopoulos (The University
of Manchester, UK)
Kalle Lyytinen (Case Western Reserve
University, USA)
Leszek A. Maciaszek (Wrocław University
of Economics, Poland
and Macquarie University Sydney, Australia)
Jan Magott (Wrocław University of Science and
Technology, Poland)
Zygmunt Mazur (Wrocław University of Science
and Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (IDOS Software AG, Germany)
Jürgen Münch (University of Helsinki, Finland)

Jerzy Nawrocki (Poznan University
of Technology, Poland)
Mirosław Ochodek (Poznan University
of Technology, Poland)
Janis Osis (Riga Technical University, Latvia)
Mike Papadakis (Luxembourg University,
Luxembourg)
Kai Petersen (Hochschule Flensburg, University
of Applied Sciences, Germany)
Łukasz Radliński (West Pomeranian University
of Technology in Szczecin, Poland)
Guenther Ruhe (University of Calgary, Canada)
Krzysztof Sacha (Warsaw University
of Technology, Poland)
Martin Shepperd (Brunel University London,
UK)
Rini van Solingen (Drenthe University,
The Netherlands)
Miroslaw Staron (IT University of Göteborg,
Sweden)
Tomasz Szmuc (AGH University of Science and
Technology Kraków, Poland)
Iwan Tabakow (Wrocław University of Science
and Technology, Poland)
Guilherme Horta Travassos (Federal
University of Rio de Janeiro, Brazil)
Adam Trendowicz (Fraunhofer IESE, Germany)
Burak Turhan (University of Oulu, Finland)
Rainer Unland (University of Duisburg-Essen,
Germany)
Sira Vegas (Polytechnic University of Madrit,
Spain)
Corrado Aaron Visaggio (University of Sannio,
Italy)
Bartosz Walter (Poznan University
of Technology, Poland)
Bogdan Wiszniewski (Gdańsk University
of Technology, Poland)
Dietmar Winkler (Technische Universität Wien,
Austria)
Marco Zanoni (University of Milano-Bicocca,
Italy)
Jaroslav Zendulka (Brno University
of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University of Science
and Technology Kraków, Poland)

Contents

Usage, Retention and Abandonment of Agile Practices: A Survey and Interviews Results
Indira Nurdiani, Jürgen Börstler, Samuel Fricker, Kai Petersen 7

Do Software Firms Collaborate or Compete?
A Model of Coopetition in Community-initiated OSS Projects

Anh Nguyen-Duc, Daniela S. Cruzes, Snarby Terje, Pekka Abrahamsson 37
Representation of UML Class Diagrams in OWL 2 on the Background
of Domain Ontologies

Małgorzata Sadowska, Zbigniew Huzar . 63
A Three Dimensional Empirical Study of Logging Questions
from Six Popular Q&A Websites

Harshit Gujral, Abhinav Sharma, Sangeeta Lal, Lov Kumar 105
Empirical Studies on Software Product Maintainability Prediction:
A Systematic Mapping and Review

Sara Elmidaoui, Laila Cheikhi, Ali Idri, Alain Abran 141
Measuring Goal-Oriented Requirements Language Actor Stability

Jameleddine Hassine, Mohammad Alshayeb . 203
Software Change Prediction: A Systematic Review and Future Guidelines

Ruchika Malhotra, Megha Khanna . 227

e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 7–35, DOI 10.5277/e-Inf190101

Usage, Retention, and Abandonment of Agile
Practices: A Survey and Interviews Results

Indira Nurdiani∗, Jürgen Börstler∗∗, Samuel Fricker∗∗∗, Kai Petersen∗∗∗∗
∗Department of Software Engineering/DTU Compute – Software and Process Engineering Section,

Blekinge Institute of Technology, Sweden/Technical University of Denmark, Denmark
∗∗Department of Software Engineering, Blekinge Institute of Technology, Sweden

∗∗∗Institute for Interactive Technologies, Fachhochschule Nordwestschweiz, Switzerland
∗∗∗∗Chair for Software Engineering, University of Applied Sciences Flensburg, Germany

indira.nurdiani@bth.se/innu@dtu.dk, jurgen.borstler@bth.se, samuel.fricker@fhnw.ch,
kai.petersen@hs-flensburg.de

Abstract
Background: A number of Agile maturity models (AMMs) have been proposed to guide software
organizations in their adoption of Agile practices. Typically the AMMs suggest that higher
maturity levels are reached by gradually adding more practices. However, recent research indicates
that certain Agile practices, like test-driven development and continuous integration, are being
abandoned. Little is known on the rationales for abandoning Agile practices.
Aim: We aim to identify which Agile practices are abandoned in industry, as well as the reasons
for abandoning them.
Method: We conducted a web survey with 51 respondents and interviews with 11 industry
practitioners with experience in Agile adoption to investigate why Agile practices are abandoned.
Results: Of the 17 Agile practices that were included in the survey, all have been abandoned at
some point. Nevertheless, respondents who retained all practices as well as those who abandoned
one or more practices, perceived their overall adoption of Agile practices as successful.
Conclusion: Going against the suggestions of the AMMs, i.e. abandoning Agile one or more
practices, could still lead to successful outcomes. This finding indicates that introducing Agile
practices gradually in a certain order, as the AMMs suggest, may not always be suitable in different
contexts.
Keywords: Agile practices, Agile maturity models, survey

1. Introduction

The software industry is highly competitive. Ag-
ile methods, like Scrum and eXtreme Program-
ming (XP), help to tackle the challenges of rapid
changes in the environment of software organi-
zations and help to reduce time to market, min-
imize development costs, and improve software
quality [1]. Agile practices are the enactment of
Agile principles [2].

A recent survey indicates that some prac-
tices like test-driven development (TDD), pair
programming, and continuous integration are

being abandoned [3]. Abandoning Agile practices
seems contradictory to common guidelines such
as Agile maturity models (AMMs) [4–6] that
prescribe which practices should be implemented
and when according to certain maturity levels.
According to the AMMs, the more mature an or-
ganization becomes, the more Agile practices are
adopted. However, the indication of abandonment
of practices could also be due to lack of guidance.
Perhaps such practices were not introduced at
the right time, given the maturity of the software
development teams or organization, because Agile
practices dependencies are not well known.

Submitted: 6 February 2018; Revised: 17 July 2018; Accepted: 17 July 2018; Available online: 30 September 2018

8 Indira Nurdiani et al.

Table 1. Allocation of Agile practices to maturity levels in three AMMs

Sidky et al. [6] Patel & Ramachandran [5] Nawrocki et al. [4]
Context Agile practice adoption based

on a measurement index
Agile practice adoption based
on CMM(I)

Adoption of XP based on
other maturity models

Level 1 On-site customer, collabora-
tive planning, coding standard

– –

Level 2 Tracking progress, continuous
delivery

Tracking progress, on-site cus-
tomer, planning game, TDD

Planning game, collaborating
customer (on-site customer),
user stories, metaphors

Level 3 F2F meeting, continuous inte-
gration, self-organizing team

Refactoring, pair program-
ming, continuous integration,
TDD, coding standard, collec-
tive ownership

Pair programming, coding
standard, collective ownership,
continuous integration

Level 4 Daily meeting (stand up meet-
ing), user stories, frequent re-
leases

Self organizing team, 40 h week Simplicity (simple design), on-
-site customer

Level 5 TDD, pair programming Focus on continuous improve-
ment

–

Currently, we do not know why Agile prac-
tices are abandoned and how this impacts the
overall success of Agile implementations. With-
out such information, we are unable to evaluate
the suitability of AMMs in industry. As the first
step towards evaluating the suitability of the
AMMs is to better understand the usage and
retention of Agile practices, and identify the ra-
tionales for abandoning Agile practices.

In this study, we aim to identify the rate of
usage of Agile practices, their retention, and the
rationales for their abandonment. To achieve our
aim, we conducted a web survey and 11 inter-
views with industry practitioners with experience
in Agile.

The remainder of the paper is structured as
follows: Section 2 presents related work. Section
3 presents the research questions and survey de-
sign. Section 4 presents the results and analysis
of the survey. Section 5 discusses the results and
Section 6 summarizes and concludes the paper.

2. Background and related work

2.1. Background

According Schweigert et al. [7], there are approx-
imately 40 AMMs proposed by academia and

industry consultants. Many AMMs usually asso-
ciate a number of Agile practices with a maturity
level [7, 8]. Practices are introduced gradually.
As a team or organization becomes more ma-
ture, more Agile practices are adopted [8]. An
overview over three typical AMMs is provided
in Table 1.

The idea of adding more Agile practices as
a team or organizations becomes more mature
seems contradictory to current empirical studies
that show that Agile practices like TDD, pair-pro-
gramming, and continuous integration are aban-
doned [3]. This raises a question regarding the
suitability of AMMs for industry, particularly
when the AMMs do not provide rationales for the
mapping of Agile practices to maturity models.
Critics of the AMMs indicate that the AMMs
are not fit for industry use [9] and that their
recommendations are contradictory [8, 10]. In
this study, we aim to evaluate the suitability
of AMMs by investigating the usage and aban-
donment of Agile practices in industry through
a survey and a series of interviews.

2.2. Related work

Kurapati et al. [16] performed a survey to identify
commonly used Agile practices at project and
organization levels. Their results show that the
most commonly used practices both at project

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2013 2014 2015 2016 2017

Daily Standup

Iteration Planning

Retrospective

TDD

Cont. Integration

Pair programming

Test-driven
deployment

Figure 1. Fluctuation of Agile practice usage from Version One’s State of Agile 2013–2017 [11–15].
The practices shown in the figure are for exemplification and the ones consistently reported across

the annual surveys

and organization levels include stand-up meeting,
sprint and iteration, collective ownership, and
tracking progress. Less common practices both
at project and organization levels include simple
design, TDD, pair-programming, and planning
game. One practice that is rarely practiced both
at project and organization levels is metaphor.
It is also interesting to highlight that the use of
metaphors reported by Kurapati et al. turns out
differently from Murphy et al. [17].

Kropp et al. [18] conducted a survey as part
of Swiss Agile Study 2014. They distinguished
three types of practices: technical, collabora-
tive, and advanced practices. Technical prac-
tices include refactoring, TDD, and coding stan-
dards. Collaborative practices include on-site cus-
tomer, daily stand-up, and pair programming.
Advanced practices are kanban pull-system, ac-
ceptance TDD, and Behaviour Driven Develop-
ment (BDD). Their results show that more ex-
perienced practitioners implement considerably
more practices compared to less experienced ones.
Furthermore, less experienced practitioners im-
plement primarily technical practices, meanwhile
more experienced ones implement more collabo-
rative practices. It is worth noting in this study
metaphors is not included in the survey, unlike
the previous survey by Kurapati et al. [16].

The two surveys described above, i.e. [16] and
[18], report the results of Agile practice usage
from one single calendar year. They do not capture
whether the practices are continuously used or not.

Murphy et al. [17] reported results of five an-
nual surveys internal to Microsoft over the course
of six years. Their results show that practices
like code reviews, metaphors, and retrospective
are increasing in their adoption. Meanwhile, cer-
tain practices like unit testing, TDD and pair
programming are decreasing in their adoption
[17, Figure 4, p. 79].

VersionOne also conducts annual state of Ag-
ile surveys. We took the results from the annual
survey over the past five years (2013–2017) and
created a figure that presents the trend of the
usage of some Agile practice [11–15] in Figure 1.
The results of the annual surveys indicate that
the use of Agile practices is fluctuating over the
past five years, see Figure 1.

The surveys reported by Murphy et al. [17]
and Version One [11–15] capture the increase and
decrease of Agile practices usage over the years.
However, the increase of some Agile practices
from one year to the next does not indicate that
those practices are being added, as suggested
by AMMs. The decrease of some Agile practices
does not indicate that those practices are being
abandoned. It is possible that the respondents of
the surveys from one year to the next are differ-
ent. In the case of Murphy et al. [17] respondents
who participated in one survey were not allowed
to participate in the next survey. These surveys
do not reflect the use of Agile practices in one
context/team over time. Thus, the results cannot
be used to assess the suitability of AMMs.

10 Indira Nurdiani et al.

Solinski and Petersen [3] surveyed Agile prac-
tice adoption scenarios over time as practitioners
transition from plan-driven development towards
Agile. The survey identified Agile adoption sce-
narios which include an incremental adoption of
practices, big-bang adoption – where plan driven
practices are discarded and replaced by Agile
practices, and complex tailored adoption pro-
cesses. Their results also revealed that practices
like TDD and continuous integration are being
abandoned. However, their study did not focus
on rationales for abandoning practices.

Indications of Agile practice abandonment is
also reported by Ralph and Shportun [19]. Their
case study revealed the abandonment of Scrum in
distributed teams. One of the main factors asso-
ciated with abandoning Scrum is the degradation
of Scrum practices. Three Scrum practices that
were difficult to implement due to distribution are
daily stand-up meeting, tracking progress using
burn-down chart, and fixing sprint backlog.

To summarize, current research indicates that
someAgile practices are abandoned. However, cur-
rent surveys have not yet focused on the rationales
for abandoning Agile practices, or the time-frames
from practice adoption to abandonment. Cur-
rently, we do not know how abandoning practices
may influence the perceived overall success of
implementing Agile methods. In this paper, we
investigatewhyAgile practices are abandoned and
whether or how this influences perceived success.

3. Research methodology

In this study, we aim to identify which Agile prac-
tices are being used and abandoned in the indus-
try and the rationales for abandoning a practice
to better understand practice adoption and the
relevance of Agile maturity models.
RQ1. What is the rate of usage of Agile prac-

tices?
RQ2. Which Agile practices have been aban-

doned?
RQ2.1. How long are practices in use before

they are abandoned?
RQ2.2. What are the rationales for abandon-

ing these practices?

RQ3: What is the perceived success rate of Agile
practices implementation?
RQ3.1. Does the perceived success rate differ

between respondents who retain practices
versus respondents who abandon prac-
tices?

RQ3.2. What are the used measures of suc-
cess?

By “use” or “usage”, we mean that an Agile
practice is used or was in use at some point in
time, while “abandoned” means that an Agile
practice was used in the past, but is no longer
used. To answer the research questions above,
we conducted a survey and a series of follow-up
interviews.

3.1. Survey

3.1.1. Sampling strategy

We distributed the survey to personal con-
tacts and well-established professional groups
in Agile software development on LinkedIn
and Google Groups, i.e. convenience sampling.
Distributing surveys over professional groups
is a known way to distribute surveys as re-
ported in [3, 16]. When using convenience sam-
pling, which is a common strategy in soft-
ware engineering surveys, it is important to de-
scribe the sample [20]. Following the guidelines
from Linåker et al. [20], we define our sample
as follows:
– Target audience: software industry practition-

ers who have experience in Agile practices
adoption. Particularly, those who have ex-
perience in observing or experiencing when
a practice is adopted and/or abandoned. In
this survey, all practitioners from different
industry domains, organization size and dif-
ferent levels of experienced are welcome to
participate. However, this does not necessar-
ily mean all responses will be considered (see
Data Screening in Section 3.3).

– Unit of analysis: Agile practices which have
been adopted and abandoned, their rationales,
and perceived success rates.

– Source of sampling: professional groups or
communities focused on Agile software devel-

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 11

opment. Personal contacts who are known to
work with Agile software development.

3.1.2. Survey design

We followed the recommendations from Rob-
son [21] in designing a self-administeredweb-based
survey. The survey was developed using the tool
SoSci Survey (https://www.soscisurvey.de).

We included interactive sliders as a visual
aid to allow respondents to indicate the start
and/or end of Agile practice usage, see Figure 2.
The survey design is adapted from Solinski and
Petersen [3], who also investigated time-frames
of Agile practice usage.

Similar to past surveys, we included a se-
lection of Agile practice. However, there is no
commonly agreed set of Agile practices. Different
surveys include different sets of Agile practices.
For example, Rodriguez et al. [22] include 16
practices; Kurapati et al. [16] include 25 prac-
tices. In this survey, we adopted the list used
by Solinski and Petersen [3], which includes 7
plan-driven practices and 14 Agile practices. We
chose this list because their survey is quite recent
and comprises a manageable number of practices.
In their survey, Solinski and Petersen [3], merged
some practices, such as short iterations and fre-
quent releases. We also merged two practices, if
the practices are closely related. To see if two
practices are related, we cross referenced the def-
initions of Agile practices described by Petersen
[23] and Williams [2]. However, we separated
Solinski and Petersen’s combined practice “tech-
nical excellence” into its original sub-practices
refactoring, simple design, and coding standards.

At the beginning of the survey, we briefly
described the aim of the survey to the respon-
dent. To avoid bias, we did not mention that we
are looking for practices which had been aban-
doned. We described that we are interested in
understanding the order in introducing Agile
practices. The survey itself comprises five main
parts. The detailed survey questions are available
in Appendix B.

Part 1A. Agile practice adoption (RQ1).
Respondents could indicate practice usage as
“used”, “never used”, or “don’t know”. See Fig-

ure 2 Part 1A (to the left). Definitions of prac-
tices are available by hovering the mouse over
the information icon. The practices included in
the survey and their definitions can be seen in
Appendix A. In this survey, we did not inquire
which Agile framework, e.g. Scrum, eXtreme Pro-
gramming (XP), etc. was used. This was done to
avoid confusion from the respondents because it
is possible that practitioners combine practices
from different frameworks or on occasions also
include plan-driven or waterfall practices [3, 24].

Part 1B. Start and end of Agile practice (RQ2
and RQ2.1). Using interactive sliders, respon-
dents could indicate the start- and stop-time for
when a practice was in use as shown in Figure 2
part 1B. The time-frame for the sliders is between
<2006 and “Still in Use”. When respondents indi-
cated “never used” or “don’t know” in Part 1A,
the sliders are disabled. We used the interactive
sliders to identify abandoned practices, so we
did not bias respondents by explicitly asking
for abandoned practices. Respondents could also
leave optional comments or additional informa-
tion regarding a practice.

Part 2. Perception and measures of success
(RQ3). From Part 1B, we would be able to
see which Agile practices were used, retained,
and abandoned. The usage, retention, and aban-
donment of Agile practices represent a strategy
for Agile practice adoption. We inquired the im-
pacts of Agile practice adoption, as described in
Part 1B, in terms of perceived success rate. Suc-
cess rate is respondents’ perceived degree of suc-
cess of Agile practice adoption on their projects
or teams. A Likert-type scale was used to indicate
success rate, from very unsuccessful (1) to very
successful (5). Respondents could also answer
“don’t know”. Furthermore, we asked respondents
to indicate how success was measured. We be-
lieve it is important to inquire what measures
are used to indicate success, because different
practitioners from different contexts may have
different perceptions of success.

Part 3. Limitations and rationales (RQ2.2).
We asked which challenges and limitations re-
spondents experienced during Agile practice
adoption according to Part 1B and, in particular,
why practices were discontinued (if any).

12 Indira Nurdiani et al.

Part 1A Part 1B

2007 2012
H12008Before

2006
2014
Q2

2014
Q1

2013
H1

2012
H2

2015
Q1

2014
Q4

2014
Q3

2015
Q2

2015
Q4

2015
Q3

2016
Q1

2013
H2

In
Use2009 2010 2011

Figure 2. Interactive sliders

Part 4. Contexts. We asked respondents to
provide information about their personal back-
ground and organizational context: (1) their
role(s), (2) years of experience, (3) number of
team members involved in software development,
(4) team-setting (collocated or distributed),
(5) how Agile practice adoption was decided
(team-level or company), (6) industry domain(s),
and (7) type(s) of software systems being devel-
oped (classification is adopted from [25]).

Part 5. Contact. We also asked the respon-
dents to provide their names and email addresses,
for follow-up interviews or to receive a copy of
the survey results.

3.1.3. Survey pilot and execution

The sliders made the survey more complex and
increased the risk that questions are not well
understood. To mitigate these risks, we piloted
the survey with five colleagues of the authors
and five industry practitioners with experience
in Agile software development.

Regarding the pilot, some industry practi-
tioners felt that the definitions of some Agile
practices were too specific and might not be
applicable in their contexts. To address this is-
sue, we reformulated the definitions. Two pilot
respondents had difficulties to move the sliders.
We resolved this problem by adding instructions
on how to use the sliders. After addressing the
feedback from the pilot, we deployed the survey,
which was open between March–July 2016.

3.2. Interviews

3.2.1. Interviewees recruitment

Interviewees were recruited from the survey re-
spondents who left contact information for fur-
ther inquiries. Twelve invitations were sent out,
and three confirmed for follow up interviews.
We then recruited eight additional interviewees
through personal industry contact and referrals.
For the new recruits, we also asked them to fill
in the survey prior to the interview to maintain

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 13

consistency and helped us to formulate interview
questions.

In total, we had 11 interviewees. Our intervie-
wees represent a wide variety of contexts. They
came from various industry domains and geo-
graphic locations. More details on the intervie-
wees can be found in Table 2.

3.2.2. Interview design

The goal of the interviews was to gather richer
and better contextual information about the use
and abandonment of Agile practices. In the inter-
views, we used semi-structured interviews. The
interviews were done face-to-face whenever possi-
ble. Otherwise, the interviews were done over the
telephone or video call. Prior to the interview,
we sent each interviewee a summary of their
answers from the survey. Each interview lasted
45–60 minutes and was recorded and transcribed.
In the interviews, we inquired the following:
– Interviewee’s roles and responsibilities, short

description of the product being developed;
– The interviewee’s survey answers were revis-

ited and further clarified:
– Why did you mark (enumerate Agile prac-

tice marked as “never used”) as never
used? (RQ1),

– Why did you mark (enumerate Agile prac-
tice marked as “don’t know”) as don’t
know? (RQ1),

– Could you please elaborate the reasons for
abandoning (enumerate Agile practices
which were no longer used from Part 1B)?
(RQ2.2);

– Wrap-up. Inquire the interviewee’s impres-
sions on the interview.

3.3. Data analysis

Data screening. Prior to the analysis of the sur-
vey data, we carefully scrutinize each dataset to
ensure their reliability. We checked each respon-
dent’s answers to each question. For example, we
cross referenced the participants’ experience (in
years) and the time frame indicated in the sliders.
We also checked the respondents’ answers to the
open-ended questions. We excluded a response if

a respondent did not provide a comprehensible
answer to one of the open-ended questions. We
also excluded a response if a respondent indi-
cated that most or all of the practices had been
abandoned and did not specify that it was past
experience.

Rate of Agile practice usage (RQ1). We used
descriptive statistics to analyze the rate of Agile
practice usage, i.e. practices that are marked as
“used” by the survey respondents.

Agile practice abandonment (RQ2). For all
practices that were indicated as “Used” (in Part
1A of the survey), we checked the slider posi-
tion for “practice end”. If this position did not
indicate “In Use”, we considered the practice
as abandoned and calculated the timespan of
use by means of the slider positions for start
and end of use, respectively. We also calculated
the abandonment ratio for each Agile practice to
calculate the proportion of the number of times
a practice is abandoned to the number of times
a practice is used. To answer RQ2, we also in-
cluded the results from the interviews. To analyze
the interview transcripts, we used f4analyse tool
(https://www.audiotranskription.de/english/f4-
analyse) to help with coding steps. First, we
performed line-by-line coding as an approach to
open coding [26] on the interview transcripts.
Open coding was followed by focused coding to
identify common themes from the data. The re-
sult of focused coding can be seen, for example, in
Table 5. The coding process was primarily done
by the first author. To minimize bias, another
co-author conducted post-hoc validation on the
coding done by the first author.

Success rates and measures (RQ3). We ana-
lyzed the success rates of adopting Agile practices
across domains, and retain vs. abandoned. We
also used descriptive statistics to analyze the suc-
cess rates. To cross-tabulate the industry domain
and the success rates, we used the “Crosstab”
feature in SPSS. To identify the measures of
success from the survey, we employed qualitative
coding similar to the one used for analyzing the
interview data. First, we tabulated all responses
to each relevant question using a spreadsheet and
f4analyse tool. We then used open coding [26]
to assign codes to text fragments. For example,

14 Indira Nurdiani et al.

Table 2. List of interviewees and their contexts

IDa Location Role Experience Team
sizeb

Market Domain Context overview

R11 Indonesia Project
Manager

6 years 100 Market
driven,
internal use

Insurance IT Department of a multinational
Fortune 500 company. Adopted 13
practices except pair-programming,
TDD, and metaphors & user stories.

R14 Brazil Developer,
Trainer,
System
architect

3 years 20 Internal use Government
(Court)

IT Department from the Brazilian
court of accounts. Adopted 15 prac-
tices except pair programming and
retrospective. Abandoned on-site
customer and tracking progress.

R32 Canada Developer,
Quality
Assurance,
System
Analyst

6 years 13 Market
driven,
bespoke

Independent
Software
Vendor
(ISV)

Start-up company initiated in 2012.
Adopted 14 practices except for
on-site customer, simple design, and
TDD. Abandoned pair programming
and tracking progress.

R33 Sweden Scrum
Master

6 years 6 Internal use Telecoms A small project team within a large
multinational company. Adopted 15
practices except on-site customer
and TDD. Abandoned 13 prac-
tices except face-to-face meeting and
stand up meeting.

R34 Indonesia CEO 3 years 33 Bespoke ISV Start-up company initiated in 2014.
Adopted 14 practices except TDD,
collective ownership, and metaphors
& user stories.

R35 Ireland Scrum
Master,
Developer

3 years 6 Bespoke,
market
driven,
maintenance

ISV Start-up company initiated in 2012.
Adopted 14 practices, except TDD,
coding standard, and simple design.

R36 Sweden Program
Manager

23 years 1000+ Market
driven

Telecoms A solution development program
in a large multinational company.
Adopted 16 practices except TDD.

R37 Sweden Scrum
Master

20 years 1000+ Market
driven

Telecoms A solution development program
in a large multinational company.
Adopted 16 practices except TDD.

R38 Sweden Scrum
Master,
QA

7 years 70 Market
driven

ISV A project in a large multinational
company. Adopted 15 practices ex-
cept on-site customer and simple de-
sign.

R39 USA Researcher,
Developer

3 years 6 Bespoke,
market
driven

Research &
develop-
ment,
biomedical

A project in a university to de-
velop biomedical research support
tool. Adopted 12 practices except
pair programming, tracking progress,
stand up meeting, metaphors & user
stories, and TDD.

R40 Finland CTO,
Developer,
Scrum
Master

6 years 11 Market
driven

ISV A start-up company initiated in 2012.
Adopted 10 practices, except on-site
customer, planning game, refactor-
ing, retrospective, metaphors, TDD,
and collective ownership.

a Respondent ID according to the order they are received in the survey tool.
b Reflects the size of software development team affected by the Agile implementation. Not overall company size.

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 15

for the following response regarding used success
measures: “Success can be measured by com-
pletion of tasks on time with high quality and
without any blockers”, we assigned two codes:
time to deliver and product quality as measures of
success. The measures of success were then classi-
fied into product, process and resource measures
according to Fenton and Bieman [27].

3.4. Validity threats

In reporting the validity threats, we follow the clas-
sifications suggested by Petersen and Gencel [28].

Theoretical validity. It refers to pertains to
the issue of capturing the construct intended to
be collected. Both the survey and the interviews,
are retrospective. The respondents may not
remember precisely when an Agile practice was
introduced. To minimize the issue, we did not
inquire exact months or dates for the start or
the end of a practice. We only refer to the year,
half a year, or quarters. The slider design does
not support exact dates and only one start and
one end time. To minimize the issue we added
comment text boxes next to the sliders to supply
details. Maturation could pose as a threat if
the survey takes too much time to complete. To
minimize maturation, we minimized the number
of included Agile practice, i.e. 17 practices. It is
possible that we missed one or more Agile prac-
tices. To reduce maturation, we merged practices
that are similar in their definitions, as described
in [23]. It is also possible that merging some of the
practices caused confusions to the respondents.
In this survey, we also provided definitions of
the Agile practices primarily from the literature,
e.g. [2, 23]. It is known that how Agile practices
are implemented in the industry may differ from
their definitions in the literature [2]. This may
lead to respondents answering “don’t know” or
“never used”, when the practices are actually
in use. These issued are partially mitigated by
piloting the survey and performing follow up
interviews with 11 of the survey respondents.
Another concern pertaining theoretical validity is
with the sampling. In this survey, we used conve-
nience sampling by recruiting participants from
professional groups and personal contacts. The

former may lead to reliability issue, while the lat-
ter may lead to bias. To minimize reliability issue,
we checked each response to ensure coherence
(see Data Screening Section 3.3). For example,
if a respondent indicated to have 1–3 years
of experience, but used the sliders indicating
a period longer than that, we deemed the answer
to be invalid. To minimize bias from the personal
contacts, as well as the other respondents, we
did not specify that we aim to collect Agile
practices that are being abandoned. It is also
important to clarify that these personal contacts
were not individuals whom the authors had prior
close collaborations. Thus, they were never given
information about the plan of the study.

Descriptive validity. It concerns with the ac-
curacy of capturing the reality. In this study
data collection was done through a survey and
interviews. As researchers, we cannot observe
the reality, and the responses we obtained are
based on the respondents’ perception. For ex-
ample, a respondent’s experience can influence
his/her answers; a new hire may not be aware
that a practice was used before but has been
abandoned. It is also possible, that a respondent
perceives a practice was used because he/she
used it, but it was not institutionalized in the
team or project. The follow-up interviews helped
to capture better information that was other-
wise missing from the survey. However, in survey
and interviews studies, such a threat cannot be
fully eliminated, since no actual observation was
done. Although we were not able to eliminate
the issue, it is important that we acknowledge it.
In this survey we provided instructions for the
respondents to reflect on an experience that they
were most familiar with, it could be an experi-
ence from a specific team or a specific project.
The experience could also be from present or
past experience. It is possible that a respondent
reflected on past experience, and indicated all
practices had been abandoned. For such a case,
unless the respondent wrote a note that it was
past experience, we deemed the answer to be
invalid.

To improve thoroughness and trustworthiness
of the survey, we reported as many details as
possible regarding the design and execution of

16 Indira Nurdiani et al.

the survey, following the criteria described by
Stavru [29]. A self-assessment on the thorough-
ness of our survey using Stavru’s criteria and
calculation procedure resulted in a score of 0.8
on a scale 0–1 (see Table C.1 in Appendix C for
details). Stavru does not provide interpretation
of the scale. However, our score is higher than
other Agile surveys examined by Stavru in [29],
where the highest score was 0.64. This indicates
that we have provided sufficient information to
demonstrate the thoroughness of our survey [29].

Interpretative validity. It concerns with re-
searchers’ bias in drawing a conclusion. This
study primarily relies on qualitative data col-
lected from a survey and from interviews. Re-
searchers bias can affect the conclusions that are
drawn. In analyzing the data, the first author
was responsible for the qualitative coding. To
reduce bias, another co-author validated the cod-
ing post-hoc after the first five interviews, to see
if there could be disagreements in the codes.

Generalizability. It refers to the extent that
the results of the study are generalizable to
a larger population. In this study, both for the
survey and the interviews, we used convenience
sampling. The selection of the respondents was
non-purposeful and based on willingness. Re-
spondents have various roles and tasks in dif-
ferent organizational contexts. However, some
roles such as consultant and C-level managers are
under-represented. Furthermore, most of the re-
spondents work in small organizations. Although
we did not collect company name and geographi-
cal location of the respondents, we could ascer-
tain that our sample represents 20 unique orga-
nization from 11 different countries. Although
some countries like the Canada, Italy, and New
Zealand are under-represented, our sample rep-
resents different geographical locations. In this
survey, we also small sample size. We cannot
claim that our results are generalizable to a large
population or in anyway represents the current
state of Agile practice. However, the demograph-
ics of our respondents include a large variety of
contexts that adds to the richness of the data and
minimizes the risk of confounding factors that
could be present due to a homogeneous context.

4. Results and analysis

In total, 200 people started the survey, 70 com-
pleted the survey but only 43 answers were valid,
i.e. consistently answered part 1–4 of the survey.
Out of 43 respondents, 32 of them completed
part 1A and used the sliders from part 1B of the
survey. The remaining 11 respondents did not use
the sliders (part 1B). Including the new intervie-
wee recruits, in total, we have 51 respondents and
40 of them used the sliders. From 40 respondents
who used the sliders, 22 retained all practices
that were used. Meanwhile 18 abandoned one or
more practices.

Out of 51 respondents, 10 participated through
direct invitations, and 3 participated through re-
ferrals. In the survey, we did not inquire company
name and location where the respondents were or
had been employed. Based on direct invitations,
referrals, and a number of respondents who pro-
vided their work emails, we could ascertain 20
unique companies from 22 respondents. We could
also ascertain the geographic location of 19 re-
spondents; they were from Sweden (5), Ireland
(3), US (2), Indonesia (2), Canada, New Zealand,
Finland, Portugal, Brazil, Germany, and Italy
(1 of each).

The 51 respondents were primarily devel-
opers (20; 39.2%) followed by Scrum Masters
(15; 29.4%) and quality assurance specialists (13;
25.5%). Please note that multiple roles could be
selected. Further roles are system architect and
department head (8; 15.7% for each), project
manager and department head (each 7; 13.7%),
business analyst, system analyst trainer, product
owner, C-level managers (e.g. Chief Executive
Officer, Chief Technical Officer, etc.), and other
roles (<6; <10%).

Regarding their level of experience in soft-
ware development, 14 (27.4%) respondents had
more than 6 years of experience, 15 (29.4%) had
3–6 years of experience, 15 (29.4%) had 1–3 years
of experience, and 7 (13.7%) had less than one
year of experience. Most of the respondents (21;
52.5%) were part of a small organization with less
than 50 people involved with software develop-
ment. Eleven (27.5%) were part of organizations

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 17

with 50–249 people, and 7 (17.5%) were part of
organizations with 250–4999 people.

In terms of distribution, 28 (54.9%) of the
respondents mentioned that their Agile software
development teams were collocated; 19 (45%) of
them worked in a single team and nine (17.6%) in
multiple teams. The remaining 23 (45.1%) stated
that their Agile software development teams were
distributed; 10 (19.6%) of them worked in a single
distributed team and 13 (25.5%) in multiple
distributed teams.

Regarding application domains (multiple se-
lections possible), most of the respondents were
from independent software vendors (17; 33.3%),
followed by financial services (15; 20%). Re-
spondents also came from the following do-
mains: research and development (11; 21.6%),
telecoms (12; 23.5%), medical (8; 15.7%), me-
dia and entertainment (4; 7.8%), government
(3; 5.9%), and manufacturing (1; 2%). For the
types of software systems that respondents de-
velop and type of market, please refer to Figure 3a
and 3b.

To complement the survey, we also conducted
11 interviews with industry practitioners. The
list of interviewees and their respective contexts
are presented in Table 2.

4.1. Usage of Agile practices (RQ1)

Figure 4 shows the rate of Agile practice usage.
From Figure 4, we can see that out of 51 re-
spondents, face-to-face meeting was the most
commonly used Agile practice among our re-
spondents (48 respondents), followed by track-
ing progress (47 respondents). Other commonly
used Agile practices by our respondents were:
self-organizing team, planning game, and retro-
spective. Practices like TDD (27 respondents)
and pair-programming (28 respondents) were less
commonly used by our respondents.

The follow up interviews identified Agile
practices that were not included in the survey,
they are: (1) Behavior-driven development/BDD
(R35), (2) Scrum of scrums (R38). R32 mentioned
that in addition to retrospective at the end of
a sprint, they also do a project level retrospective
which was done every two months.

The follow up interviews also revealed that
some respondents interpreted the definition of
Agile practices slightly different to our definitions.
R35 and R36 indicated in the survey that on-site
customer was used. However, in the follow up
interviews, they clarified that they did not ac-
tually have customers present on their premises.
Rather they have a dedicated team member who
acted as a proxy to the customers, i.e. product
owner.

The rationales for never using certain Agile
practices are summarized in Table 3. From the
interviews, we identified that respondents R11,
R14, R32, R39, and R40, marked some of the
practices as “never used” or marked as “don’t
know” because they were not adopted according
to our provided definitions or were not adopted
consistently. For example, when inquired why
stand up meeting was never used respondent R39
mentioned that “ because of the word daily in the
definition, we do not do daily meeting”. Mean-
while respondent R11 mentioned the reason for
marking “do not know’ for collective ownership
is because the project involved outsourced devel-
opers and the level of collective ownership varies
from the internal team to the outsource team:
“internal [team] is not a problem, but the out-
source team has no collective ownership”. This
indicates that the usage of Agile practices is not
binary (used or not). Often Agile practices are
modified from how they are defined or imple-
mented inconsistently.

From Table 3, we can see that some practices
are not suitable in certain contexts. Some prac-
tices may not be applicable given certain contex-
tual factors like regulation, team/organization’s
culture, and organization set-up. The character-
istics of the software system, e.g. legacy code and
product complexity, could also make some Agile
practices unsuitable.

4.2. Abandonment
of Agile practices (RQ2)

As mentioned earlier, 18 of the respondents aban-
doned one or more Agile practices. Each respon-
dent abandoned at least one Agile practice. One
of the 18 respondents abandoned up to 13 Agile

18 Indira Nurdiani et al.

Table 3. Rationales for never using certain Agile practices and the supporting quotes from the respondents

Rationale Practice Quotes (with Respondent’s ID)
Incompatibility
with the domain
or market of
development

Short
iteration

Release of each sprint to end customer is not possible in case of
regulatory development (R20)a.

On-site
customer

Our customers are 100M people (R13)a.

We are product company, it is a [software as a service] product over
the Internet (R40).
Some of our customers are not even in the province (R32).

Challenges in
implementing
a practice

User stories The biggest challenge was conforming to the structure of developing
user stories (R19)a.

TDD We do not have the patience to follow through with it. It is quite
challenging with a big ecosystem [of 26 products] like this (R36).

Metaphors We use user stories but not metaphors, metaphors are too obscure
for most people to grasp (R35).

Product
complexity

Simple
design

The product we were working on was extremely complex, we had
a lot moving pieces and that was an unavoidable complexity the
domain was complex [. . .] the hardware aspect definitely have to do
with it, hardware and firmware development (R32).

TDD Our product is very explorative, [we are] creating new software, we
rather implement TDD next time (R40).

Legacy code Simple
design

We are left with a mess from the previous development team. We
are adding and maintaining the legacy we are left with to get the
product to the market (R35).

TDD We have a lot of [legacy] in our code, [it was not easy] for us just to
jump into [TDD] [because] the old code was not done in that way
(R37).

Organization
set up

On-site
customer

we never interact with customers because were in the R&D depart-
ment, the department that interacts with the customers is called
customer unit (R33).

Lack of resources Collective
ownership

We have a massive product and too few people, collective ownership
is not possible, we need specialists (R40).

Lack of
management
involvement or
enforcement

Retrospective Most of time management would trust the team to work, they [would
not] be picky and asking people to do retrospective and that kind of
thing (R14).

TDD I [do not] know why we [do not] use TDD, We at [the company] just
never use TDD (R33).

PP Management [did not] talk about it at all. I [do not] think we ever
discussed whether to use pair programming or not (R14).

Lack of perceived
value

Planning
game

There is no need for a planning game because each developer is
responsible for a component of a feature. I [do not] think planning
game helps in this case. Just keep releases small and often (R40).

Refactoring It [does not] make sense to refactor because the components that
you refactor would be obsolete anyway in a very short time (R40).

Conflict with
team’s culture

Retrospective We want to foster the kind of culture where you are not keeping
something for a [sprint]. You just bring it up immediately (R40).

a Respondent provided answer through the survey.

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 19

Data Dominant
34 (66.7%)

Systems Software
21 (41.2%)

Control
Dominant
9 (17.6%)

Computation Dominant
6 (11.8%)

Market Driven
30 (58.8%)

Bespoke
16 (31.4%)

Maintenance
8 (15.7%)

In-house
development
15 (29.4%)

(a) Type of systems (b) Type of markets

Figure 3. Respondents’ type of system and type of markets (multiple selection possible)

48 47 46 46 45
43 43 43 43 42

39
37

35 34 33

28 27

1 2 3
5

3
6 7 7

3

8 7
5

15

8

13

18

24

2 2 2
0

3 2 1 1

5

1

5

9

1

9

5 5

0
0

10

20

30

40

50

Used Never Used Don't Know

Figure 4. Adoption of Agile practices

practices. All 17 Agile practices included in the
survey were abandoned at some point. From Ta-
ble 4, we can see that face-to-face meeting has
the lowest abandonment ratio (0.05). Meanwhile,
Tracking progress has the highest abandonment
ration (0.29) followed by planning game (0.2).
This finding may indicate that certain practices,
like face-to-face meeting, are more easily retained
than others. Meanwhile, a practice like TDD may
not be as popular, but once it was adopted, it
is more likely to be retained, as we can see the
abandonment ratio is quite low (0.11).

From Table 4, the number of respondents who
abandoned individual Agile practices is relatively
low when compared to the number of respondents
who retained the practices. This shows that most
of the time each Agile practice is still in use.

4.2.1. Usage until abandonment (RQ2.1)

Table 4 summarizes the periods of time that an
Agile practice was in use. Practices are most
often abandoned within the first half year after
their introduction. After 3 years of use, the rate

20 Indira Nurdiani et al.

Table 4. Agile practices that have been abandoned and how long they had been in use before abandonment

Practices ≤6 ≤12 ≤ 24 ≤36 ≤48 60+ Abandon Still Total Abandon
mon mon mon mon mon mon in use usagea ratiob

Tracking progress 3 2 3 1 1c 1 11 26 37 0.29
Planning game 3 1 1 1 1c,d 7 28 35 0.2
Retrospective 2 1 2 1 6 30 36 0.17
Time-boxing 2 1 1 1 5 30 35 0.14
Collective ownership 2 1 1 1c,d 5 25 30 0.17
Self organizing team 1 1 1 1 4 34 38 0.11
Pair programming 2 1 1 4 17 21 0.19
Simple design 2 2 4 22 26 0.15
Stand up meeting 2 1 3 32 35 0.08
Refactoring 2 1 3 26 29 0.1
Short iteration 2 1 3 29 32 0.09
Metaphors and stories 1 1 1 3 24 27 0.11
Continuous Integration 1 2 3 30 33 0.09
TDD 1 1 2 15 17 0.11
F2F Meeting 1 1 2 37 39 0.05
On-site customer 2 2 22 24 0.08
Coding standard 1 1 2 32 33 0.06

23 13 12 15 2 2
a Total usage based on 40 respondents who used the sliders. b Ratio = abandon/total usage.
c Respondents in financial domains. d Response from the same respondent.

of abandonment drops significantly. Only track-
ing progress, planning game, collective ownership
and face-to-face meeting were abandoned after
having been in use for more than 3 years.

This finding may indicate that in some con-
texts, certain practices are not suitable to be
introduced in the first place, or introduced in
the wrong order due to dependencies on other
Agile practices. Also, as the findings from sub-
section 4.1 shows that Agile practices may be
modified or implemented inconsistently, it is pos-
sible that the modifications, or the lack thereof,
has undesired side effects that may present them-
selves at various time periods. The rationales for
abandoning Agile practices are presented in the
following subsection.

4.2.2. Rationales for abandonment (RQ2.2)

Eight respondents provided rationales for aban-
doning the following practices: pair programming,
tracking progress, and on-site customer. Mean-
while, two respondents, R28 and R33, abandoned
5 and 13 practices respectively. They did not
provide a rationale for each practice. Instead,
they provide a common rationale for abandoning

a group/set of Agile practices (indicated as Not
specific in Table 5). Most rationales were ob-
tained for tracking progress. Table 5 summarizes
the rationales for abandoning Agile practices.

The statements from R14 and R38 in the
discontinuation of tracking progress indicate that
Agile practices dependencies are not well un-
derstood. In the case of R14, tracking progress
was introduced before sprint planning was estab-
lished. Because sprint planning was not done,
new tasks could be added throughout the week,
and tracking progress became ineffective, as re-
spondents R14 explained: “It seems like we were
walking backwards. We were working towards
the end of the week, and things just got worse.
Because somebody would suddenly add a work-
load to the sprint.” Meanwhile, in the case of R38,
tracking progress was introduced before the team
members develop better product knowledge. This
shows that there could be prerequisites before
introducing certain Agile practice. The prerequi-
sites could be other Agile practices or acquiring
product or project-related knowledge.

From Table 5, one of the more interesting
rationale for abandoning one or more Agile prac-
tices is the influence of a person, as reported by

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 21

Table 5. Rationales to abandon Agile practices and the supporting quotes from the respondents

Rationale Practice Quote (with Respondent’s ID)
Poor estimation
and team
dependency

Tracking progress Due to bad estimation and dependency on other teams we are
unable to track progress by burn-down chart (R32)a.

Lack of product
knowledge

Tracking progress [The team members] complain that we [do not] have the prod-
uct knowledge, how do we estimate it if we [do not] know the
complete technicalities (R38).

Team member
discomfort

Pair programming People were uncomfortable and people did not really want to
engage in that (R32).

Lack of engagement Tracking progress Half of the were tracking progress and they other half [were
not], management did not really care (R14).

Conflict with other
Agile values

Pair programming The idea of sustainable pace, [. . .] we are only expected to be
at the office at certain core hours [. . .]. I would be one of the
people showing up around 9.30-16.30 [. . .]. so if I want to pair
program with one of the latecomers, it would only really work
from 13–15 (R32).

Influence of
a person

Not specific It was because one person was quite very opinionated, the
person thought why do all these things, it’s a waste of time
(R33)b.

On-site customer The guy [who initiated on-site customers] went on vacation
and he did not come back (R14).

Tracking progress The new product owner did not want/care for [statistics], and
the team did not demand them (R32).

Lack of perceived
values

Tracking progress As we do product development of a rather mature product, the
tracking of progress was not all that valuable. Stuff at the top
of the backlog has most value. Stuff lower has a lower value,
and will be released later. No real forecast of this was needed
(R21)a.

Tracking progress We just try to push things to production all the time (R40).
Tracking progress The team did not feel the need for it (R30)a.
Not specific The part that can be handled by Agile is finished. Other part

cannot use Agile (R28)a,c.
Dependency on
other practice

Tracking progress We tried to do tracking progress but sprint planning was not
done [yet] (R14).

a Respondent provided answer through the survey. b 13 out of 15 Agile practices were abandoned.
c 5 out of 12 Agile practices were abandoned.

R14, R32, and R33. Respondent R14 mentioned
that on-site customer was adopted for only two
months because the person in charge had to leave
the company. This individual was crucial to make
on-site customer worked smoothly because the
person can bridge between the technical team
and the end users (court officers): “He was both
an engineer and a lawyer. So he could very easily
talk to the business people and to us”. Meanwhile,
R33 indicated that the practices were adopted
for up to three years until they are abandoned:
“They’ve been practicing Scrum since 2012. Sud-
denly in 2015, they stopped completely [. . .].

They just dropped everything, and they only do
stand up meeting [. . .]”. This indicates the influ-
ence of an individual can affect the abandonment
of Agile practices, but also how long they were
adopted until abandonment.

From Table 5, we can see that there could be
more than one cause to abandon an Agile prac-
tice. For example, we identified multiple reasons
for abandoning tracking progress. One of the more
common reasons is lack of perceived values. To
abandon tracking progress due to the decrease of
perceived value seems counter intuitive because
the need for tracking progress would increase as

22 Indira Nurdiani et al.

the product grows and more tasks are associated
with delivering the product.

In the case of tracking progress, it is possible
that the practitioners did not completely aban-
don tracking progress altogether, but abandoned
tracking progress according to the definition in
the survey. Respondent R14, R23, R33, and R38
indicated in the survey and interviews that they
use Kanban board to replace burn up or burn
down charts as a means of tracking progress.

The results from the survey and follow up
interviews indicate that there could be multi-
ple factors that can contribute to abandoning
an Agile practice. Engagement, knowledge, and
dependencies between development teams can
contribute to the abandonment of one or more
Agile practices.

4.3. Perceived success of Agile practice
adoption (RQ3)

In Figure 5, we looked at the perceptions of
success of Agile practice adoption by industry
domain to see whether our sample shows differ-
ences between domains.

From Figure 5, we can see that the adop-
tion of Agile practices was generally perceived
as being successful. Most of the respondents (30;
60%) perceived the adoption of Agile practices
as successful and 11 (22%) as very successful.
Only one respondent (2.8%) perceived the adop-
tion of Agile practices in his/her organization to
be unsuccessful. No respondent answered “Very
unsuccessful”. There were only minor differences
between domains.

In the follow up interviews, we identified
a number of factors that contribute to the per-
ceived success:
– Management: Trust and commitment from

managers on Agile adoption (R32), a clear
vision of Agile transformation from the upper
management (R37).

– Leadership: Ability of the leader to provide
guidance (R38).

– Team members: Engagement (R36), experi-
ence and technical skills (R40).
During the follow up interview, R11 who in-

dicated unsuccessful adoption of Agile practices

mentioned that the issue was with the company
policy, which is also related to management, of
providing documentation at the end of every
sprint: “if you want to be effective, with the
small chunks of deliverables, there are more ef-
fort because the amount of procedure is the still
the same as the big one. Agile implementation
somehow is “heavier” on the procedure side. For
every deliverable we need to provide documents
like technical documentation, deployment guide,
training material, [user acceptance test] sign off”.
Respondent R11 also felt that the kind of product
they were developing did not fit Agile: “You need
6 months to develop the core engine. I cannot
split a function into two releases, because it will
be useless for the user. We have heavy rule engine
and workflow. For this type of project, Agile does
not work”.

The respondents who perceived Agile prac-
tice adoption as very successful or successful
(43 respondents) were primarily from small and
medium sized organizations (25 and 15 respon-
dents respectively out of the 43 respondents).
This, however, does not indicate that Agile prac-
tice adoption is more successful in small organi-
zations. We simply cannot make such assertions,
since we have a small sample size and more
than 50% of the respondents were from small
organizations. Performing inferential statistics
to examine the correlation between success rate
and organization size would not be meaningful.

Overall, our survey respondents perceived
their Agile practice adoption to be successful. We
did not find significant variations of perceived
success across the different domains. We identi-
fied factors that may influence the perception of
success from the respondents, such as manage-
ment, leadership, and team members.

4.3.1. Success rates: retained vs. abandoned
practices (RQ3.1)

We also compared the success rates of 40 respon-
dents who retained all adopted Agile practices
and respondents who abandoned one or more
Agile practices. From Figure 6, we can see that
the perceived success of Agile practices was sim-
ilar in both groups. This result indicates that

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 23

-20% 0% 20% 40% 60% 80% 100%

Unsuccessful Neutral Successful Very Successful

Overall (N=50)

ISV (N=16)

Financial (N=15)

Media (N=4)

Medical (N=8)

Manufacturing (N=1)

Telecom (N=12)

R&D (N=11)

Government (N=3)

Other (N=4)

1 (2%) 8 (16%) 30 (60%) 11 (22%)

3 (18.8%) 6 (37.5%) 7 (43.8%)

1 (6.7%) 3 (20%) 10 (66.7%) 1 (6.7%)

2 (50%)

5 (62.5%)

1 (25%)

2 (25%)

1 (100%)

1 (8.3%) 11 (91.7%)

1 (9.1%) 6 (54.5%) 4 (36.4%)

2 (66.7%) 1 (33.3%)

1 (25%) 3 (75%)

1 (25%)

1 (12.5%)

Figure 5. Perception of success of Agile practice adoption for all participants (“Overal”, top row)
and by industry domain (row 2–9). N = 50; one of the 51 respondents did not answer the question

about perceived success

-10% 0% 10% 20% 30% 40% 50% 60% 70% 80%

Unsuccessful Neutral Successful Very Successful

Retain
(N=22)

Abandon
(N=18)

1 (4.5%) 3 (13.6%) 10 (45.5%) 8 (36.4%)

3 (16.7%) 12 (66.7%) 3 (16.7%)

Figure 6. Success rates: retained versus abandoned practices

an abandoning of one or more Agile practices
might be required to achieve or sustain an overall
successful Agile adoption.

However, it is also important to remember
that not all respondents adopted the same set of
Agile practices. Those who achieved successful
or very successful Agile adoption by retaining all
Agile practices may have found the more suitable
set of Agile practices or have successfully found
an optimal way to tailor the Agile practices. We,
however, do not claim that those who abandoned
practices were less successful in selecting the suit-
able of Agile practices.

4.3.2. Measures of success (RQ3.2)

As we can see from subsection 4.3 and 4.3.1,
our survey respondents generally perceived their

Agile practice adoption to be successful. It is im-
portant to understand how success is measured
since there could be different ways to perceive
success. We collected measures of success from
35 respondents and classified them into product,
process, and resource measures [27, Chapter 3,
pp. 87–98]. Table 6 summarizes the measures that
were reported the respondents and the number
of respondents that reported them.

Among the product measures, “product qual-
ity” and “customer satisfaction” were named
most frequently (12 and 9 times, respectively).
Among the process measures, “time to deliver”
was named most frequently (16 times). “Team
spirit (happiness)” was the most frequently
named resource measure.

Respondents considered a large diversity of
indicators as being success-relevant, including

24 Indira Nurdiani et al.

measures from all three categories. Table 6 lists
16 unique “process” measures, 11 unique “re-
sources” measures, and 8 unique “product” mea-
sures. This result shows that success of Agile
practice adoption can be perceived in many dif-
ferent ways.

Looking at the number of different measures
and the number of respondents who contributed
them, we can see that our respondents put much
focus on how well a “process” is executed and on
the quality of the “product”. On a more detailed
level, the respondents focused on product quality,
customer satisfaction, and time to deliver, and
good team spirit. This result is in line with the
overall goals of the Agile manifesto [30] and the
principles behind it.

We can see that the respondents reported
measures at different levels of granularity. For
instance, most respondents referred to “product
quality” or “customer satisfaction” as measures
for quality without going into detail about how
those were measured. Few respondents named
actual specific measures, like “number of de-
fects/bugs” or “number of met sprint goals”.

When looking at the respondents’ experience
and roles, we could not identify any specific pat-
terns regarding the measures they provided. Re-
spondents with more technical roles, e.g. devel-
opers or testers as well as those with managerial
roles provided both specific and generic measures.

5. Discussion

In this study, we conducted a survey and 11
interviews on Agile practices adoption and aban-
donment. To guide the discussion, we reflect
our findings and compare them against known
recommendations from Agile maturity models
(AMMs).

The respondents of our survey indicate that
face-to-face meeting and tracking progress are
frequently used. Meanwhile, TDD and pair pro-
gramming are less commonly used by our survey
respondents. From the follow up interviews, we
identified different rationales from our respon-
dents why some Agile practices were never used.

The rationales for never using certain Agile prac-
tices indicate that all Agile practices are not
always applicable in different contexts. Agile
practices are not used due to incompatibility
with the development context, challenges, or lack
of management enforcement. AMMs typically
recommend to gradually add more and more
Agile practices (see Table 1) without considera-
tions on whether the practices are suitable within
a context. For example, 24 of our respondents
never used TDD, but two out three AMMs that
we exemplified in this paper recommend that
TDD is to be introduced. Our study also in-
dicates that Agile practices could be modified
from its definition. However, the AMMs that we
exemplified in this paper do not provide their
definitions of the Agile practices. This raises the
question regarding the suitability of AMM in
industry.

The result of our survey indicates that not all
Agile practices are sustainable. Eighteen of the
respondents have abandoned one or more Agile
practices. Our survey also shows that Agile prac-
tices were more frequently abandoned within the
first six months after their adoption. Meanwhile,
some Agile practices, like continuous integration,
planning game, and collective ownership were
adopted for extended period of time. This find-
ing complements the findings of a previous study
by Solinski and Petersen [3]. The AMMs indicate
that Agile practices are to be gradually added.
However, in certain contexts, it is not always
possible to sustain a practice, as indicated by
a number of our respondents. The question that
needs to be raised when adopting an AMM is, if
a practice is abandoned, how would this affect
the practices that are to be adopted next? And
how would this affect the overall maturity? The
findings from our study add more questions to
the suitability of the suggestions in the AMMs.

One of the rationales for abandoning Agile
practices was the influence of a person. For re-
spondent R14, on-site customer was introduced
by the IT manager, the person’s skills and abil-
ities were so crucial that upon his departure
from the organization, the practice had to cease.
Meanwhile, respondent R33 the influence of one
very opinionated individual convinced the rest

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 25

Table 6. Measures of success

Category Measure No. of respondents
Product Product quality 12

Customer satisfaction 9
Number of defects/bugs 2
Number of relevant working products/deliverables 2
Other: Number of newly acquired users, code quality, code change quality,
business value

1 each

Process Time to deliver 16
Cost 3
Delivery frequency/cadence 3
Lead time 2
Ease to track progress (transparency) 2
Other: Time to resolve defects, time to implement change, correct use
of development process, effective use of Agile practices, number of de-
velopment issues, amount of maintenance work, number of story points,
number of released new features, number of met sprint goals, non ad-hoc
development process, velocity

1 each

Resource Team spirit (happiness) 6
Budget conformance 2
Productivity 2
team autonomy 3
Other: Collaboration, stress level, team engagement, ownership, mutual
understanding, continuous learning, collective ownership

1 each

of the team to stop using 13 Agile practice. The
case reported by R14 and R33 shows the pres-
ence of a “maverick” [31], a highly competent
and influential individual that can influence the
introduction and abandonment of Agile practices.
The AMMs generally suggested that Agile prac-
tices are to be introduced in certain orders, and
do not provide details on how these practices are
to be introduced or sustained. This indicates that
the AMMs have not considered the social aspects
and uniqueness of different software development
teams.

The results of our survey and interviews also
indicate that an Agile practice could be aban-
doned because it needed another practice to be
established beforehand or concurrently. For ex-
ample, tracking progress was abandoned because
sprint planning was not yet used (as reported by
R14). This suggests that there might be depen-
dencies between Agile practices, which the prac-
titioners may yet to be aware of. In such cases, it
would be preferred if practitioners can turn to the
AMM. However, when we look at the examples
of the AMMs in Table 1, we can see that each

AMM has different suggestions as to which prac-
tices are introduced at which maturity level. For
example, Patel and Ramachandran [5] suggested
that tracking progress need to be introduced at
the same time as planning game; such suggestion
may not work in favor of R14. However, Sidky et
al. [6] suggest that (collaborative) planning game
need to be introduced before tracking progress,
which could have provided a better guideline
for R14. This indicates there could be a need
for guidelines. However, instead of suggesting
to gradually introduce Agile practices in fixed
orders, like the AMMs, more research can be
directed to evaluate which Agile practices need
to be introduced first, or later, given the contexts
of the software teams or organizations.

The result of our survey indicates that practi-
tioners, both who retained and abandoned one or
more Agile practice perceive their Agile practice
implementation to be successful. AMMs typically
suggest that Agile practices should be continu-
ously added in a certain order to achieve suc-
cessful Agile adoption [4–6]. This indicates that
successful Agile adoption could still be achieved

26 Indira Nurdiani et al.

without following the suggestions from AMMs.
Our follow up interviews also revealed that an Ag-
ile practice could be replaced by another practice,
such as a Lean practice. This shows that intro-
ducing Agile practices may not be as straight-
forward as what AMMs suggest. The follow up
interviews also revealed a number of factors that
could contribute to success, such as, management,
leadership, and team members. This indicates
the AMMs lack of consideration of the different
situations and contexts in different software de-
velopment team. This, again, raises the question
on the merits of gradually introducing Agile prac-
tices in a certain order as suggested by AMMs.

Most of our survey respondents (82%) per-
ceived that their Agile practice adoption to be
successful and very successful. However, our re-
spondents do not measure success the same way,
for example, 12 respondents use product quality
as a measure of success, and six respondents
measure success given the team happiness. It
indicates that success is perceived differently in
different contexts by different respondents. A sim-
ilar result is reported by Solinski and Petersen
that indicate practitioners have different priori-
ties on the perceived benefits and limitations of
Agile practices [3]. The AMMs do not consider
such prioritization of benefits and limitations
that practitioners may have. This further high-
lights the limitation of a hierarchical approach
to Agile adoption like the AMMs, as previously
suggested by Gren et al. [32]. More research is
needed to support practitioners in deciding which
Agile practices are suitable for adoption given
the benefits that they prioritized.

The results of our survey suggest that retain-
ing or abandoning Agile practices can lead to
a successful Agile adoption. This shows that Ag-
ile adoption is not as straightforward and gradual
as suggested by the AMMs [4–6]. Practitioners
may need to abandon, or very rarely pause, the
implementation of one or more Agile practices.
This indicates that practitioners are constantly
assessing whether Agile practices are delivering
the values they expected. Sidky et al. [6] included
a step to assess whether to continue or discon-
tinue the whole Agile transformation process,
but not at the practice level. Practitioners might

need support to systematically evaluate their
state of Agile adoption so that decisions to add,
modify, discontinue, or replace a practice is based
on a rigorous and traceable process.

Implications towards Agile adoption guide-
lines. We noticed differences between the rec-
ommendations in AMMs and the results of our
survey. At the same time, our survey also in-
dicates the need for Agile adoption guidelines.
Such guidelines need to take into account that
Agile practices might not be sustainable and
that there might be dependencies between Agile
practices, as indicated by one our respondents,
that suggests certain orders or combinations of
adoptions. Furthermore, the situations and oper-
ating environment of software organizations may
change [33]. The guidelines need to provide an
appraisal means for practitioners on the benefits
and limitations of adopting Agile practices, given
the changing situations.

Implication towards Agile research. The re-
sults of our survey shares similarity to those of
Kurapati et al. [16]. However, we also observed
some differences, particularly pertaining to the
adoption rate of planning game. The respondents
in our survey indicate that planning game is
a commonly used practice (47 out of 51 respon-
dents), but Kurapati et al. reported the opposite.
We observed that Kurapati et al. defined the
practices slightly different. Their definition of
planning game includes the presence an on-site
customer. In our survey, we separated planning
game from on-site customer. To be able to syn-
thesize existing evidence regarding Agile practice
adoption, there is a need for commonly agreed
and consistent definitions of Agile practices.

The respondents in our survey indicate that
TDD and pair programming are less commonly
used practices. This result corroborates with past
surveys such as [16] and [17]. TDD and pair
programming are also less frequently abandoned.
This observation is rather interesting because
a tertiary literature study in Agile shows that
TDD and pair programming is highly studied [34].
There are also many reports on their benefits and
limitations to name a few: [35, 36]. This raised
the question of whether knowing better the ben-
efits and limitations of different Agile practices

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 27

can help practitioners to make better decisions
on whether to introduce a practice. Therefore
once the decision is made to adopt such practices
it is based on an informed decision. Thus the
practices are less likely to be abandoned.

6. Conclusion

We conducted a survey on Agile practices with
a particular focus on when adopted practices
were abandoned. We received 51 valid answers,
40 provided detailed start and end period for
the practices. We also conducted 11 follow up
interviews with the survey respondents. In the
following, we revisit our research questions by
summarizing answers:

RQ1. What is the rate of adoption of Ag-
ile practices? The rate of adoption of each prac-
tice can be seen in Figure 4. Commonly adopted
practices by our respondents were face-to-face
meeting, tracking progress, and planning game.
Comparably less commonly adopted practices by
our respondents were TDD and pair programming.

RQ2. Which Agile practices have been
abandoned? All 17 Agile practices included in
this survey have been abandoned at some point
(see Table 4). Consistent with the answer to the
previous research question, the more commonly
used practices, particularly tracking progress and
planning game, also had high abandonment ratio.
The rationales for abandoning Agile practices in-
clude lack of perceived values, the influence of
a person, and team member discomfort. Agile
practices were used between 6–60 months until
they were abandoned. Most of our respondents
abandoned practices within the first half year of
the introduction. Agile practices are less likely
to be abandoned by our survey respondents after
three years (36 months) of use.

RQ3. What is the perceived success
rate of Agile practices implementation?The
adoption of Agile practices was perceived as being
successful or very successful. Only one respon-
dent perceived the Agile adoption as unsuccessful
and none as very unsuccessful. The respondents
used a large variety of measures of success. The
following measures were used by the majority

of respondents: product quality, customer satis-
faction, and time to deliver. Furthermore, our
survey indicates no differences in the perceptions
of success between respondents who abandoned
practices and those who retained them. This re-
sult indicates that some teams or organization
needed to abandon some practices to achieve or
maintain an overall successful adoption of Agile
methodologies.

Future work. For future work, we suggest
the following avenues of research: (1) examine
how different Agile practices contribute to matu-
rity (2) better understand the impact of gradually
adding, or abandoning Agile practices, and (3) de-
veloping a common definition of Agile practices
to ease aggregation of evidence.

Acknowledgement

This work had been supported by ELLIIT,
a Strategic Research Area within IT and Mo-
bile Communications, funded by the Swedish
Government.

References

[1] P. Abrahamsson, O. Salo, J. Ronkainen, and
J. Warsta, “Agile software development methods
– review and analysis,” VTT Publications, Tech.
Rep. 478, 2002.

[2] L. Williams, “Agile software development
methodologies and practices,” in Advances
in Computers, Advances in Computers,
M.V. Zelkowitz, Ed. Elsevier, 2010, Vol. 80,
pp. 1–44.

[3] A. Solinski and K. Petersen, “Prioritizing Agile
benefits and limitations in relation to practice
usage,” Software Quality Journal, Vol. 24, No. 2,
2016, pp. 447–482.

[4] J. Nawrocki, B. Walter, and A. Wojciechowski,
“Toward maturity model for extreme program-
ming,” in Euromicro Conference, 2001. Proceed-
ings. 27th, 2001, pp. 233–239.

[5] C. Patel and M. Ramachandran, “Agile maturity
model (AMM): A software process improvement
framework for Agile software development prac-
tices,” International Journal of Software Engi-
neering, IJSE, Vol. 2, No. 1, 2009, pp. 3–28.

[6] A. Sidky, J. Arthur, and S. Bohner, “A disci-
plined approach to adopting Agile practices: The

28 Indira Nurdiani et al.

Agile adoption framework,” Innovations in Sys-
tems and Software Engineering, Vol. 3, No. 3,
2007, pp. 203–216.

[7] T. Schweigert, D. Vohwinkel, M. Korsaa,
R. Nevalainen, and M. Biro, “Agile maturity
model: A synopsis as a first step to synthe-
sis,” in Systems, Software and Services Pro-
cess Improvement, Communications in Com-
puter and Information Science, F. McCaffery,
R.V. O’Connor, and R. Messnarz, Eds., 2013,
Vol. 364, pp. 214–227.

[8] M. Leppänen, “A comparative analysis of Agile
maturity models,” in Information Systems De-
velopment, R. Pooley, J. Coady, C. Schneider,
H. Linger, C. Barry, and M. Lang, Eds., 2013,
pp. 329–343.

[9] T. Schweigert, D. Vohwinkel, M. Korsaa,
R. Nevalainen, and M. Biro, “Agile maturity
model: Analysing Agile maturity characteristics
from the spice perspective,” Journal of Soft-
ware: Evolution and Process, Vol. 26, No. 5, 2014,
pp. 513–520.

[10] O. Ozcan-Top and O. Demirörs, “Assessment of
Agile maturity models: A multiple case study,”
in Software Process Improvement and Capabil-
ity Determination, Communications in Com-
puter and Information Science, T. Woronowicz,
T. Rout, R. O’Connor, and A. Dorling, Eds.,
2013, Vol. 349, pp. 130–141.

[11] Version One, 8th Annual State of AgileTM

Report, 2013. [Online]. https://www.versio
none.com/pdf/2013-state-of-agile-survey.pdf
(Accessed May 2018).

[12] Version One, 9th Annual State of AgileTM

Report, 2014. [Online]. https://explore.versio
none.com/state-of-agile/9th-annual-state-of-
agile-report-2 (Accessed May 2018).

[13] Version One, 10th Annual State of AgileTM

Report, 2015. [Online]. https://explore.versiono
ne.com/state-of-agile/versionone-10th-annual-
state-of-agile-report-2 (Accessed May 2018).

[14] Version One, 11th Annual State of AgileTM

Report, 2016. [Online]. https://explore.versiono
ne.com/state-of-agile/versionone-11th-annual-
state-of-agile-report-2 (Accessed June 2017).

[15] Version One, 12th Annual State of AgileTM

Report, 2017. [Online]. https://explore.versiono
ne.com/state-of-agile/versionone-12th-annual-
state-of-agile-report (Accessed May 2018).

[16] N. Kurapati, V.S.C. Manyam, and K. Pe-
tersen, Agile Software Development Practice
Adoption Survey. Berlin, Heidelberg: Springer,
2012, pp. 16–30.

[17] B.Murphy, C. Bird, T. Zimmermann, L.Williams,
N. Nagappan, and A. Begel, “Have Agile tech-

niques been the silver bullet for software develop-
ment at Microsoft?” in Proceedings of the 7th In-
ternational Symposium on Empirical Software En-
gineering and Measurement (ESEM 2013), 2013,
pp. 75–84.

[18] M. Kropp, A. Meier, and R. Biddle, “Ag-
ile practices, collaboration and experience,” in
Product-Focused Software Process Improvement.
PROFES, Lecture Notes in Computer Science,
P. Abrahamsson, A. Jedlitschka, A. Nguyen Duc,
M. Felderer, S. Amasaki, and T. Mikkonen, Eds.
Springer, 2016, pp. 416–431.

[19] P. Ralph and P. Shportun, “Scrum abandonment
in distributed teams: A revelatory case,” in The
Pacific Asia Conference on Information Systems
(PACIS), 2013, p. 42.

[20] J. Linåker, S.M. Sulaman, R. Maiani de Mello,
and M. Höst, “Guidelines for conducting surveys
in software engineering,” Lund University, Tech.
Rep., 2015.

[21] C. Robson, Real world research, 2nd ed. West
Sussex, UK: John Wiley & Sons, 2011.

[22] P. Rodríguez, J. Markkula, M. Oivo, and K. Tu-
rula, “Survey on Agile and lean usage in
Finnish software industry,” in Proceedings of the
ACM-IEEE International Symposium on Em-
pirical Software Engineering and Measurement,
2012, pp. 139–148.

[23] K. Petersen, “Is lean Agile and Agile lean?” Mod-
ern Software Engineering Concepts and Prac-
tices: Advanced Approaches, IGI Global, 2011,
pp. 19–46.

[24] M. Kuhrmann, P. Diebold, J. Münch, P. Tell,
V. Garousi, M. Felderer, K. Trektere, F. McCaf-
fery, O. Linssen, E. Hanser, and C.R. Prause,
“Hybrid software and system development in
practice: Waterfall, scrum, and beyond,” in Pro-
ceedings of the 2017 International Conference
on Software and System Process, ICSSP, 2017,
pp. 30–39.

[25] A. Forward and T.C. Lethbridge, “A taxon-
omy of software types to facilitate search and
evidence-based software engineering,” in Pro-
ceedings of the 2008 Conference of the Cen-
ter for Advanced Studies on Collaborative Re-
search: Meeting of Minds, CASCON ’08, 2008,
pp. 14:179–14:191.

[26] J. Saldaña, The Coding Manual for Qualitative
Researchers. SAGE Publications Limited, 2012.

[27] N. Fenton and J. Bieman, Software Metrics:
A Rigorous and Practical Approach, 3rd ed. Boca
Raton, FL, USA: CRC Press, Inc., 2014.

[28] K. Petersen and C. Gencel, “Worldviews, re-
search methods, and their relationship to valid-
ity in empirical software engineering research,”

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 29

in Joint Conference of the 23rd International
Workshop on Software Measurement and the 8th
International Conference on Software Process
and Product Measurement, 2013, pp. 81–89.

[29] S. Stavru, “A critical examination of recent in-
dustrial surveys on Agile method usage,” Jour-
nal of Systems and Software, Vol. 94, 2014,
pp. 87–97.

[30] K. Beck, M. Beedle, A. van Bennekum, A. Cock-
burn, W. Cunningham, M. Fowler, J. Grenning,
J.Highsmith,A.Hunt,R. Jeffries, J.Kern,B.Mar-
ick, R.C. Martin, S. Mallor, K. Shwaber, and
J. Sutherland, “The Agile Manifesto,” The Ag-
ile Alliance, Tech. Rep., 2001. [Online]. http:
//agilemanifesto.org/

[31] H. Sharp and H. Robinson, “Some social factors
of software engineering: The Maverick, commu-
nity and technical practices,” in Proceedings of
the Workshop on Human and Social Factors of
Software Engineering, HSSE ’05, New York, NY,
USA, 2005, pp. 1–6.

[32] L. Gren, R. Torkar, and R. Feldt, “The prospects
of a quantitative measurement of Agility: A vali-

dation study on an Agile maturity model,” Jour-
nal of Systems and Software, Vol. 107, 2015,
pp. 38–49.

[33] I. Nurdiani, S.A. Fricker, and J. Börstler, “An
analysis of change scenarios of an IT organiza-
tion for flexibility building,” in Proceedings of
the 23rd European Conference on Information
Systems (ECIS 2015), 2015.

[34] I. Nurdiani, J. Börstler, and S. Fricker, “The
impacts of Agile and lean practices on project
constraints: A tertiary study,” Journal of Sys-
tems and Software, 2016.

[35] A. Causevic, D. Sundmark, and S. Punnekkat,
“Factors limiting industrial adoption of test
driven development: A systematic review,” in
Proceedings of the 4th IEEE International Con-
ference on Software Testing, Verification and
Validation (ICST 2011), 2011, pp. 337–346.

[36] T. Dyba, E. Arisholm, D. Sjoberg, J. Hannay,
and F. Shull, “Are two heads better than one?
On the effectiveness of pair programming,” IEEE
Software, Vol. 24, No. 6, 2007, pp. 12–15.

30 Indira Nurdiani et al.

Appendix A. Definition of Agile
practices in the survey

Agile practices definitions adapted from Solinski
and Petersen [3]:
1. Face-to-face meeting: Team sits together,

open space office facilitating interaction,
video conference if the team is distributed.

2. Self-organizing cross functional team: Small
team with no more than 10 members that
consists of people with different competences
(developer, tester, etc.). Team is independent,
takes full responsibility of the task.

3. On-site customer : Continuous user involve-
ment in the development process, customer
can be consulted anytime if it is needed.

4. Pair programming: Two developers work to-
gether at one workstation.

5. Planning game/sprint planning meeting: The
entire teamparticipates in selecting the feature
to be implemented in the following iteration.

6. Tracking progress: Tracking of the project
progress using burn down chart, burn up
chart.

7. Refactoring: Restructuring code for better
understandability and reduced complexity.

8. Iteration reviews/retrospective: Meeting after
each iteration to review the project, discuss
threats to process efficiency, modify and im-
prove.

9. Short iterations & frequent releases: Frequent
releases of the software, early and continu-

ous delivery of partial but fully functional
software.

10. Simple design: Goal to design simplest solu-
tion.

11. Time-boxing/sprint/iteration: Fixed start
and end dates are set for iterations and
projects, e.g. 30 days sprint.

12. Stand up meeting: Short daily meeting where
the whole team communicate and reflect on
the completed and ongoing work.

13. Metaphors & stories: A metaphor is a very
high level requirement outlining the purpose
of the system and characterizes what the sys-
tem should be like. The metaphor is broken
down into short statement of the detailed
functionalities called stories. The stories are
kept in a backlog.

14. Test-driven/test-first development: Writing
automated test cases for functionalities and
then implementing (coding) the tested func-
tionalities until the tests are passed success-
fully.

15. Continuous integration: Software is built fre-
quently, even a few times a day, accompanied
with testing (unit test, regression test, etc.).

16. Coding standards: Coding rules that are fol-
lowed by the developers to make sure that
developers write code in the same way.

17. Collective ownership: Everybody in the team
can change the code of other developers in
case of maintenance, bug-fixing or other de-
velopment activities.

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 31

Appendix B. Survey design

32 Indira Nurdiani et al.

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 33

34 Indira Nurdiani et al.

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 35

Appendix C. Survey thoroughness assessment

Calculating thoroughness score. We summed up the weights for every criterion that was fulfilled
by this survey (total score). Then, we divided the obtained total score by the total weight of all
criteria. For more details on survey thorough assessment, see [29].

Table C.1. Survey thoroughness assessment based on [29]

Criteria Weight Score Criteria Weight Score
Objectives 1 1 Questionnaire evaluation 3 3
Sponsorship 1 0 Questionnaire 3 3
Survey method 4 4 Media 1 1
Conceptual model 4 4 Execution time 1 1
Target population 4 4 Response burden 1 0
Sampling frame 5 5 Follow-up procedures 2 0
Sampling method 5 5 Responses 3 3
Sample size 5 5 Response rate 5 5
Data collection method 3 3 Assessment of trustworthiness 5 0
Questionnaire design 4 4 Discussions of validity threats 3 3
Provisions for securing trustwor-
thiness

3 3

Total weight: 66 Total score: 57

e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 37–62, DOI 10.5277/e-Inf190102

Do Software Firms Collaborate or Compete?
A Model of Coopetition in Community-initiated

OSS Projects

Anh Nguyen-Duc∗, Daniela S. Cruzes∗∗, Snarby Terje∗∗∗, Pekka Abrahamsson∗∗∗∗
∗Business school, University of South Eastern Norway

∗∗Sintef Digital
∗∗∗Genus AS

∗∗∗∗University of Jyväskylä
Anh.Nguyen.Duc@usn.no, daniela.s.cruzes@sintef.no, terjesnarby@gmail.com,

pekka.abrahamsson@jyu.fi

Abstract
Background: An increasing number of commercial firms are participating in Open Source Software
(OSS) projects to reduce their development cost and increase technical innovativeness. When
collaborating with other firms whose sought values are conflicts of interests, firms may behave
uncooperatively leading to harmful impacts on the common goal.
Aim: This study explores how software firms both collaborate and compete in OSS projects.
Method: We adopted a mixed research method on three OSS projects.
Result: We found that commercial firms participating in community-initiated OSS projects
collaborate in various ways across the organizational boundaries. While most of firms contribute
little, a small number of firms that are very active and account for large proportions of contributions.
We proposed a conceptual model to explain for coopetition among software firms in OSS projects.
The model shows two aspects of coopetition can be managed at the same time based on firm
gatekeepers.
Conclusion: Firms need to operationalize their coopetition strategies to maximize value gained
from participating in OSS projects.

Keywords: COSS, coopetition, collaboration, competition, open source software, case
study

1. Introduction

Increasingly, software products are no longer
developed solely in-house, but in a distributed
setting, where developers collaborate with “dis-
tributed collaborators” beyond their firms’
boundary [1, 2]. This phenomenon includes open
source software (OSS) communities, crowd-sourc-
ing, and software ecosystems (SECO). This
differs from traditional outsourcing techniques
in that initiating actors do not necessarily
own the software developed by contributing ac-
tors and do not hire the contributing actors.
Community-initiated OSS projects are an ex-

ample of the context in which actors coexist and
coevolve.

From firms’ perspective, it is beneficial for the
development of software products whose scopes
exceeds their own capabilities by leveraging ex-
ternal resources, exploring opportunities to enter
new markets [3], performing an inside-out pro-
cess [4], and employing strategic recruitments
[5]. From communities’ perspective, the partic-
ipation in such environment probably causes
firms to open up its successful products and
product lines for functional extensions by ex-
ternal developers [1]. Instead of being exclusive
and localizing product development, firms are

Submitted: 1 May 2018; Revised: 24 June 2018; Accepted: 31 July 2018; Available online: 1 October 2018

38 Anh Nguyen-Duc et al.

exploring different ways to invite contributions
from external actors without revealing core tech-
nology, business value and customer relation-
ships [6].

Before the full potential advantages of open
sourcing are leveraged, commercial firms need
to consider several concerns. At the organiza-
tional level, the firm’s benefit and the commu-
nity goals are not always the same [7]. Partici-
pation of commercial firms in OSS projects with
their diverse motivations and business strate-
gies might introduce variance, and sometimes
conflicts in project evolution [3]. Existing re-
search on OSS highlights the role of collabo-
ration with extensive research on communica-
tion and coordination practices, patterns and
lessons learnt from OSS communities [8–11]. How-
ever, there seems to be far less research concerns
about the conflicts among firms regarding to
their strategic development. Firms attempt to
gain competitive advantages from their partic-
ipation in OSS projects [12]. When there oc-
cur mismatches in term of interests and objec-
tives, firms may behave uncooperatively in or-
der to prevent others from achieving their goals
[13]. The conflict occurs not only at the man-
agerial level, such as project governance [14],
but also at the operational level, such as code
contribution, bug fixes, and requirement elicita-
tion [3, 15–17].

Coopetition, as a business phenomenon, is
about collaborating and handling a firm’s com-
petitive advantages when participating in OSS
projects [18, 19]. In a coopetitive environment,
firms cooperate with each other to reach a higher
value creation compared to the value created
without the interaction. The basic assumption
for coopetitive relationships is that all activities
should aim at the establishment of a beneficial
partnership with other firms, including partners
who may be considered as a kind of competi-
tor [20]. Since coopetition applies to inter-firm
relationships, OSS project offers an ideal con-
text for understanding the phenomenon among
firms that develop and utilize a common software
codebase [16].

Empirical research on coopetition is scarce,
especially studies in Software Engineering (SE)

and at the organizational level [13]. Research in
this area is probably hidden by the inconsistent
treatment of the cross-disciplinary natures of
cooperation and competition, and their related
constructs. Our research objective is to explore
how firms interact and manage the phenomenon
of coopetition in OSS projects. To best of our
knowledge, there exists only a few studies that
examine the phenomenon of coopetition among
commercial firms in OSS projects [3, 13, 15, 17].
Research questions (RQs) were derived from this
research objective. Firstly, we aimed at under-
standing the basic foundation on firm participa-
tion in OSS projects. Based on this knowledge,
we explored further theoretical elements of coope-
tition. We use here the word “coopetitively” as
an adverb of coopetition:
– RQ1: How do commercial firms participate

in community-initiated OSS projects?
– RQ2: How do commercial firms manage

coopetition with other firms in such context?
Our contributions are two folds, firstly we por-
trayed the situations where both competition
and collaboration occurs in OSS projects. Con-
sidering the body of knowledge about firm partic-
ipation in OSS projects, our work confirms some
patterns and also extends them by exploring the
firm awareness, coopetition and their antecedent
factors. Adopting a mixed-method research, we
quantitatively examine organizational interac-
tion patterns and qualitatively explore how firms
perceive and employ coopetition strategies. Sec-
ondly, we theorize constructs of coopetition by
proposing a Coopetition in Open Source Software
(COSS) model. Previous studies that mention the
term “coopetition” [3, 15], do not investigate the
constructs under this phenomenon. Hence, to our
best knowledge, this is among the first studies
in SE investigating this concept. The proposed
model reveals building blocks of coopetition in
OSS firms network and its relationship to conse-
quent factors.

The study is organized as follows: Section 2
presents a background about coopetition and
firm participation in OSS projects. Section 3
describes our research methodology, Section 4
presents our findings, and Section 5 discusses the
findings. Finally, Section 6 concludes the paper.

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 39

2. Background and related work

2.1. The phenomenon of coopetition

The origin of coopetition is from business re-
search when investigating buyer and seller rela-
tionships within a business network [18, 19]. The
trade-off between cooperation and competition
is emphasized as a mean of creating a progress
among actors involved in long-term relation-
ships. Coopetition conceptualizes the interaction
among firms in relation to their strategic devel-
opment [18, 19]. Dagnino et al. defined coope-
tition as “a kind of inter-firm strategy which
consents the competing firms involved to manage
a partially convergent interest and goal structure
and to create value by means of coopetitive ad-
vantage” [21]. The authors proposed two forms
of coopetition, a dyadic coopetition (concerns
among two-firm relationships) and a network
coopetition (involving more than two firms, i.e.
value chain) [21]. Bengtsson argued that a dyadic
relationship is a paradox that emerges when two
firms cooperate in some activities, such as in
a strategic alliance, and at the same time com-
pete with each other in other activities [19]. It
means that actors within a firm need to be di-
vided to take charge of either collaboration or
competition.

Coopetition can occur in a more complex
form, with a network of firms. The coopeti-
tion strategy can be applied at a micro level
(among functional and divisional departments
in a firm), a meso level (among firms in the
same industry, between vendor and supplier)
and a macro level (among cluster of firms or
firms across industries) [21]. Literature also dis-
cusses some antecedent factors relating to coope-
tition at the micro level, such as shared vi-
sion, perceived trust and perceived benefits [22].
A study points out some possible impacts of
coopetition on knowledge sharing and job/task
effectiveness [22]. By selecting a highly inno-
vative OSS project that contributes to firms’
strategic values, we illustrate dependencies be-
tween competitors due to structural conditions,
why and how competitors cooperate.

2.2. Collaboration in OSS projects

Collaboration is an aspect of coopetition that is
much explored in OSS projects. It is common
to look at OSS projects’ archives to reveal com-
munication, collaboration and coordination ap-
proaches, frequency, patterns and best practices
at different level of analysis [2, 23–31]. Early
research has observed an onion-like structure
of contribution in OSS projects [24–27]. At the
center of the onion are the core developers, who
contribute most of the code and take care of
the design and evolution of the project. In the
next ring out are the co-developers who submit
patches (e.g. bug fixes), which are reviewed and
checked in by core developers [28]. Further out
are the active users who do not contribute code
but provide use-cases and bug-reports as well
as testing new releases. The awareness of peo-
ple and activities through OSS social structures
enhances collaboration effectiveness and ensures
that little effort is wasted in duplicate work [30].
A large amount of studies investigates the com-
bination of social and technical aspects of OSS
projects, by analyzing a social network created
by contributors who work and communicate in
the same set of files [32–35]. Bird et al. [34]
showed that a socio-technical network of soft-
ware modules and developers is able to predict
software failure proneness with greater accuracy
than other prediction methods. Wolf et al. [35]
formed a developer-task network to explore the
impact of developer communication on software
build integration fail. A common assumption of
these studies is that developers behave regardless
of their commercial affiliations in OSS projects,
indicating by unweighted analysis approaches
when formulating the social networks. In case
a significant number of developers from firms
contributes to the project, organizational fea-
tures, such as firms’ strategies and governance
mechanism might influence the communication
structures of the OSS projects. In this work, we
will use the social network analysis (SNA) to in-
vestigate interaction patterns, i.e. collaboration
and competition in OSS projects. While we also
form the developer-task-developer network, the

40 Anh Nguyen-Duc et al.

difference is that the relationship is analyzed at
firm level.

2.3. Collaboration in OSS projects

A theoretical model links theoretical elements
in a certain semantic manner, i.e. a causal rela-
tionship, helping to design data collection and
analysis. Literature reveals factors that lead to
the occurrence of collaboration and competition
(antecedent factors), and their impact on firms’
outcomes (consequent factors). It is noted that
we do not aim for model completeness, but for
a foundation of further investigation. The further
investigation would discover which factors valid
in the context of software industry, particularly
OSS projects.

As seen in Figure 1, coopetition is the stud-
ied construct, and it is linked to its antecedent
factors, i.e. structural condition, strategic vision,
trust and perceived benefits [22, 36–41].

Strategic vision: sharing strategic vision is
essential for cooperation at team level [22] [35],
as the vision reflects important agreements of
beliefs and assumptions that consequently bring
internal stability to the cooperative attitude [36].
At the strategic level, vision typically is about the
firm’s value and business development. Shared
vision draws a roadmap for the organization or
firm, setting the priorities for their team plan-
ning and implying its critical determinant role
in lessening malign competition [22]. The vision
can be shared via meetings or workshop with
high-level managers.

Trust: is considered as a relationship of re-
liance among members of a team or an organi-
zation. Trust is defined as “the willingness of
a party to be vulnerable to the actions of an-
other party based on the expectation that the
other will perform a particular action impor-
tant to the trustor, irrespective of the ability to
monitor or control that other party?” [42]. The
importance of trust in the success of interper-
sonal relationships is reported previously in OSS
projects [37, 38]. Moreover, trust is the key of
transforming OSS as a community of individual
developers, to OSS as a community of firms [39].
The cooperation that captures the level of coor-

dinated actions between team members in their
efforts to achieve mutual goals cannot be realized
without trust among the members.

Perceived benefit: on one hand, perceived
benefits are associated with a cooperative at-
titude, involving compatible interests as com-
mon benefits can motivate collaboration, leverage
team or person’s capabilities for obtaining such
benefit [40]. In OSS projects, perceived benefits
of participating in the communities are reduced
development cost, community knowledge, and
reduced maintenance cost. On the other hand,
perceived benefit is also associated with a com-
petitive attitude. Individuals are likely to pur-
sue their own objective at the expense over all
team’s goal [41]. This could be applicable for
organization in an ecosystems or supply chains.
The more benefit a firm perceive for obtaining
a conflicting artifact or resource, the more they
likely to compete over the resource [22].

In our theoretical framework, coopetition is
also associated to its consequent factors, i.e.
knowledge sharing and task effectiveness [22, 43].

Knowledge sharing at organizational lev-
els is seen as sharing of organizational experience
and knowledge, i.e. technical know-how, domain
expertise, work practice, etc. with other collab-
orators, and hence increasing the overall knowl-
edge in the joint project [22]. As knowledge is
a critical source of competitiveness, managing
knowledge sharing among members of an orga-
nization plays a prominent role in sustainable
competitive advantage [43].

Task effectiveness in team collaboration
represents individuals’ perceived capacity of con-
ducting collaborative tasks, whereas knowledge
sharing enhances the ability of collaborator’s
knowledge exchange.

3. Research approach

3.1. Study design

We conducted this work by using a two-phase
multiple-case study design [44]. The phases in
the research occur due to the discrete continua-
tion of our internal research project. Compared

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 41

Figure 1. A theoretical framework of coopetition (adapted from [22])

to descriptive and confirmative case studies, ex-
ploratory case studies are suitable for the first
phase research as we would like to discover the
phenomenon of coopetition, whether it exists,
in which form and its relationship to its con-
text setting. This phase was done as a part of
a master thesis. In the second phase, we con-
ducted a descriptive study on describing collab-
oration, competition in the selected cases. In
the third phase, we found another case study
to confirm the qualitative findings. This step
was conducted to validate what we observed
in the first two cases. We followed the guide-
line by Runeson and Höst [45] to execute case
study, including case selection, data collection
and analysis.

Case selection is not straightforward. There
are abundant OSS projects available; many
of them are abandoned or individual efforts.
A brainstorm session was conducted among the
paper’s authors to decide case selection criteria
as below:
– Commercial participation: the OSS project

should have multiple commercial firms par-
ticipating in the development. In addition,
there must be an adequate way to identify
them.

– Successful and on-going: the OSS project
must be successful and on-going. This implies
that the project attracts developers and the
development of the software is progressing.

– Active projects with many activities: the OSS
project must have a high level of communica-
tion and code commits in the project, showing
by rich data archive.

By reviewing literature on OSS projects in
SE, we learnt several OSS projects that were com-
monly investigated in SE research, such as Apache,
Mozilla, Eclipse and Linux [46]. The selected cases
should not only satisfy the selection criteria, but
also novel in SE research. We were suggested to
Wireshark by a colleague who participated in the
project. Many reasons contributed to this choice.
Firstly, the contributor list and community activ-
ity revealed high participation and involvement
of commercial companies. Wireshark is a typical
instance of a OSS project. The project uses soft-
ware informalisms for development collaboration,
the developers are a mix of firm-paid developers
and volunteers, and the software is licensed under
the GNU General Public License (GNU GPL).
Wireshark is also a very successful on-going OSS
project, with a high number of contributors and
active users, consistently pushing development
forward. Having selected Wireshark as the first
case, we proceeded to find and select the second
case for our study. To be able to do a literal
replication, the second case should have similar
properties as the first case. After a long period of
searching, we ended up with three promising cases
that matched the specifications: Horde, Samba
and Wine. From the comparison it was evident
that Samba was very similar to Wireshark, i.e.
both projectswere licensed underGNUGPL, both
projects had many firms participating, and they
both had a yearly conference where developers
cane together to discuss further development and
socialize. We planned to have the third case to
validate the qualitative findings from Wireshark
and Samba. Among several OSS projects we

42 Anh Nguyen-Duc et al.

Figure 2. Overview of the research process

attempted to contact, Bootstrap developers were
the one agreed to participate in the study.

The research process is described in Figure 2.
At the pre-study phase, literature review and
brainstorming with experts were done to come up
with research objective and study design. At the
exploratory and descriptive phase, the first two
cases were investigated for understanding how
commercial firms participated in OSS projects, if
the phenomenon coopetition exists and in which
form. As the explorative nature of this phase,
a wide range of topics was discovered, such as
collaboration patterns, firm awareness, competi-
tion, code practices, etc. The data were extracted
from project archive, i.e mailing lists, bug track-
ing system and code repository. In this phase, we
also collected qualitative data, i.e. interviewing
relevant stakeholders to explore in-depth phe-
nomenon observed from the quantitative data.
At the confirmative phase, we conducted some
interviews to confirm and to validate the obser-
vation from the first two cases.

3.2. Case description

Wireshark1 is an OSS toolkit developed by a com-
munity of networking experts around the world
under the GNU General Public License. The
project is officially operated under the Wireshark
name since May 2006. Out of the 802 developers

listed in Wireshark contributor list, 342 were
classified as firm-paid developers (43%). The re-
maining 460 developers (57%) were classified as
volunteering developers. The firm-paid contribu-
tions come from 228 firms.

Samba2 is an OSS suite that provides file,
print and authentication services to all clients
using the SMB/CIFS protocol. Samba is licensed
under the GNU General Public License, and
the Samba project is a member of the Software
Freedom Conservancy. In Samba, 316 developers
were evaluated, where 182 (57%) of them were
classified as firm-paid developers. The contribu-
tions come from 45 firms. Communication and
collaboration between developers in the Wire-
shark and Samba community mainly occur in
two places; the developer mailing list and the
bug tracking system.

Later, a third OSS project was selected as
a more recent project to provide complemen-
tary qualitative data. Bootstrap3 is a frontend
Javascript-based framework for developing re-
sponsive, mobile first projects on the web. The
project was released as an OSS project since 2011
under MIT license. Bootstrap were contributed
by large firms, such as Twitter and GitHub. At
the time the research was conducted, Bootstrap
has been the most-starred project on GitHub,
with over 90.000 stars and more than 38.000 forks.
The communication in Bootstrap was done via

1https://www.wireshark.org
2https://www.samba.org
3http://getbootstrap.com

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 43

many channels, i.e. StackOverflow, Slack, and
GitHub tracker. Source code and issue manage-
ment was done via GitHub.

3.3. Data collection

3.3.1. Quantitative data

The main source of quantitative data is from
mailing lists, code and issue repositories, as they
are common data sources when studying OSS
[8, 15, 23, 47]. We collected three types of data,
namely developer profile, firm profile and commu-
nication data. The developer profile was found
from project public pages, such as project wiki
and confluence page. Basic information, like de-
velopers’ email addresses and timestamp of file
commits were extracted from JIRA and GIT.
From developers’ profiles, we were also able to
identify the list of firms in a OSS project. An
invitation for interview was sent in a snowballing
manner. After firm-paid developers accepted our
invitation for interview, basic information about
the firm was required by us. Besides, firm infor-
mation was also collected from online sources,
such as company website, and published materi-
als. The communication data was collected from
two main sources, namely issue tracking system
and mailing list. These sources contained detailed
information about events and activities that had
occurred in the communities several years back
in time. Table 1 gives an overview of when the
sources were first used and how many entries
they have today in Wireshark and Samba.

3.3.2. Identification of firm participation

Information whether a participant is a firm-paid
or volunteer developer, is not generally avail-
able in OSS projects. Consequently, we needed
to come up with a classification technique to
identify firms’ participation. The approach has
been successfully used in a previous study [48].
The following information was evaluated in the
process of classifying the developers:
– Current status in the community: active or

not any more.

– Email domain: The email domain used by
a developer can reveal firm association. We
regard it as unlikely that a developer use
a job email to participate in an OSS project
if it is not related to the job as a paid de-
veloper. This measure is the most distinctive
classification entity.

– Email signature: Some developers have their
employment firm name as part of their email
signature, which they use when posting to
the mailing list or bug tracker.

– Personal homepage: Searching for a devel-
oper’s name on the web can give directions
to a personal homepage or blog that might
reveal company association.

– Social networks: Searching for a developer’s
name on social networks like LinkedIn and
other professional pages might reveal firm
affiliation.

– Presentations and conferences: Developers
that give presentations commonly include
name and firm in the presentation slides,
which are easy to find by a web search.
Some issues were faced when identifying con-

tributors’ affiliations. Firstly, there is a different
level of contributions in OSS projects. There is
often a lack of information about what is required
to become a contributor. Moreover, majority of
the participants in the mailing list only posted
one mail, which makes it a waste of time and effort
to identify these participants as the contribution
towards the firm’s interaction and software devel-
opment is minuscule. We decided to exclude devel-
opers with less than ten entries in the mailing list
or bug tracking system. Secondly, matching name,
alias and email address is not always straightfor-
ward. In Wireshark, the spam protection policy
hides the full email address, for instance: “From:
[developer name] <name@xxxxxxxxxxxxx>”.
Moreover, entries in the bug tracking system have
email listed, but no name. The code repository
entries in Wireshark does not contain name or
mail of the developer, instead a username or a nick-
name is used. We had to use project wiki pages
and personal contacts with some core developers
of the project to provide mapping of most of the
usernames to the actual developers.

44 Anh Nguyen-Duc et al.

Table 1. Summary of quantitative data from Wireshark and Samba

Project Data source Date of first entry # of entries
Wireshark Mailing list 31.05.2006 27230

Bug tracking system 08.04.2005 7862
Code repository 16.09.1998 42794

Samba Mailing list 03.01.1997 90588
Bug tracking system 24.04.2003 9659
Code repository 04.05.1996 84699

3.3.3. Qualitative data

Regarding to qualitative data, interviews were
selected from a convenient sample consisting of
the firm-paid developers from Wireshark, Samba
and Bootstrap. Ten interviews were conducted as
seen from Table 2. In Wireshark and Samba, we
managed to have interviews from firms in a core
layer and a peripheral layer (detail as shonw in
Figure 6). Due to non-disclosure agreements, we
did not reveal the actual identity of companies
(quantitative data was publicly available, hence
did not have this constraint). We used alias D1
to D10 to represent for such firms.

As we did not know much about the popula-
tion, we aimed for a non-probabilistic sampling
technique using a conjunction of purposive and
snowball sampling. In Wireshark, we used an ex-
isting connection to one of the core contributors
as a starting point, and asked for suggestion of
developers that could be interesting to interview
next. The core contributor pointed out relevant
developers for the research topic, and assisted
in contacting them by posting our interview in-
vitation on the core contributor mailing list. In
Samba, we selected relevant developers in the
OSS project based on the quantitative data and
sent interview invitations to these by email. In
Bootstrap, we had a developer actively contribut-
ing to the project in our personal network. From
him, we got two more interviews with firm-paid
participants in Bootstrap.

The interview guide consisted of both closed
and open questions. The closed questions were
mainly used in the introduction phase of the in-
terview to solicit background information about
the respondent, firm and OSS project context. In
addition, the closed questionswere used to confirm
or attribute statements given by other developers.

The open questions were used to collect informa-
tion about: (1) work process/bridge engineer role,
(2) firm awareness/organizational boundary and
(3) position in the community/contributions. The
interview guide and interview questions is publicly
available. The interviews were conducted in En-
glish, except for one inNorwegian. The duration of
the interviews ranged from 45 minutes to 72 min-
utes. All the interviews were recorded to facilitate
subsequent analysis and minimize potential data
loss due to note-taking. These recordings were
thereafter transcribed verbatim. Transcribing
audio records resulted in 55 pages of rich text.

3.4. Data analysis

3.4.1. Social network analysis (SNA)

SNA is a common approach to investigate com-
munication and collaboration patterns based on
data from mailing lists or issue tracking systems
[32–35, 49]. This has been extensively used for
constructing a developer-task network and mea-
suring different network features [32–35]. We
adopted this approach in firm level, to under-
stand the collaboration pattern among firms via
communication networks. Consequently, we used
the firms as nodes and the interaction between
firms as edges. Interaction among firms is repre-
sented by communication via either a mailing list
or comments on an issue tracking system. The
SNA was done in four steps:
– Step 1: Construct discussion trees from a mail-

ing list and an issue tracking system. A dis-
cussion tree consists of an identifier node,
a source node and a set of responder nodes
(which can range from none to many). The
developer that initiates a discussion is re-
garded as the source, and the developers that

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 45

Table 2. Summary of interview profiles

Alias Domain Firm type Firm size OSSs
D1 Telecommunication Corp. 10000+ Wireshark
D2 Wireless networking services SME 18568 Wireshark
D3 Messaging system SME 11 to 50 Wireshark
D4 Telecommunication Corp. 10000+ Wireshark
D5 IT security services Corp. 51 to 200 Samba
D6 Server and OS development Corp. 10000+ Samba
D7 Telecommunication Corp. 10000+ Samba
D8 Social media Startup 43374 Bootstrap
D9 Hosting and file sharing SME 51 to 200 Bootstrap
D10 Social media Startup 43374 Bootstrap

Figure 3. Constructing SNA from a discussion tree

follow-up on a discussion is regarded as re-
sponders.

– Step 2: Filter the discussion trees to remove
messages with noises (irrelevant information).
As shown in Figure 3, we convert a discussion
tree to an undirected graph.

– Step 3: Give firm’s affiliation to nodes in
the graph, so that the interaction could be
grouped at a firm level, rather than at indi-
vidual level.

– Step 4: Build the social network by using
NodeXL tool.

We were interested in the position of a firm within
the context of the entire network, leading to the
adoption of metrics, i.e. degree centrality, be-
tweenness and closeness [49]:
– Degree of centrality is a measure of the num-

ber of links incident upon a firm, i.e. how
many other firms that a firm is connected to.

– Betweenness centrality is a measure of the
number of a shortest path between two firms
that a firm lies on, quantifying the degree to
which an individual in a network mediates
information flow.

– Closeness centrality measures the distance
from a firm to all other firms in the network.
Lower values indicate that the component is
farther away from all other nodes.

3.4.2. Qualitative analysis

The analysis of the qualitative data was under-
taken following a guideline for thematic synthesis
[50]. Thematic analysis allows main themes in
the text to be systematically summarized and
is also familiar by the first two authors of the
paper. The process of how quantitative data from
Section 3.4.1 facilitates the qualitative analysis
and the use of the theoretical model to guide
the analysis is shown in Figure 4. The interviews
were prepared for analysis by manual transcrip-
tion of the audio recordings to text documents,
and the email responses were refined to tran-
scripts of the same disposition. This resulted in
55 pages of rich text. Segments of text about
firms’ interaction, i.e. activities, attitudes about
communication, collaboration and competition
were identified and labeled. Data from the Boot-

46 Anh Nguyen-Duc et al.

Figure 4. Steps of qualitative analysis and examples

strap case showed a level of data saturation,
as there was not much new information from
the case. After two rounds of reviews of the
data, we ended up with 84 codes. The follow-
ing step of the thematic analysis was to merge
the codes and the corresponding text segments
into themes. A theme in this context is essen-
tially a code in itself, however, a theme is an
increased distanciation from the text, and thus
an increased level of abstraction. There are two
scenarios with a theme, the first one is that iden-
tified text relates to an element in our theoret-
ical model (as in Figure 1). The red arrow in
Figure 4 describes such scenario. The second
scenario is the theme could be interpreted as
a new concept. The green arrow in Figure 4
describes such scenario. By grounded from ex-
isting elements and new ones, we are able to
come up with an empirical model describing
the concept of coopetition in three OSS projects
(Section 5).

4. RQ1. How do commercial firms
participate in community-initiated
OSS projects?

In Section 4 we present the results of the collabo-
ration pattern analysis. Two elements from each
OSS project are presented: (1) significance of
firms’ contribution to OSS projects (Section 4.1),
and (2) the social network structure of firms
(Section 4.2).

4.1. The significance of firm’s
contribution

Regards to Wireshark project, from the 342
firm-paid developers, 228 unique commercial
firms were identified, constituting 43% of total
number of contributors. There are only 8% of
the firms having three or more developers partic-
ipating in the community. Firms with the largest
number of participating developers are Cisco,

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 47

Ericsson and Siemen. Whereas, 78% of the firms
have only one developer participating. The code
repository log contained 21927 entries, where
12053 of them were committed by firm-paid de-
velopers. Regards to Samba project, there are
182 firm-paid developers representing 90 different
commercial firms, constituting of 58% of total
number of contributors. In comparison to Wire-
shark project, Samba is more dominated by firms’
contributions. Nine percent of total number of
firms have three or more developers participating
in the community, and 84% of the firms has only
one developer participating. The top ten firms
participating in the community with regard to
number of developers is presented in Table 3.

4.2. The social network structure
of firms

We illustrate the constructed SNA based on data
from issue tracking systems in Wireshark, as
shown in Figure 5. The node represents for a firm
and the link between nodes represents for a com-
munication link between them. The node degree
was counted, including both in-degree (number of
interaction received) and out-degree (number of
sent interaction). By looking at the social network
of Wireshark, a firm can belong to one of three
contribution layers: (1) a core layer with high
centrality degree, representing firms that actively
communicate with others (for instance, Thales
and Ericsson), (2) a peripheral layer with mod-
erate centrality degree, representing firms with
a medium number of messages to other firms (for

instance, Tieto and Novell) and (3) a passive layer
with low centrality degree, representing firms with
small amount of message sending in and out (for
instance, Broadcom and Motorola). The contribu-
tion from commercial firms in the issue tracking
systems conforms to the same pattern as in the
mailing list; significant, but highly diversified. In
total, the issue activity by commercial firms consti-
tute 39% inWireshark and 66% in Samba. Figure 5
reveals that a small number of firms stay in the core
layer and most of the firms locate in the passive
layer. The similar network structure was observed
in case of Samba project. We do not present the
SNA figure for Samba due to limited space.

The collection of identified commercial firms
constitutes a large fraction of the activity in
the mailing list in both projects, approximately
27% in Wireshark and 47% in Samba. However,
the individual firm contribution ranges from low
to very high. Table 4 presents the number of
messages and centrality degree of top 10 active
firms in mailing list. In Wireshark project, the
maximum value of centrality degree of Philips
is 48, meaning that they are in contact with 48
other firms. In Samba project, the maximum
value of centrality degree of Red Hat is 71, show-
ing that they are in contact with 71 other firms.
The top three firms account for 60% and 56% of
the mails in Wireshark and Samba, respectively.
We interviewed two firms in these lists (D1 and
D5) for answering RQ2 (Section 5).

Figure 6 presents the map of our interviewed
cases in the social structure of OSS projects. The
selection process ensured that interviewees par-

Table 3. Summary of interview profiles

Wireshark Samba
Firm # of developers Firm # of developers
Cisco 16 IBM 17
Ericsson 11 Red Hat 14
Siemens 8 SerNet 8
Netapp 6 SUSE 8
Citrix 5 EMC 4
Lucent 5 SGI 4
MXTelecom 5 Exanet 3
Nokia 5 HP 3
Axis 4 Cisco 3
Harman 4 Canonical 2

48 Anh Nguyen-Duc et al.

Figure 5. The social network of Wireshark via issue tracking system

ticipated in the projects for a sufficient duration.
We can see that the interviewees come from dif-
ferent layer of the projects, hence, representing
for the whole projects.

5. RQ2: How do commercial firms
manage coopetition with other
firms in such context?

By investigating communication patterns among
firms in OSS projects and analyzing interview
transcripts via the thematic analysis, we pro-
posed a Coopetition in Open Source Software
(COSS). The model is grounded from thematic
concepts that extends our research presented
in Section 2.3. The COSS captures the un-
derlying phenomenon of firm participation in
OSS projects from coopetition perspective. The
main concepts representing the underlying phe-
nomenon have been grouped together to form
high level categories, as seen in Figure 7. The
model is centralized around the concept of coope-

tition. Beyond the concept of coopetition in busi-
ness research that consists of competition and col-
laboration, we identify two additional dimensions
of the concept, which are gatekeeping and firm
awareness. Coopetition activities are visible with
the recognition of firm boundary in the projects
and implemented via gatekeeping mechanisms,
which are synchronizing code, strategic filter-
ing and navigating information flow. Antecedent
factors that influents coopetition concepts in-
clude structural condition, trust, perceived ben-
efit, and strategic vision. Structural condition
includes two sub concepts, public communication
and direct communication. Consequent factors
of coopetition include organizational learning,
knowledge sharing and task effectiveness. Fol-
lowing sub-sections below describe the grounded
evidence for each model’s elements.

5.1. Public communication

The public communication channels used in our
OSS projects were the mailing list and bug track-

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 49

Table 4. Summary of interview profiles

Wireshark Samba
Firm Entries Degree Firm Entries Degree
Philips 1195 48 Red Hat 4480 71
Ericsson (D1) 1322 39 Sernet 3765 66
AT&T 756 34 Google 1835 57
Trihedral 222 21 IBM (D5) 1701 48
Thales 548 19 HP 1408 44
Mxtelecom 149 19 Eurocoopter 874 35
Gtech 165 13 SGI 335 29
Detica 64 10 Padl 82 29
Csr 67 10 Zylog 159 28
Sequans 31 10 Nokia 104 28

Figure 6. Social positions of interviewees in OSS projects

Figure 7. The model of Coopetition in Open Source Software (COSS)

ing systems. In both projects, the distribution of
public communication is highly right-skewed, as
shown in Figure 8. In Samba project, Sernet has
contributed almost 35% of total number of mes-
sage via mailing list. The top three firms account

for 60% and 56% of the mails in Wireshark and
Samba, respectively.

Developers mentioned several incentives for
using such channels, for instance, they use
the public channels for discussing, participat-

50 Anh Nguyen-Duc et al.

Figure 8. Distribution of number of mails per firm in Samba

ing and/or influencing the ongoing development.
D4 mentioned that he publicly asked questions,
discussed ideas and found collaboration via pub-
lic channels: “Basically, the times when I need
guidance or I have a problem, or answering other
people’s questions, whether it is other developers
or users or whatever. Or if I have an idea about
something. (. . .) I made a suggestion ‘hey maybe
we should do something to catch this problem
automatically in the build-bots rather than. . . ’
Anyway, just making suggestions and putting
them out basically.” D6 considered mailing lists
as a traceable information storage that is useful
for his job: “Usually all discussions are done on
the mailing list (. . .) this way we have a history
of all discussions. I participate in discussion ei-
ther to help someone with Samba or to make my
point in area of my interest at the moment.” In-
fluencing project features by participation is one
incentive expressed by D1: “If they are working
on something that I see as usable for us internally,
we find it interesting. It is smart to participate
in the discussions when they are doing the de-
velopment, and not come in afterwards. That is
because while they are doing the changes and the
development, they are more open for suggestions
for changes and improvements.”

Asking for guidance and support on mailing
lists is common, however some developers un-
derlined that they did not ask for solutions to
their problems here. Rather, they would ask for

useful advices and a push in the right direction.
D3 stated that “Sometimes I have sent emails
to the development list and said that I am con-
fused by this, can someone shed some light on
it.” Developer D4 expressed a similar approach
in: “More often I will ask people ‘OK, I have this
problem and I am trying to solve it. I can see two
ways to solve it, does anybody have an opinion
on which way is the better way?’” By this way,
technical issues within a firm can be discussed
and supported by external people.

D2, D3 and D4 said that they asked ques-
tions about architectural decisions in the public
channels. Posting features requests or interesting
ideas is also common, and some of the inter-
viewed developers find it motivating to describe
their ideas and approach to the other community
members. By this way the feature expectation
is communicated and other developers can come
with suggestions and even join the development.
D5 and D6 stated: “I tend to participate in dis-
cussions where I feel I have a useful technical
contribution to make.” (D5) and “I participate
in discussion either to help someone with Samba
or to make my point in area of my interest at
the moment.” (D6).

5.2. Private communication

Firms use private communication for many pur-
poses, including both cooperative and competi-

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 51

tive manners. Developers mentioned that they
had used direct and/or private communication
channels for asking for help from the domain
experts in the project. Communication channels
used are e-mail and instant messaging, Skype and
telephone. D3 said: “I have done it [contacted
developers directly] some times in the past. Not
just as a general I am stuck, can you help, but
because it would be an area I knew the other guy
was working on.” The private communication is
usually the result from a gradual establishment
via public communication, as mentioned by D6:
“Usually I tend to do R & D tasks myself. I often
seek for reviews of my work. When I need the
assistance, I will go directly to a developer in the
community.”

Comparing to public channels, D8 consid-
ered private communication as a way to establish
high-quality contact points and potential collab-
oration for further projects. He mentioned that
a fork from project mainstream should proba-
bly include best developers in the community
who are not necessarily the guy in the “onion
core”. It is also stated that a private channel
is a quick and efficient communication medium.
D9 explained that he used instant messaging for
contacting developers in the community when
he wanted a quick feedback. Private communi-
cation seems to be in favor comparing to public
communication. D9 mentioned: “We try to ad-
dress as much as we can the issues that come
to us (. . .) Normally if we get a private message
about an issue, we will take it with higher prior-
ity” D5 mentioned that when discussing legal or
security sensitive issues, he used a private com-
munication channel. The nature of such issues
invokes the use of private channels as posting
it in the public channels may result in security
breaches or similarly bad situations. Although
none of the other developers said anything about
the use of direct channels for such issues, we
believe that it is a common procedure in most
OSS projects.

5.3. Trust

Trust is one of the fundamental traits of a success-
ful collaborative environment [29, 51–53]. Ray-

mond stated that “open-source culture has an
elaborate set of customs?[which] regulate who
can modify software, the circumstances under
which it can be modified, and (especially) who
has the right to redistribute modified versions
back to the community” [54]. In our cases, inter-
viewee stated that the success of OSS projects
is meaningful to them. For instance, with the
advance of the Wireshark tool, D4 can use it
to serve for his daily work. Based on trust, de-
velopers can collaborate for the sake of their
OSS project. D3 said that they have contacted
trustable developers directly to avoid asking silly
or dumb questions in public: “I got relationships
with other developers and sometimes we don’t
want to ask in mailing list causes it is a really
stupid question and you do not want to ask the
whole mailing list, so you just ask the guy you
trust”. When a developer needs help to design
a code or fix a bug, other developers would be
willing to assist. By helping one another, devel-
opers demonstrate their skills and knowledge,
which develops a positive expectation of com-
petence and reliability. Level of trust is related
to the status of the developers in OSS projects,
which is evident in the following section. The
observation is aligned with previous research on
the role of trust in successful interpersonal rela-
tionships [37, 38].

5.4. Perceived benefits

Despite the risks associated with competitors,
many firms decided to be open in sharing and
synchronizing their source code with OSS com-
munities. Source code can be synchronized with
upstream development in OSS projects, for in-
stance, described by D5: “In general, our phi-
losophy is to develop upstream first and then
back-port changes that have been approved by
the upstream community into our products. We
stay very involved in the communities and try
to keep the differences between our packaged
software and upstream software to the minimum
necessary.” Firms perceive benefits with such in-
volvement as avoiding maintenance and merging
issues when combining public parts of private
parts of source codes. D10 illustrated for this

52 Anh Nguyen-Duc et al.

Figure 9. The role of gatekeeper in a commercial firm

idea: “. . . if you are to make a change in the
core, and you want to keep it private, you will
have to fork the project and maintain it yourself.
(. . .) I believe, in the general case, that you gain
more from contributing to the development, that
retaining your code from the community”. D1
mentioned that “We do not have to maintain
our own code base and synchronize it. We just
commit code to the source and have it there. If
we had not had the commit access as easy as I do,
we could have had our own version of Wireshark
and the sources, but then we would have to do
more work in merging our version with the new
releases of Wireshark.”

Firms also concern about their social posi-
tions in the projects. It is apparent that a central
position in the community is closely related to
being a core developer in most cases. Two bene-
fits mentioned by the interviewees are: (1) easier
code inclusion and thereby avoid the need of hav-
ing a private code repository, and (2) receiving
more help from other community members. D4
highlights the importance of social position in
OSS community: “I think it [having a position]
helps a lot. I think there is a difference if, lets
say, D2 asks for help, then I will help him if
I can. But if [Developer Name] from I have never
really heard of, is asking for help then my level
of effort is usually lower. And part of that is
because I know D2 personally, and part of that
is because I know that he does a tremendous
amount of work. My view is that if he needs help
he deserves the help. And I think it goes the
other way too, if people are more likely to help
me because of the contributions I have made
and they know that I have been contributing for
a long time. I think it helps to have some sort of
status within the community.”

5.5. Strategic vision

The role of strategic vision on firm participation
is somewhat vague in our cases. Firm’s strategy
could be how a firm develops and deploy their
product, i.e. how external resources are used to
reduce development and maintenance cost. The
vision of firm’s strategy needs to be aligned at
not only managerial but also operational levels.
The transfer of strategic visions is not clearly
evidenced in our cases. For instance, a developer
D4 mentioned he spent significant office work
hours as well as spare time on contributing to
Wireshark. He acknowledged the benefits other
developers in his firm received from his partici-
pation in the OSS project and the fact that he
freely participated in Wireshark: “It is not an
official part of my job, but a lot of the develop-
ers, testers and the customer support people use
Wireshark extensively.” However, his firm lacked
formal strategies to decide how developers shall
participate and develop the OSS, what code that
shall be contributed back to official sources, and
how to maintain the OSS knowledge base within
in the firm.

5.6. Gatekeeping

The perceptions of a gatekeeper, who navigates
information flows between his/her firm and exter-
nal actors, were acknowledged by all interviewees.
While firms might have different needs and work
practices, gatekeepers are the ones stay in be-
tween the firm and the OSS project in some
way, as shown in Figure 9. D1 stated that when
his coworkers found issues with the third party
components, they informed D1, but not project
managers. D7 expressed a similar perception:

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 53

“Yes, I act as a bridge between [Company Name]
and Samba and forward bugs/errors to the com-
munity.” The gatekeeper is often an active actor
in contributing to the community, as mentioned
by D2: “Many of our core developers are working
for smaller companies, and have a responsibil-
ity for the internal protocols that their company
needs. (. . .) I think most developers work individ-
ually, and have the role of providing Wireshark
functionality to the other developers in the firm.”

In a cooperative manner, the gatekeeper is the
hub of information and issues that can be reached
by different developers across the organizations,
as stated by D4: “Yes, everybody definitely knows
that I am the Wireshark guy. All the developers,
testers and customer support people know that
they can come to me if they have Wireshark
issues (. . .)”. In firms with multiple developers
active in upstream development, i.e. commit-
ting to OSS projects, there is often a recognized
gatekeeper role among them. D5 mentioned: “In
general when it comes to contributing patches
upstream each developer in [Company Name]
is independent and can directly approach the
upstream project? The [Company Name] Samba
package maintainer usually has a task of being
the gatekeeper for those bugs that have been
reported against [Company Name] products by
the customers or the support teams (. . .)” In this
case, while code is contributed independently by
individuals in the firm, the bugs is managed by
a gatekeeper who submits bug reports on behalf
of the firm into the OSS project’s bug tracking
system.

In a competitive manner, gatekeepers would
make sure that not all private source code be
revealed to public. Firms might contribute code
that relate to core components of OSS products,
or utility functions. In a typical scenario, firms
maintain their private repositories, where many
components are parts of firms’ core values. Such
components should not be revealed, as mentioned
by D4: “The majority of the stuff I have written
for Wireshark has been pushed up? But you sort
of draw a line in the stuff that is obscure enough
to not push. The only people who should be look-
ing at our proprietary protocol should be us?”.
Some of the code is regarded as proprietary and is

retained in the firm’s private code repository, due
to technical specific, or legal and authorization
issues D2 mentioned: “Mainly protocol dissectors
for protocols used in our equipment, if the proto-
col is based on open protocol descriptions from
3GPP, ITU or IETF (RFC) it is considered OK
to make an individual contribution to OSS (. . .)”.
Code which is not relevant, sensitive or poorly
written would be filtered out by gatekeepers, as
mentioned by D4: “The stuff we do not send in is
stuff that is not of interest to anybody except us
(. . .) And the other part is that I do not think
the company would be thrilled by a publication
of these protocols. In order to push those things
to Wireshark I would need to get authorization”.

5.7. Firm awareness

Several interviewees acknowledged the presence
of at least another firm in the community (D1,
D2, D3, D8, D9, D10). However, developers re-
mark that it is not the knowledge of what other
firms work for that is valuable, rather it is the
knowledge of what business domain they are
working within. D2 replied when was asked about
other firm awareness: “Yes, but I do not know
that much about the firms of the other developers.
They typically say that they work for Firm X,
and that is it. What firm they are working for
is not that important to me.” D3 emphasized
the potential value of having the firm awareness:
“(. . .) I know that D2 may have some role as
a contact for Firm X (. . .) I know that D2 may
be someone who is good at getting log files for
specific things. In the past when I was working
with voice over IP, I thought sometimes he was
able to give me some log files from within his
company, but I did not really think of him as the
company representative. I think of him as a com-
pany person who may be able to get logs for me,
like he does.” In Bootstrap, developers expressed
the concern on how other firms were doing related
to the web technology, in order to draw lessons
learnt for their product vision. D8 mentioned:
“We care about if other company are using this
technology in their products, so we can learn
from them (. . .) We do not care if some guys
just want to play with the technology (. . .)” Ad-

54 Anh Nguyen-Duc et al.

ditionally, the interviewees were asked if they con-
sidered that their contributions could be used by
other firms to gain competitive advantage. The
majority dismissed this perception, for example:
“As Firm X does not directly control Wireshark,
I guess we have to be a bit careful when we are
in contact with other developers (. . .) I believe,
in the general case, that you gain more from con-
tributing to the development, that retaining your
code from the community”, stated by D2. A final
remark by D5 about the competitiveness is: “Al-
though there may be some competition between
companies, as engineers we seek collaboration
for mutual benefit. We already know any ad-
vancement will be used by everybody, that is not
a problem, we get back as much as we give out.”

5.8. Collaboration

Although collaboration within an OSS commu-
nity is typically informal and not planned, there
are matters that have to be decided upon. For
instance, when there is a new post in a mailing
list, a developer has to decide whether to engage
in the discussion with the others or not (essen-
tially collaborating with them). The awareness
of other firms in this aspect may prosper the
collaboration. Firm- paid developers with similar
needs and interests can collaborate and draw
on each other’s abilities. Knowing that a devel-
oper works for a certain firm, and that he can
provide certain code artifacts also influences the
collaboration. Establishing relationships to such
valuable developers through collaboration is key.
There is a strong desire to return favors and
honor developer’s positions by assisting them
when they need help.

Many commercial firms adopt OSS, but do
not participate nor contribute back to the OSS
communities. Some of these firms collaborate di-
rectly with others to develop OSS-based products
further, with or without participating in the OSS
community. How to perform the collaboration
is an aspect firms have to decide. As described
above, the collaboration can take place within the
OSS community using public or private communi-
cation channels, or outside the community using
private channels and private code repositories.

5.9. Awareness of competition

Firms working within the same business domain
are often competitors in the market, and thus
it is interesting to see how influential the firm
awareness is when firms come together in com-
munity based OSS projects to develop software
collectively. Surprisingly, firm-paid developers
said that they perceived other developers as part-
ners and/or friends rather than competitors. D5
pointed out that he had met many developers
at the OSS developer conference, and considered
many of them as friends. D1 explained that he
did not make any distinction between a firm-paid
developer and a volunteering developer: “I think
of them as developers, and not about which firms
they represent.” D7 said that he would perceive
others as partners. D6 mentioned: “I have al-
ways thought of others as partners. Even more –
I think about them as colleagues.” D4, D8 and
D9 shared similar thoughts, and dismissed the
perception of other firm-paid developers as com-
petitors: “I guess as things have evolved we do
actually compete in some aspects with some of
these people at this point. But that hasn’t re-
ally occurred to me much? I have noticed more
people who tend to be customers of ours, rather
than true competitors. We might be competi-
tors within some areas, but I have never really
thought about it I guess”, stated by D9.

The issue of competition from a firm from
somewhere else in the world might not be sig-
nificant for a startup and a SME who focus on
having their product released as fast as possible.
Without a clear vision on how their market or
technical advantages are influenced by sharing
and using OSS source code, the concern of com-
petition is not much relevant. D8 also mentioned:
“You think about other firms as your competitors,
but I do not think that really comes in to my
interactions really. They have their own users
somewhere around the world (. . .) I have some-
times seen contributions from their developers,
but I think that is good (. . .)”. Consequently, the
coopetition concept in these OSS projects might
be very much cooperation-dominant.

Another observation is that the firm’s social
position is not used by any firms to dominate

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 55

OSS development. D6 mentioned: “Before work-
ing on Samba I used to think that big companies
may have big influence in OSS project simply by
‘buying’ core developers. Now, that I know most
of the people working on Samba, I know that
this is not feasible.” Hence, having a position, or
’buying’ one, is not the way firms relate to nor
influence the OSS development.

5.10. Consequent factors

Interviewees acknowledged the benefits of par-
ticipating in OSS projects, including knowledge
sharing, organizational learning and task effec-
tiveness. D2 mentioned that many best practices
found in reviewing code and proper comments on
commits. He also appreciated the activeness level
of the project with fast feedbacks. The practices
are acknowledged and brought into considera-
tion for improvement at his team. Maintaining
an awareness of the other developers and what
they are currently working on is also recognized
and is promoted by D6 in his firms for avoiding
duplicated code across the whole codebase. Or-
ganizational learning also occurs at the project
level. When a firm observes the participation and
interaction of core firms in the OSS projects, they
can infer strategic focus areas from, i.e. feature
requests and application cases.

In our cases, in-house product development
depends on the OSS projects by (1) using tools
as outcomes of the projects or (2) integrating
and building their products on top OSS com-
ponents. The dependence infers that a task
that relates to OSS codes is collective per-
formed and the task scope is beyond the OSS
project. In a cooperative-dominated environ-
ment, the task will be done in an easier way.
In a competitive-dominated environment, the
awareness of competitors might be harmful for
jointly completing the task. However, this is not
directly evident from our cases.

6. Discussions

Table 5 summarizes our findings in the compari-
son with existing literature. While many findings

confirm existing knowledge, they also provide
some novel findings. This section will discuss our
findings based on four topics: centralized com-
munication structure in community-lead OSS
projects (Section 6.1), modelling coopetition in
the context of OSS projects (Section 6.2), the
role of a gatekeeper in implementing coopetition
strategies (Section 6.3) and firm contribution
strategy in OSS projects (Section 6.4). Each sec-
tion will discuss our findings with related work.
The final section presents our actions to address
threats to validities (Section 6.5).

6.1. Centralized communication
structure in community-lead OSS
projects

Commercial firms participating in commu-
nity-based OSS projects collaborate in various
ways across the organizational boundaries. Crow-
ston et al. stated that communications structure
of a project is an important element in under-
standing project’s practices [28]. In our cases,
the majority of the activity in OSS projects is
generated by a small subset of the firms, and that
the remaining firms participate with little to none
contribution. Wireshark and Samba demonstrate
a communications centralization structure as in
the onion-like social structure model [28]. Oezbek
et al. [60] investigated eleven OSS projects and
revealed that the role of a developer in the core
layer might be more important than the fact that
they do (commit code, fix bug, answer emails,
etc) more. Our quantitative analysis of Wireshark
and Samba confirmed these results by showing
the dominant contributions of developers and
firms in the core layer. Our qualitative data re-
vealed possible importance of these developers in
implementing firms’ strategies, i.e. collaboration
or competition. Dewan et al. [57] showed that
the heterogeneity, which exists between firm-paid
developers and voluntary developers shapes the
evolution of OSS community and its product.
In our case, we showed that even firm-paid de-
velopers have significant contributions to code
commits and communication, it is not signifi-
cantly different between firm-paid and voluntary
developers. From communication structure, this

56 Anh Nguyen-Duc et al.

Table 5. Summary of findings

Findings Type Current knowledge
OSS infrastructure as foundation for both
public and private communication among
firms

Confirmation Structures as those in OSS enables the inte-
gration of external resources [55].

Firms activities are visible in OSS projects Confirmation Heterogeneity exists between firm-paid de-
velopers and voluntary developers [56, 57].

Some firms in the core positions, most of
firms contribute little

New Onion-like structure at developers level
[27, 28].

Coopetition exists among firms Confirmation Strong explicit governance approaches can
directly affect other firm’s benefits [58].

Cooperation-dominated coopetition among
firms at code and issue levels

Confirmation Competition for the same revenue model
does not necessary affect collaboration
within OSS projects [15–17, 59].

Gatekeepers provide a mechanism to per-
form coopetition

Contradict Developers within a firm need to be divided
to take charge of either collaboration or com-
petition [19].

Trust is the foundation of establishing com-
munication, collaboration and also competi-
tion

Confirmation Trust as a success factors in collaboration
in OSS projects [38, 42].

Strategic vision is not significant at develop-
ers’ level

New Sharing strategic vision is also critical for
collaboration at team level.

Firms gain social position in OSS projects,
avoid merging and bug fixes, impact on in-
fluencing development and get supported

New Perceived benefit is associated with both
cooperative and competitive attitudes [22,
40, 41].

reveals a different finding from Dahlander’s work
[56].

6.2. Modelling coopetition in the context
of OSS projects

Business literature mentions the difficulty of iden-
tifying coopetition in a real world context [21].
Dagnino et al. [21] highlighted that coopetition
does not simply emerge from joining competition
and collaboration, but they mix together to form
a new kind of strategic interdependence between
firms. We agree and illustrate for this view by
showing that in OSS projects, commercial firms
focus on activities that create a common value
with an awareness of not sharing their technical
and legal sensitive information. From our cases,
COSS validates at the meso level of strategic
collaboration, where firms within the same or
similar domain collaborate. Among antecedent
factors from literature, we highlight the role of
a structural condition via public and private
communication infrastructures. The transparent
and effective communication infrastructure pro-

vides a mechanism for coopetition. Our study
describes a competition-dominated type of coope-
tition. Even when firms are aware of their com-
petitors, the attitude of collaboration is still over-
whelming. Valenca et al. raise a question whether
firms are collaborators or competitors in software
ecosystems [3]. At the requirement engineering
level, the authors found several significant chal-
lenges among firms within the same collaborative
network [3]. OSS projects and firms might have
divergent interests but firms can manage to dis-
cover areas of convergent interest and be able
to adapt their organizing practices to collabo-
rate [7]. In our case, this is clearly observable at
the operational level. The finding also matches
with observations by Linåker [15].

6.3. The role of a gatekeeper in
implementing coopetition strategies

Bengtsson et al. argued that individuals within
a firm could only act in accordance with one of
the two logics of interaction at a time, i.e. either
to compete or to collaborate [19]. Our observa-

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 57

tion on a gatekeeper role gives an alternative
explanation on how firms manage such scenario.
The firm’s strategy can be flexible, for example
fully open core sourcing at one time, and filtering
of shared code at another time. The implementa-
tion of such strategies is done via the firm gate-
keeper, who does actual technical contribution
to the community. Therefore, in contrast with
Bengtsson’s findings, we find that it is possible to
implement a firm-level dynamic interaction via in-
dividuals in software projects. The role of a gate-
keeper is discussed in the context of commer-
cial distributed software teams [61, 62]. Marczak
et al. found the role of knowledge brokers who
would have a significant impact on information
flow in requirement-interdependent teams [62]. In
a context of firm-to-firm interaction, we showed
that a gatekeeper could navigate the information
flow beyond firm’s boundaries. Nguyen-Duc et al.
showed four common tasks of a gatekeeper: task
negotiation, conflict resolution, task- related in-
formation navigation and boundary object setups
[61]. While the authors investigated gatekeepers
in a software firm and a OSS project separately,
this work focuses on boundary spanning activities
between the OSS communities and software firms.
By influencing the gatekeepers, managing code
flows and information flows, firms can implement
competing or collaborating strategies.

6.4. Firm contribution strategy
in OSS projects

There exist some studies capturing the phe-
nomenon of commercial firms contributing to
OSS projects. Linåker et al. investigated con-
tribution strategies of firms when participating
in OSS projects [63]. The authors proposed the
Contribution Acceptance Process (CAP) model
to determine if source code or any types of con-
tributions can be contributed or not. The CAP
model bases on two dimensions: (1) the bene-
fits company can receive and (2) the knowledge
behind the contributions to acquire and control
[63]. While these two dimensions are similar to
our model’s elements: perceived benefits (Section
5.4) and gatekeeping (Section 5.6), our model
also explore other factors that impact the ways

firms contribute to the OSS communities and col-
laborate with other firms. Munir et al. discussed
how the openness of software firms might help
them to gain benefits from OSS communities
from four dimensions: (1) strategy, (2) triggers,
(3) outcomes, and (4) level of openness. The
model is similar with some elements in our COSS
model, i.e. strategic vision, communication, gate-
keeping and consequent factors. However, these
models do not capture the competition strategy
that firms might adopt in OSS projects. Unlike
the previous work, our COSS model proposed
a comprehensive view on factors that impact the
strategy of collaboration and competition.

6.5. Threats to validity

6.5.1. Construct validity

Threats to construct validity consider the rela-
tionship between theory and observation, in case
the measured variables do not provide a good
measure of the actual factors [45]. In a quali-
tative study, construct validity can be thought
of a “labeling” issue, as we might find the con-
struct of the outcomes that we believe we are
trying to capture. A main assumption in our
study lies in the way we identify coopetition
among commercial firms. As the coopetition con-
cept comes from economic and business research,
we did not have a direct map from how the
concept operationalize in SE research. Previous
studies that mention term “coopetition” [3, 15],
do not provide the construct of this concept.
Hence, to our best knowledge, this is the first
study in SE attempt to operationalize this con-
cept. We reduced this risk by a detail review and
the identification of characteristics of coopeti-
tion, the exploration of the context where the
construct is investigated. Both quantitative and
qualitative data was collected in concept’s ele-
ments and summarized in the end to describe
the model. We also include discussion with co-au-
thors and an expert in the entrepreneurship in
validate our observation.

The phenomenon is operationalized based on
public and private communication among de-
velopers participated in OSS projects. We were

58 Anh Nguyen-Duc et al.

aware of other communication channels, such as
private messaging, telephone and Skype, however,
we do not have a feasible way to quantify this. We
limited the investigation in public collaboration
where developers responsed to the same mailing
list or comment on the same issue. Regarding to
the identification of firm participation, we used
SNA with density metrics, such as degree cen-
trality and closeness [49]. Other network-based
measures for the same construct (e.g. transitiv-
ity, compactness, and connectedness) could be
considered for enhancing the rigor of this re-
search. We also used an unweight approach to
perform SNA, which ignored the firms’ charac-
teristics, such as firm size, and business strategy
towards the OSS community. This could be con-
sidered in future work, especially in firm-based
OSS projects.

The risk of operationalization is reduced by
using a mixed method research, including both
quantitative and qualitative data. The intervie-
wees were conducted with firms from different
social position in OSS projects, which increase
the credibility in the observation of phenomenon.
The data is limited at ten interviews. However,
we had reached data saturation [45] when in-
terviewing Bootstrap case. Although, intervie-
wees were selected from different types of OSS
projects, different company profiles, we found
that their responses were consistent, which in-
crease our confidence in the trustworthiness
of the data.

6.5.2. External validity

This threat considers the ability to generalize
our findings. The goal of this study is not to
achieve statistical generalization, but rather an
analytical generalization. This is particularly im-
portant when studying a complex phenomenon,
in our case is coopetition in OSS projects. To
avoid the bias on findings from a single case, we
analyzed two OSS projects. Qualitative data was
further collected from the third OSS project to
improve the generalization. With the in-depth
investigation in both community and firms’ sides
of the projects, we are confident about the ex-
planation power of the COSS model for sim-

ilar contexts. Our OSS projects produce a li-
brary, a framework and an application, employ-
ing GPL and MIT licenses. Our cases represent
for a community-initiated OSS projects, that are
initiated and lead by the community. Further
research should replicate our method on other
types of OSS projects to explore other collabo-
ration and competition scenarios. They are also
popular OSS projects with years of operation,
hence the products and collaboration process
have been stable. The findings might not be di-
rectly applicable to emerging OSS projects, or
projects initiated by firms. Research on projects
with different types of OSS licenses might lead
to a variety in our model.

6.5.3. Reliability

This threat concerns about the level to which the
operational aspects of the study, such as data
collection and analysis procedures, are repeatable
with the same results. The main data collection
was done as a part of a master thesis. All inter-
views were recorded and transcribed verbatim
in order to make sure that no data reduction
occurred prematurely. The transcription of the
interviews was reviewed and interpreted by the
other author. In case of vague statements, one
author is responsible for follow-up discussions
with interviewees for clarification. We used both
quantitative data about communication among
firms in the project and qualitative data from
interviews of firms from different contribution
layers. The data triangulation allows our find-
ings represent the true situation of investigated
projects. Moreover, the paper has gone through
proof-read from several senior researchers in the
domain. Their feedbacks help us to improve the
paper significantly since the first draft.

7. Conclusions

Coopetition is an important topic in economics
and business research [19, 21], but it is over-
looked in other domains. In modern software
industry, the popularity of developing software
products beyond firm’s boundary makes coopeti-

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 59

tion a relevant theme. In this paper, we used
both qualitative and quantitative data to in-
vestigate coopetition in OSS projects. Firstly,
we found that commercial firms participating
in community-initiated OSS projects collabo-
rate in various ways across the organizational
boundaries. While most of firms contribute lit-
tle, a small number of firms are very active and
account for large proportions of contribution. It
is also evident that firms interact across their
boundaries in OSS projects. Secondly, we pro-
posed an empirical model COSS to explain for
root causes of coopetition in OSS projects. The
COSS model shows that coopetition is based
on the firm awareness, structural condition of
the OSS projects and operated by gatekeepers.
The coopetition is cooperation-dominated even
among firms working in the same business do-
main with similar business models.

The findings have implications for research.
We offer a descriptive explanation of how coope-
tition occurs and impacts in OSS projects.
We observe that software firms emphasize the
co-creation of common value and partly react to
the potential competitiveness in OSS projects.
The highlight of our findings is the COSS model,
which argues that competition and collaboration
can both be handled by gatekeepers. The role
of gatekeepers in crossing organizational bound-
aries is still an interesting research topic. For
SE with abundant research on OSS collabora-
tion and communication, the study on inter-firm
coopetition is a novel way of looking at the same
data sources and infrastructures.

The study also has implications for practi-
tioners. We offer software firms insights about
different coopetition strategies observed in a com-
munity-driven OSS project. For instance, not all
communication goes through the public channels
in OSS projects. Legal and security sensitive
issues commonly go through private or closed
channels because of their natures. Furthermore,
firms should consider a gatekeeper as an impor-
tant role when they plan to participate and gain
benefit from OSS projects.

For future work, the next step would be
to validate the COSS model with a larger set
of cases. Our research here only uses three

community-driven OSS projects, which limits
the generalization of findings. Moreover, a longi-
tudinal observation on how coopetition evolves
among firms can provides knowledge that goes
beyond cross-sectional observations. Last but not
least, further investigation about employing the
role of gatekeepers for coopetition is needed to
provide actionable guideline for successful opera-
tion of inter-firm coopetition. Future work can
also investigate OSS project settings that affect
firm collaboration, i.e. OSS license, and feature
request mechanism. It would be interested to see
how these factors could play a role in our model.

References

[1] D.G. Messerschmitt and C. Szyperski, Soft-
ware Ecosystem: Understanding an Indispensable
Technology and Industry. Cambridge, MA, USA:
MIT Press, 2003.

[2] S. Jansen, A. Finkelstein, and S. Brinkkemper,
“A sense of community: A research agenda for
software ecosystems,” in 31st International Con-
ference on Software Engineering – Companion
Volume, 2009, pp. 187–190.

[3] G. Valença, C. Alves, V. Heimann, S. Jansen,
and S. Brinkkemper, “Competition and collabo-
ration in requirements engineering: A case study
of an emerging software ecosystem,” in 22nd
International Requirements Engineering Confer-
ence (RE), 2014, pp. 384–393.

[4] J.F. Lorraine Morgann and P. Finnegan, “Explor-
ing inner source as a form of intra-organisational
open innovation,” in 19th European Conference
on Information Systems, 2011.

[5] K. Manikas, “Revisiting software ecosystems re-
search: A longitudinal literature study,” Jour-
nal of Systems and Software, Vol. 117, 2016,
pp. 84–103.

[6] H.H. Olsson and J. Bosch, “Ecosystem-driven
software development: A case study on the
emerging challenges in inter-organizational
R&D,” in Software Business. Towards Continu-
ous Value Delivery, C. Lassenius and K. Smolan-
der, Eds. Springer International Publishing,
2014, pp. 16–26.

[7] S. O’Mahony and B.A. Bechky, “Boundary orga-
nizations: Enabling collaboration among unex-
pected allies,” Administrative Science Quarterly,
Vol. 53, No. 3, 2008, pp. 422–459.

60 Anh Nguyen-Duc et al.

[8] B. Andrea and R. Cristina, “Comparing moti-
vations of individual programmers and firms to
take part in the open source movement: From
community to business,” Knowledge, Technology
& Policy, Vol. 18, No. 4, 2006, pp. 40–64.

[9] A.H. Ghapanchi, C. Wohlin, and A. Aurum, “Re-
sources contributing to gaining competitive ad-
vantage for open source software projects: An
application of resource-based theory,” Interna-
tional Journal of Project Management, Vol. 32,
No. 1, 2014, pp. 139–152.

[10] A.H. Ghapanchi, “Rallying competencies in vir-
tual communities: A study of core processes and
user interest in open source software projects,”
Information and Organization, Vol. 23, No. 2,
2013, pp. 129–148.

[11] R. Riehle, “The single-vendor commercial open
course business model,” Information Systems
and e-Business Management, Vol. 10, No. 1, 2012,
pp. 5–17.

[12] A.H. Ghapanchi, C. Wohlin, and A. Aurum, “Re-
sources contributing to gaining competitive ad-
vantage for open source software projects: An
application of resource-based theory,” Interna-
tional Journal of Project Management, Vol. 32,
No. 1, 2014, pp. 139–152. [Online]. http://www.
sciencedirect.com/science/article/pii/S0263786
313000380

[13] S. Ghobadi and J. D’Ambra, “Coopetitive re-
lationships in cross-functional software devel-
opment teams: How to model and measure?”
Journal of Systems and Software, Vol. 85, No. 5,
2012, pp. 1096–1104.

[14] K. Manikas and K.M. Hansen, “Software ecosys-
tems? A systematic literature review,” Journal
of Systems and Software, Vol. 86, No. 5, 2013,
pp. 1294–1306. [Online]. http://www.sciencedirec
t.com/science/article/pii/S016412121200338X

[15] L. Johan, R. Patrick, R. Björn, and P. Mäder,
“How firms adapt and interact in open source
ecosystems: Analyzing stakeholder influence
and collaboration patterns,” in Requirements
Engineering: Foundation for Software Quality.
Cham: Springer International Publishing, 2016,
pp. 63–81.

[16] J. Teixeira, “Understanding collaboration in the
open-source arena: The cases of WebKit and
OpenStack,” in Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment
in Software Engineering, 2014, pp. 52:1–52:5.

[17] J. Teixeira, S. Mian, and U. Hytti, “Cooperation
among competitors in the open-source arena:
The case of OpenStack,” in International Con-
ference on Information Systems (ICIS), 2016.

[18] A.M. Brandenburger and B.J. Nalebuff., Co-ope-
tition. New York, USA: Doubleday, 1996.

[19] M. Bengtsson and S. Kock, “‘Coopetition’ in
business networks? To cooperate and compete
simultaneously,” Industrial Marketing Manage-
ment, Vol. 29, No. 5, 2000, pp. 411–426.

[20] M. Zineldin, “Co-opetition: The organisation of
the future,” Marketing Intelligence & Planning,
Vol. 22, No. 7, 2004, pp. 780–790.

[21] G.B. Dagnino and G. Padula, “Coopetition strat-
egy, a new kind of inter firm dynamics for value
creation,” in The 2nd conference on European
Academy of Management, 2002.

[22] C.P. Lin, Y.J. Wang, Y.H. Tsai, and Y.F. Hsu,
“Perceived job effectiveness in coopetition: A sur-
vey of virtual teams within business organiza-
tions,” Computers in Human Behavior, Vol. 26,
No. 6, 2010, pp. 1598–1606. [Online]. http:
//www.sciencedirect.com/science/article/pi
i/S0747563210001792

[23] W. Scacchi, “Free/Open Source software devel-
opment: Recent research results and emerging
opportunities,” in The 6th Joint Meeting on
European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering: Companion Pa-
pers, ESEC-FSE companion ’07. New York, NY,
USA: ACM, 2007, pp. 459–468.

[24] J.Y. Moon and L. Sproull, “Essence of dis-
tributed work: The case of the Linux kernel,”
First Monday, No. 11, 2000. [Online]. http:
//www.firstmonday.dk/ojs/index.php/fm/a
rticle/view/801/710

[25] A. Mockus, R.T. Fielding, and J.D. Herbsleb,
“Two case studies of Open Source Software de-
velopment: Apache and Mozilla,” ACM Transac-
tions on Software Engineering and Methodology,
Vol. 11, No. 3, 2002, pp. 309–346.

[26] G.K. Lee and R.E. Cole, “From a firm-based
to a community-based model of knowledge cre-
ation: The case of the Linux kernel develop-
ment,” Organization Science, Vol. 14, No. 6,
2003, pp. 633–649.

[27] J. Xu, Y. Gao, S. Christley, and G. Madey,
“A topological analysis of the Open Souce Soft-
ware development community,” in Proceedings
of the 38th Annual Hawaii International Confer-
ence on System Sciences, 2005, p. 198a.

[28] K. Crowston and J. Howison, “The social struc-
ture of Free and Open Source Software develop-
ment,” First Monday, Vol. 10, 2005.

[29] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb,
“Social coding in GitHub: Transparency and col-
laboration in an open software repository,” in

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 61

Proceedings of the ACM Conference on Com-
puter Supported Cooperative Work, CSCW ’12.
New York, NY, USA: ACM, 2012, pp. 1277–1286.

[30] C. Gutwin, R. Penner, and K. Schneider, “Group
awareness in distributed software development,”
in Proceedings of the ACM Conference on Com-
puter Supported Cooperative Work, CSCW ’04.
New York, NY, USA: ACM, 2004, pp. 72–81.

[31] W. Scacchi, Free/Open Source Software Devel-
opment: Recent Research Results and Methods.
Elsevier, 2007, Vol. 69, pp. 243–295. [Online].
http://www.sciencedirect.com/science/article/
pii/S0065245806690050

[32] R. Abreu and R. Premraj, “How developer
communication frequency relates to bug in-
troducing changes,” in Proceedings of the
Joint International and Annual ERCIM Work-
shops on Principles of Software Evolution (IW-
PSE) and Software Evolution (Evol) Workshops,
IWPSE-Evol ’09. New York, NY, USA: ACM,
2009, pp. 153–158.

[33] T. Zimmermann, R. Premraj, N. Bettenburg,
S. Just, A. Schroter, and C. Weiss, “What
makes a good bug report?” IEEE Transactions
on Software Engineering, Vol. 36, No. 5, 2010,
pp. 618–643.

[34] C. Bird, N. Nagappan, H. Gall, B. Murphy,
and P. Devanbu, “Putting it all together: Us-
ing socio-technical networks to predict failures,”
in 20th International Symposium on Software
Reliability Engineering, 2009, pp. 109–119.

[35] T. Wolf, A. Schroter, D. Damian, and T. Nguyen,
“Predicting build failures using social network
analysis on developer communication,” in Pro-
ceedings of the 31st International Conference
on Software Engineering, ICSE ’09. Washing-
ton, DC, USA: IEEE Computer Society, 2009,
pp. 1–11.

[36] C. Ferioli and P. Migliarese, “Supporting orga-
nizational relations through information tech-
nology in innovative organizational forms,” Eu-
ropean Journal of Information Systems, Vol. 5,
No. 3, 1996, pp. 196–207.

[37] M. Antikainen, T. Aaltonen, and J. Väisänen,
“The role of trust in OSS communities? Case
linux kernel community,” in Open Source De-
velopment, Adoption and Innovation, J. Feller,
B. Fitzgerald, W. Scacchi, and A. Sillitti, Eds.
Springer, 2007, pp. 223–228.

[38] S.Y. Ho and A. Richardson, “Trust and distrust
in Open Source Software development,” Journal
of Computer Information Systems, Vol. 54, No. 1,
2013, pp. 84–93.

[39] P.J. Ågerfalk and B. Fitzgerald, “Outsourcing to
an unknown workforce: Exploring opensourcing

as a global sourcing strategy,” MIS Quarterly,
Vol. 32, No. 2, 2008, pp. 385–409.

[40] M. Bengtsson and S. Kock, “Cooperation and
competition in relationships between competi-
tors in business networks,” Journal of Business
& Industrial Marketing, Vol. 14, No. 3, 1999,
pp. 178–194.

[41] D. Tjosvold, Team organization: An enduring
competitive advantage. Wiley-Blackwell, 1991,
ch. Forging Synergy, pp. 219–233.

[42] R.C. Mayer, J.H. Davis, and F.D. Schoorman,
“An integrative model of organizational trust,”
The Academy of Management Review, Vol. 20,
No. 3, 1995, pp. 709–734. [Online]. http://www.
jstor.org/stable/258792

[43] M. Levy, C. Loebbecke, and P. Powell, “SMEs,
co-opetition and knowledge sharing: The role of
information systems,” European Journal of Infor-
mation Systems, Vol. 12, No. 1, 2003, pp. 3–17.

[44] R.K. Yin, Case Study Research: Design and
Methods (Applied Social Research Methods).
USA: SAGE Publications, Inc., 2014.

[45] M.J. Gallivan, “Striking a balance between trust
and control in a virtual organization: A content
analysis of open source software case studies,”
Information Systems Journal, Vol. 11, No. 4,
2001, pp. 277–304.

[46] H. Wang and C. Wang, “Open source soft-
ware adoption: a status report,” IEEE Software,
Vol. 18, No. 2, 2001, pp. 90–95.

[47] M. Cataldo and J.D. Herbsleb, “Architecting in
software ecosystems: Interface translucence as an
enabler for scalable collaboration,” in Proceed-
ings of the Fourth European Conference on Soft-
ware Architecture: Companion Volume, ECSA
’10. New York, NY, USA: ACM, 2010, pp. 65–72.

[48] Q&A with the founder of Wireshark and Ethereal,
2008. [Online]. http://protocog.com/gerald_c
ombs_interview.html

[49] L. Freeman, The Development of Social Network
Analysis. Canada: Empirical Press, 2006.

[50] D.S. Cruzes and T. Dyba, “Recommended steps
for thematic synthesis in software engineer-
ing,” in International Symposium on Empirical
Software Engineering and Measurement, 2011,
pp. 275–284.

[51] K.J. Stewart and S. Gosain, “The impact of
ideology on effectiveness in open source software
development teams,” MIS Quarterly, Vol. 30,
No. 2, 2006, pp. 291–314.

[52] P.B. M. S. Lane, G. Vyver and S. Howard,
“Inter-preventative insights into interpersonal
trust and effectiveness of virtual communities of
open source software (OSS) developers,” Open
Source Systems: Towards Robust Practices, 2004.

62 Anh Nguyen-Duc et al.

[53] P.B. de Laat, “How can contributors to
open-source communities be trusted? on the as-
sumption, inference, and substitution of trust,”
Ethics and Information Technology, Vol. 12,
No. 4, 2010, pp. 327–341.

[54] E.S. Raymond, The Cathedral and the Bazaar.
Sebastopol, CA, USA: O’Reilly & Associates,
Inc., 1999.

[55] S.Grand,G. vonKrogh,D.Leonard, andW.Swap,
“Resource allocation beyond firm boundaries: A
multi-level model for open source innovation,”
Long Range Planning, Vol. 37, No. 6, 2004,
pp. 591–610. [Online]. http://www.sciencedirect.
com/science/article/pii/S0024630104001177

[56] L. Dahlander and M.W. Wallin, “A man on the
inside: Unlocking communities as complemen-
tary assets,” Research Policy, Vol. 35, No. 8,
2006, pp. 1243–1259. [Online]. http://www.scie
ncedirect.com/science/article/pii/S004873330
6001387

[57] A. Mehra, R. Dewan, and M. Freimer, “Firms
as incubators of open-source software,” Infor-
mation Systems Research, Vol. 22, No. 1, 2011,
pp. 22–38.

[58] M.J. Gallivan, “Striking a balance between trust
and control in a virtual organization: a content
analysis of open source software case studies,”
Information Systems Journal, Vol. 11, No. 4,
2001, pp. 277–304.

[59] J. Teixeira, G. Robles, and J.M. González-Bara-
hona, “Lessons learned from applying social net-

work analysis on an industrial Free/Libre/Open
Source Software ecosystem,” Journal of Internet
Services and Applications, Vol. 6, No. 1, 2015,
p. 14.

[60] C. Oezbek, L. Prechelt, and F. Thiel, “The onion
has cancer: Some social network analysis visual-
izations of open source project communication,”
in Proceedings of the 3rd International Workshop
on Emerging Trends in Free/Libre/Open Source
Software Research and Development, FLOSS ’10.
New York, NY, USA: ACM, 2010, pp. 5–10.

[61] S. Marczak, D. Damian, U. Stege, and
A. Schröter, “Information brokers in require-
ment-dependency social networks,” in 16th IEEE
International Requirements Engineering Confer-
ence, 2008, pp. 53–62.

[62] A. Nguyen-Duc, D.S. Cruzes, and R. Conradi,
“On the role of boundary spanners as team co-
ordination mechanisms in organizationally dis-
tributed projects,” in 9th International Con-
ference on Global Software Engineering, 2014,
pp. 125–134.

[63] J. Linåker, H. Munir, K. Wnuk, and C.E. Mols,
“Motivating the contributions: An open inno-
vation perspective on what to share as open
source software,” Journal of Systems and Soft-
ware, Vol. 135, 2018, pp. 17–36. [Online]. http:
//www.sciencedirect.com/science/article/pii/
S0164121217302169

e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 63–103, DOI 10.5277/e-Inf190103

Representation of UML Class Diagrams in OWL 2
on the Background of Domain Ontologies

Małgorzata Sadowska∗, Zbigniew Huzar∗
∗Faculty of Computer Science and Management, Wrocław University of Science and Technology

m.sadowska@pwr.edu.pl, zbigniew.huzar@pwr.edu.pl

Abstract
Background: UML class diagrams can be automatically validated if they are compliant with
a domain knowledge specified in a selected OWL 2 domain ontology. The method requires
translation of the diagrams into their OWL 2 representation.
Aim: The aim of this paper is to present transformation and verification rules of UML class
diagrams to their OWL 2 representation.
Method: The analysis of the results of the systematic literature review on the topic of transfor-
mation rules between elements of UML class diagrams and OWL 2 constructs. The purpose of the
analysis is to present the extent to which state-of-the-art transformation rules cover the semantics
expressed in class diagrams. On the basis of the analysis, new transformation rules expressing the
semantics not yet covered but expected from the point of view of domain modelling pragmatics
have been defined.
Results: The first result is the revision and extension of the transformation rules identified in
the literature. The second original result is a proposition of verification rules necessary to check if
a UML class diagram is compliant with the OWL 2 domain ontology.
Conclusion: The proposed transformations can be used for automatic validation of compliance
of UML class diagrams with respect to OWL 2 domain ontologies.

Keywords: UML, OWL 2, transformation rules, verification rules

1. Introduction

In [1], we presented an idea of a method for se-
mantic validation of Unified Modeling Language
(UML) class diagrams [2] with the use of OWL 2
Web Ontology Language (OWL 2) [3] domain
ontologies. While UML has been known for many
years, OWL is a much younger formalism and its
main purpose is to represent knowledge in the
Semantic Internet. The choice of OWL is justified
by the fact that knowledge, and in particular on-
tologies collected on the Internet, will be increas-
ingly used in business modelling as the first stage
of software development. The proposed approach
[1] requires a transformation of an UML class
diagram constructed by a modeller into its seman-
tically equivalent OWL 2 representation. Despite

the fact that there are many publications which
define some UML to OWL 2 transformations, to
the best of the authors’ knowledge, no study has
investigated a complete mapping covering all di-
agram elements emphasized by pragmatic needs.
This paper seeks to contribute in this field with
a special focus on providing a full transformation
of elements of an UML class diagram which are
commonly used in business and conceptual mod-
elling. All the transformations described in this
paper and the method of validation explained
in [1], have been implemented in a tool whose
prototype was presented in [4]. On the basis of
the proposed UML–OWL transformations, the
tool has been further extended. Currently, the
tool offers validation of the modified diagram,
and can automatically suggest how the diagram

Submitted: 6 June 2018; Revised: 7 October 2018; Accepted: 7 November 2018; Available online: 14 December 2018

64 Małgorzata Sadowska, Zbigniew Huzar

should be corrected on the basis of the ontology.
A necessary requirement before the UML class
diagram can be validated with the use of OWL
domain ontology is that the diagram and the
ontology must follow one agreed domain vocab-
ulary. Moreover, the domain ontology must be
consistent because it is the knowledge base for
the area.

Our research is limited to the static elements
of UML class diagrams – the behavioural aspect
represented by class operations is omitted. This
is due to the fact that the semantics of UML op-
erations cannot be effectively expressed with the
use of OWL 2 constructs, which do not represent
behaviour. In order to identify which transforma-
tion rules of UML class diagrams into OWL con-
structs have already been proposed, we have per-
formed a systematic review of literature. The ex-
tracted rules have been analysed, compared and
extended. The resulting findings of how to con-
duct the transformation of UML class diagram to
its OWL 2 representation are described further
in this paper. In the rest of this paper, OWL
always means OWL 2, if not stated otherwise.

Besides the transformation rules, the method
of semantic validation of UML class diagrams re-
quires the so called verification rules. This aspect
is an original element of this research. Transform-
ing the UML elements to OWL may introduce
some new properties that may be in conflict with
the ontology. The verification rules are specified
in the form of either OWL verification axioms or
verification queries.

It is then checked that the verification axioms
are not present in the domain ontology because,
if they are included, the diagram is contradictory
to the domain knowledge. In other words, we
can say that the verification axioms detect if the
semantics of the diagram transformation is com-
pliant with the axioms included in the domain
ontology. Considering the inverse transformation
(from the ontology to the diagram), the presence
of the verification axioms in the domain ontol-
ogy means that the reengineering transformation
would remain in conflict with the semantics of
the UML class diagram. In [1], we presented some
examples of the consequences of a reengineering

transformation of OWL to UML which does not
take into account the verification rules.

Verification queries are used for extracting
information from a domain ontology, the kind of
information that could not be provided through
inspecting the class diagram itself. The domain
ontology can have more information regarding
the elements of a UML class diagram, which is not
explicitly expressed on the diagram. For example,
the ontology can contain information about indi-
viduals. To give a more detailed perspective, the
verification queries are used for: (a) checking if
the classes denoted as abstract in the UML class
diagram do not have any individuals assigned
in the OWL domain ontology, (b) verifying if
the multiplicity (of both the attributes and the
association ends) is not violated on the side of the
OWL domain ontology, and (c) checking if the
user-defined list of literals of the specified enu-
merations on the UML class diagram is compliant
with those defined in the OWL domain ontology.
Technically, all verification queries are defined
with the use of SPARQL1 language.

The verification of UML class diagrams with
the use of the proposed method is possible thanks
to the initial normalization of the domain ontol-
ogy and the normalization of the transformation
axioms. The concept of OWL ontology normal-
ization is our proposition [5]. Any input OWL 2
DL ontology after normalization is presented in
a new but semantically equivalent form because
the normalization rules only change the structure
but do not affect the semantics of axioms or ex-
pressions in the OWL 2 ontology. The normalized
OWL 2 DL ontologies have a unified structure of
axioms so that they can be algorithmically com-
pared without the need to conduct additional
complex calculations. The extensive details of
conducting the transformation of OWL 2 ontolo-
gies to their normalized form are described in [5].
In the rest of the paper OWL domain ontology is
understood as OWL domain ontology after nor-
malization (it should be done only once). Before
comparison of axioms, all transformation axioms
are also normalized (tool automatically saves
transformation axioms also in the normalized
form so that no additional delay is needed in

1SPARQL Query Language: https://www.w3.org/TR/sparql11-overview/

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 65

the verification algorithm). For the purpose of
being compliant with the literature and for the
potential use of transformation axioms for other
purposes, all transformation axioms presented
in this paper are not normalized. On the other
hand, due to the fact that verification axioms are
our proposition preliminary designed to support
verification of UML class diagrams, some rules
for verification axioms are already defined in the
normalized form in order to reduce the number
of unnecessary redundant verifications, the rest
rules for verification axioms are not yet normal-
ized for the purpose of clarity for readers but
the tool also automatically saves the verification
axioms directly as normalized.

In practical use of UML to OWL transforma-
tion, the initial phase involving modeller’s atten-
tion is required. The modeller has to assure that
all class attributes and association end names in
one UML class are uniquely named. Otherwise,
the transformation rules may generate repeating
OWL axioms which may lead to inconsistencies
or may be semantically incorrect.

The remainder of this article is organized
as follows. Section 2 summarizes related works.
Section 3 outlines which elements of UML class
diagrams are commonly used in business and
conceptual modelling. Section 4 describes the
process and the results of the conducted sys-
tematic literature review which was focused on
identifying the state-of-the-art transformation
rules for translating UML class diagrams into
their OWL representation. Section 5 presents
the revised and extended transformation rules
and proposes the verification rules. Section 6
summarises some important differences between
OWL 2 and UML languages and their impact on
transformation. Section 7 illustrates application
of transformation and verification rules to exam-
ple UML class diagrams. Section 8 is dedicated
to the tool that implements the transformations.
Finally, Section 9 concludes the paper.

2. Class diagrams in business
and conceptual modelling

The UML specification [2] does not strictly spec-
ify which elements of UML class diagrams should

or should not be included in the specific diagrams
and this decision is always left to modellers. How-
ever, not all model elements are equally useful in
the practice of business and conceptual modelling
with UML class diagrams.

In [6], it is suggested that a full variety of
UML constructs is not needed until the imple-
mentation phase and it is practiced that a subset
of diagram elements useful for conceptual mod-
elling in the business context is selected. The
following static elements of UML class diagrams
are suggested in literature as the most important
in business and conceptual modelling [7, 8]:
– named classes,
– attributes of classes with types (either primi-

tive or structured datatypes),
– associations between the classes (including

aggregation) with the specified multiplicity
of the association ends,

– generalization relationships.
Modelling a complex business requires using

several views, each of which focuses on a partic-
ular aspect of business. Following [7], there are
four commonly used Business Views: Business
Vision View, Business Process View, Business
Structure View and Business Behaviour View.
The UML class diagrams are identified as useful
[7] in Business Vision View and Business Struc-
ture View.

The UML class diagrams in a Business Vi-
sion View [7] are used to create conceptual mod-
els which establish a common vocabulary and
demonstrate relationships among different con-
cepts used in business. The important elements of
UML class diagrams in the conceptual modelling
are named classes and associations between the
classes as they define concepts. The classes can
have attributes as well as a textual explanation
which together constitute a catalogue of terms.
The textual descriptions may not be necessar-
ily visible on the UML diagram but should be
retrievable with the help of modelling tools. In
the conceptual modelling with UML, attributes
and operations of classes are not so much im-
portant [7] (can be defined only if needed) but
relationships among the classes should be already
correctly captured in models.

The UML class diagrams in a Business Struc-
ture View [7] are focused on presenting a struc-

66 Małgorzata Sadowska, Zbigniew Huzar

ture of resources, products, services and infor-
mation regarding the business including the or-
ganization of the company. The class diagrams
in this view often include classes containing at-
tributes with types and operations, as well as
generalizations and associations with the speci-
fied multiplicity.

In [8], modelling business processes with UML
class, activity and state machine diagrams is sug-
gested. UML class diagrams with a number of
predefined classes are used to describe process en-
tity representatives (activities, agents, resources
and artefacts). The examples in [8] present a busi-
ness process at the level of the UML class dia-
gram as consisting of classes with attributes, class
generalizations, associations between the classes
(including aggregation) with a specified multiplic-
ity of the association ends. The class attributes
are typed with either primitive or structured
datatypes.

We have not found further recommendations
for using additional static UML class diagram
elements in the context of business or conceptual
modelling in other reviewed literature positions.
If the selected UML class diagram is compliant
with the domain, it is reasonable to examine
the diagram further. For example, the question
outside the scope of this research is about the role
of OCL2 in business and conceptual modelling
with UML class diagrams. Some other works
investigate this aspect, e.g. in [9] an approach to
translate OCL invariants into OWL 2 DL axioms
can be found.

3. Review process

Kitchenham and Charters in [10] provide guide-
lines for performing systematic literature review
(SLR) in software engineering. Following [10],
a systematic literature review is a means of eval-
uating and interpreting all available research
relevant to a particular research question, and
aims at presenting a fair evaluation of a re-
search topic by using a rigorous methodology.
This section describes the carried out review
aimed at identifying studies describing mappings

of UML class diagrams to their OWL represen-
tations.

3.1. Research question

The research question is:
RQ: “What transformation rules between ele-
ments of UML class diagrams and OWL con-
structs have already been proposed?”

3.2. Data sources and search queries

In order to make the process repeatable, the de-
tails of our search strategy are documented below.
The search was conducted in the following online
databases: IEEE Xplore Digital Library, Springer
Link, ACM Digital Library and Science Direct.
These electronic databases were chosen because
they are commonly used for searching literature
in the field of Software Engineering. Additional
searches with the same queries were conducted
through ResearchGate and Google scholar in or-
der to discover more relevant publications. These
publication channels were searched to find pa-
pers published in all the available years until
May 2018. The earliest primary study actually
included was published in 2006.

For conducting the search, the following key-
words were selected: “transformation”, “trans-
forming”, “mapping”, “translation”, “OWL”,
“UML” and “class diagram”. The keywords are
alternate words and synonyms for the terms used
in the research question, which aimed to mini-
mize the effect of differences in terminologies. Pilot
searches showed that the above keywords were too
general and the results were too broad. Therefore,
in order to obtain more relevant results, the search
queries were based on the Boolean AND to join
terms:
– “transformation” AND “OWL” AND “UML”,
– “transforming” AND “OWL” AND “UML”,
– “mapping” AND “OWL” AND “UML”,
– “translation” AND “OWL” AND “UML”,
– “transformation” AND “OWL” AND “class

diagram”,
– “transforming” AND “OWL” AND “class di-

agram”,
2Object Constraint Language (OCL): http://www.omg.org/spec/OCL/

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 67

– “mapping” AND “OWL” AND “class dia-
gram”,

– “translation” AND “OWL” AND “class dia-
gram”.

3.3. Inclusion and exclusion criteria

The main inclusion criterion was that a paper pro-
vides some transformation rules between UML
class diagrams and OWL constructs. Addition-
ally, the study had to be written in English and
be fully accessible through the selected online
libraries. Additionally, there was a criterion for
excluding a paper from the review results if the
study described transformation rules between
other types of UML diagrams to OWL represen-
tation or described transformation rules to other
ontological languages.

3.4. Study quality assessment

The final acceptance of the literature was done
by applying the quality criteria. The criteria were
assigned a binary “yes”/“no” answer. In order
for a work to be selected, it needed to provide
“yes” answer to both questions from the checklist:
1. Are the transformation rules explicitly de-

fined? For example, a paper could be excluded
if it only reported on a possibility of specify-
ing transformation rules for the selected UML
elements, but such transformations were not
provided.

2. Do the proposed transformation rules pre-
serve the semantics of the UML elements?
For example, a paper (or some selected trans-
formation rules within the paper) could be
excluded if the proposed rules in the trans-
formation to OWL 2 did not preserve the
semantics of the UML elements.

3.5. Study selection

During the search, the candidate papers for full
text reading were identified by evaluating their
titles and abstracts. The literature was included
or excluded based on the selection criteria. The
goal was to obtain the literature that answered
the research question. The candidate papers, af-

ter eliminating duplicates, were fully read. After
positive assessment of the quality of the litera-
ture items, they were added to the results of the
systematic literature review.

Next, if the paper was included, its reference
list was additionally scanned in order to iden-
tify potential further relevant papers (backward
search). Later, the paper selection has addition-
ally been extended by forward search related to
works citing the included papers. In both back-
ward search and forward search the papers for
full text reading were identified based on reading
title and abstract.

3.6. Threats to validity

We have identified threats to the validity of the
conducted SLR, grouped in accordance with the
categories presented in [11]. Wherever applica-
ble, we included the applied mitigating factors
corresponding to the identified threats.

Construct Validity: The specified search
queries may not be able to completely cover all ad-
equate search terms related to the research topic.
As a mitigating factor, we used alternate words
and synonyms for the terms used in the research
question.

Internal Validity:The identified treats to inter-
nal validity relate to search strategy and further
steps of conducting the SLR, such as selection
strategy and quality assessment:
1. A threat to validity was caused by lack of

assurance that all papers relevant to answer-
ing the research question were actually found.
A mitigating factor to this threat was conduct-
ing a search with several search queries and
analyzing the references of the primary studies
with the aim of identifying further relevant
studies.

2. Another threat was posed by the selected re-
search databases. The threat was reduced by
conducting the search with the use of six dif-
ferent electronic databases.

3. A threat was caused by the fact that one re-
searcher conducted SLR. A mitigating factor
to the search process and the study selection
process was that the whole search process was
twice reconducted in April 2018 andMay 2018.

68 Małgorzata Sadowska, Zbigniew Huzar

The additional procedures did not change the
identified studies.
External Validity: External validity concen-

trates on the generalization of findings derived
from the primary studies. The carried search was
aimed at identifying transformation rules of ele-
ments of UML class diagram to their OWL 2 rep-
resentation. Some transformation rules could be
formulated analogically in some other ontological
languages, e.g. DAML+OIL, etc. Similarly, some
transformation rules could be formulated analog-
ically in some modelling languages or notations
different then UML class diagrams, e.g. in En-
tity Relationship Diagram (ERD), EXPRESS-G
graphical notation for information models, etc.
A generalization of findings is out of scope of this
research.

Conclusion Validity: The search process was
twice reconducted and the obtained results have
not changed. However, non-determinism of some
database search engines is a threat to the re-
liability of this and any other systematic re-
view because the literature collected through
non-deterministic search engines might not be
repeatable by other researchers with exactly the
same results. In particular it applies to the re-
sults obtained with the use of Google scholar and
ResearchGate.

4. Related work

4.1. Search results

In total, the systematic literature review identi-
fied 18 studies. 14 literature positions were found
during the search: [12–26]. Additional 30 studies
were excluded based on the quality assessment
exclusion criterion.

Additional 3 studies were obtained through
the analysis of the references of the identified
studies (the backward search): [27–29].

The forward search has not resulted in any
paper included. The majority of papers had al-
ready been examined during the main search and
had already been either previously included or
excluded. In the forward search, three papers de-
scribing transformation rules have been excluded
because they were not related to UML. Most

other papers have been excluded because they
have not described transformation rules. Two
papers have been excluded because the transfor-
mation rules were only mentioned but not defined.
A relatively large number (approximately 20%)
of articles has been excluded based on the lan-
guage criterion – they had not been written in
English (the examples of the observed repetitive
languages: Russian, French, Turkish, Chinese, and
Spanish).

The results of the search with respect to data
sources are as follows (data source – number
of selected studies): ResearchGate – 6; Springer
Link – 3; IEEE Xplore Digital Library – 2;
Google Scholar – 2; ACM Digital Library – 1;
Science Direct – 1. In order to eliminate dupli-
cates that were found in more than one electronic
database, the place where a paper was first found
was recorded.

Table 1. Search results versus years of publication

Year of publication Resulting papers
2006 [23]
2008 [14, 16, 21, 27]
2009 [13]
2010 [26]
2012 [12, 17, 20, 22, 25]
2013 [19, 24, 28]
2014 [29]
2015 [18]
2016 [15]

To summarize, the identified studies include:
3 book chapters, 8 papers published in journals,
5 papers published in the proceedings of confer-
ences, 1 paper published in the proceedings of
a workshop and 1 technical report. The identified
primary studies were published in the years be-
tween 2006–2016 (see Table 1). What can be ob-
served is that the topic has been gaining greater
attention since 2008. It should not be a surprise
because OWL became a formal W3C recommen-
dation in 2004.

4.2. Summary of identified literature

Most of the identified studies described just a few
commonly used diagram elements (i.e. UML class,
binary association and generalization between

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 69

the classes or associations) while some other di-
agram elements obtained less attention in the
literature (i.e. multiplicity of attributes, n-ary
association or generalization sets). For some class
diagram elements the literature offers incom-
plete transformations. Some of the transforma-
tion rules defined in the selected papers are ex-
cluded from the findings based on the quality cri-
teria defined in Section 3.4. The state-of-the-art
transformation rules were revised and extended.
Section 5 contains detailed references to the lit-
erature related to relevant transformations. The
following is a short description of the included
studies:

The work presented in [18] transforms into
OWL some selected elements of UML models
containing multiple UML class, object and state-
chart diagrams in order to analyze consistency
of the models. A similar approach is presented in
[19], which is focused on detecting inconsistency
in models containing UML class and statechart
diagrams.

The papers [15, 17, 29] investigate the differ-
ences and similarities between UML and OWL
in order to present transformations of selected
(and identified as useful) elements of UML class
diagram. In [29], the need for UML–OWL trans-
formation is additionally motivated by not re-
peating the modelling independently in both lan-
guages.

In [14], a possible translation of few selected
elements of several UML diagrams to OWL is
presented. The paper takes into account a set
of UML diagrams: use case, package, class, ob-
ject, timing, sequence, interaction overview and
component. The behavioural elements in UML
diagrams in [14] are proposed to be translated
to OWL with annotations.

The work of [26] focuses on representing
UML and MOF-like metamodels with the use of
OWL 2 language. The approach includes propo-
sition of transforming Classes and Properties.

The paper [27] compares OWL abstract syn-
tax elements to the equivalent UML features
and appropriate OCL statements. The analysis
is conducted in the direction from OWL to UML.
For every OWL construct its UML interpretation
is proposed.

The article [20] describes transformation rules
for UML data types and class stereotypes se-
lected from UML profile defined in ISO 19103.
A full transformation for three stereotypes is
proposed. The article describes also some addi-
tional OWL–UML mappings. The focus of [28] is
narrowed to transformation of data types only.

Some works are focused on UML–OWL trans-
formations against the single application domain.
The paper [21] depicts the applicability of OWL
and UML in the modelling of disaster manage-
ment processes. In [16], transportation data mod-
els are outlined and the translation of UML
model into its OWL representation is conducted
for the purpose of reasoning.

The works presented in [12, 13, 23] are
focused on extracting ontological knowledge
from UML class diagrams and describe some
UML–OWL mappings with the aim to reuse the
existing UML models and stream the building
of OWL domain ontologies. The paper [12] from
2012 extends and enhances the conference pa-
per [13] from 2009. Both papers were analysed
during the process of collecting the data in case
of detection of any significant differences in the
description of transformation rules.

In [22], UML classes are translated into OWL.
Finally, [24, 25] present a few transformations of
class diagram elements to OWL.

5. UML class diagram and its OWL 2
representation

This section presents transformation rules
(TR) which seek to transform the elements of
UML class diagrams to their equivalent repre-
sentations expressed in OWL 2. Some of the
transformation rules come from the literature
identified in the review (e.g. TR1 in Table 2).
Another group of rules have their archetypes
in the state-of-the-art transformation rules but
we have refined them in order to clarify their
contexts of use (e.g. TRA, TRC in Section 6.2),
or extend their application to a broader scope
(e.g. TR1 in Table 5). The remaining transfor-
mation rules are our new propositions (e.g. TR5
in Table 7).

70 Małgorzata Sadowska, Zbigniew Huzar

In contrast to the approaches available in
the literature, together with the transformation
rules we define the verification rules (VR) for
all elements of a UML class diagram wherever
applicable. The need for specifying verification
rules results from the fact that we would like to
check the compliance of the OWL representation
of UML class diagram with the OWL domain
ontology. The role of verification rules is to de-
tect if the semantics of a diagram is not in con-
flict with the knowledge included in the domain
ontology.

All the transformation and verification rules
are presented in Tables 2–21. We took into con-
sideration all the static elements of UML class
diagrams, which are important from the point of
view of pragmatics (see Section 2). To summarize
the results, most of the UML elements which are
recommended [7, 8] in business or conceptual
modelling with UML class diagrams are fully
transformable to OWL 2 constructs:
– Class (Table 2),
– attributes of the Class (Table 4),
– multiplicity of the attributes (Table 5),
– binary Association – both between two differ-

ent Classes (Table 6) as well as from a Class
to itself (Table 7),

– multiplicity of the Association ends (Table 9),
– Generalization between Classes (Table 12),
– Integer, Boolean and UnlimitedNatural prim-

itive types (Table 18),
– structured DataType (Table 19),
– Enumeration (Table 20),
– Comments to the Class (Table 21),

We additionally fully translated into OWL 2
the following UML elements which have not been
identified among recommended for business or
conceptual modelling but can be used in further
stages of software development:
– Generalization between Associations (Ta-

ble 13),
– GeneralizationSet with constraints (Tables

14–17),
– AssociationClass (Table 10 and Table 11),

The UML and OWL languages have different
expressing power. We consider also the partial
transformation, which is possible for:

– String and Real primitive types because
they have only similar but not equivalent
to OWL 2 types (Table 18),

– aggregation and composition can be trans-
formed only as simple associations (Tables 6
and 7),

– n-ary Association – OWL 2 offers only binary
relations, a pattern to mitigate the problem of
transforming n-ary Association is presented
(Table 8),

– AbstractClass – OWL 2 does not offer any
axiom for specifying that a class must not
contain any individuals. Although, it is im-
possible to confirm that the UML abstract
class is correctly defined with respect to the
OWL 2 domain ontology, it can be detected
if it is not (Table 3).
The tables below present for each UML ele-

ment its short description, a graphical symbol,
transformation rules, verification rules, expla-
nations or comments, limitations of the trans-
formations (if any) and the works related for
the transformation rules (if any). Additionally,
some tables include references to Section 7, where
examples of UML–OWL transformations are pre-
sented.

The convention for transformation and veri-
fication rules presentation is semi-formal, simi-
lar to the convention used in other publication
presenting transformation rules, e.g. [17, 20]. It
seems to be more readable than a strict formal
presentation. However, a formal presentation is
implicitly defined in the programming tool which
transforms any UML class diagram into a set of
OWL axioms.

All OWL 2 constructs are written with the
use of a functional-style syntax [30]. Additionally,
the following convention is used:
– C – indicates an OWL class;
– CE (possibly with an index) – indicates

a class expression;
– OPE (possibly with an index) – indicates an

object property expression;
– DPE (possibly with an index) – indicates

a data property expression;
– α = β – means textual identity of α and β

OWL 2 constructs;

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 71

– α 6= β – means textual difference of α and β
OWL 2 constructs;

– The elements of UML meta-model, UML
model, and OWL entities or literals named
in the UML model are written with the use
of italic font;

– The OWL 2 constructs (axioms, expressions
and datatypes) and SPARQL queries are writ-
ten in bold.
All presented SPARQL queries use the fol-

lowing prefixes:

PREFIX rdf: <http://www.w3.org/1999/02/22-
rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/
owl#>
PREFIX xsd: <http://www.w3.org/2001/
XMLSchema#>
PREFIX rdfs: <http://www.w3.org/2000/01/
rdf-schema#>
PREFIX : <http://...selected ontology>

5.1. Transformation of UML classes with attributes

Table 2. Classes and the defined rules

UML element Class
Description of UML
element

In UML, a Class [2] is purposed to specify a classification of objects.

Symbol of UML
element
Transformation rules TR1: Specify declaration axiom for UML Class as OWL Class:

Declaration(Class(:ClassName))
Verification rules VR1: Check if :ClassName class has the HasKey axiom defined in the domain

ontology. HasKey(:ClassName(OPE1.. OPEm) (DPE1.. DPEn))
Comments to the rules 1. Regarding VR1: The OWL HasKey axiom assures [30, 31] that if two

named instances of a class expression contain the same values of all object and
data property expressions, then these two instances are the same. This axiom is
in contradiction with the semantics of UML class because UML specification
allows for creating different objects with exactly the same properties.

Related works In [12–23, 25–27], UML class is transformed to OWL with the use of TR1
axiom.

Example Section 7 example 1, 2 and 3

Table 3. Abstract classes and the defined rules

UML element Abstract Class
Description of UML
element

In UML, an abstract Class [2] cannot have any instances and only its subclasses
can be instantiated.

Symbol of UML
element
Transformation rules Not possible. The UML abstract classes cannot be translated into OWL

because OWL does not offer any axiom for specifying that a class must not
contain any individuals.

Verification rules VR1: Check if the domain ontology contains any individual specified for the
:AbstractClass.
SELECT (COUNT (DISTINCT ?ind) as ?count)
WHERE {?ind rdf:type :AbstractClass}

72 Małgorzata Sadowska, Zbigniew Huzar

If the :AbstractClass does not contain any individual specified in the domain
ontology, the SPARQL query returns zero:
"0"^^<http://www.w3.org/2001/XMLSchema#integer>

Comments to the rule OWL follows the Open World Assumption [30], therefore, even if the ontology
does not contain any instances for a specific class, it is unknown whether the
class has any instances. We cannot confirm that the UML abstract class is
correctly defined with respect to the OWL domain ontology, but we can detect if
it is not (VR1 checks if the class specified as abstract in the UML class diagram
is indeed abstract in the domain ontology).

Related works In [17, 20, 29], UML abstract class is stated as not transformable into OWL. In
[17, 20], it is proposed that DisjointUnion is used as an axiom which covers
some semantics of UML abstract class. However, UML specification does not
require an abstract class to be a union of disjoint classes, and the
DisjointUnion axiom does not prohibit creating members of the abstract
superclass, therefore, it is insufficient.

Table 4. Attributes and the defined rules

UML element Attributes
Description of UML
element

The UML attributes [2] are Properties that are owned by a Classifier, e.g. Class.

Symbol of UML
element

Transformation rules TR1: Specify declaration axiom(s) for attribute(s) as OWL data or object
properties respectively
Declaration(ObjectProperty(:name))
Declaration(DataProperty(:index))
Declaration(DataProperty(:year))
Declaration(ObjectProperty(:faculty))
TR2: Specify data (or object) property domains for attribute(s)
ObjectPropertyDomain(:name :Student)
DataPropertyDomain(:index :Student)
DataPropertyDomain(:year :Student)
ObjectPropertyDomain(:faculty :Student)
TR3: Specify data (or object) property ranges for attribute(s) (for
transformation of UML PrimitiveTypes refer to Table 18, for transformation of
UML structureDataTypes to Table 19)
ObjectPropertyRange(:name :FullName)
DataPropertyRange(:index xsd:string)
DataPropertyRange(:year xsd:integer)
ObjectPropertyRange(:faculty :Faculty)

Verification rules VR1: Check if the domain ontology contains ObjectPropertyDomain (or
DataPropertyDomain) axiom specified for OPE (or DPE) where CE is
specified for a different than given UML Class (here :Student)
ObjectPropertyDomain(:name CE), where CE 6= :Student
DataPropertyDomain(:index CE), where CE 6= :Student
DataPropertyDomain(:year CE), where CE 6= :Student
ObjectPropertyDomain(:faculty CE), where CE 6= :Student
VR2: Check if the domain ontology contains ObjectPropertyRange (or
DataPropertyRange) axiom specified for OPE (or DPE) where CE is

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 73

specified for a different than given UML structureDataType (or DR is specified
for a different than given UML PrimitiveType)
ObjectPropertyRange(:faculty CE), where CE 6= :Faculty
DataPropertyRange(:index DR), where DR 6= xsd:string
DataPropertyRange(:year DR), where DR 6= xsd:integer
ObjectPropertyRange(:name CE), where CE 6= :FullName

Comments to the rules 1. Both UML attributes and associations are represented by one meta-model
element – Property. OWL also allows one to define properties. A transformation
of UML attribute to OWL data property or OWL object property bases on its
type. If the type of the attribute is PrimitiveType it should be transformed into
OWL DataProperty. However, if the type of the attribute is a structured
DataType,it should be transformed into an OWL ObjectProperty.
2. VR1 checks whether or not the object properties (or respectively data
properties) indicate that the UML attributes are specified for given UML Class.
3. VR2 checks whether or not the object properties (or respectively data
properties) indicate that the UML attributes of the specified UML Class have
specified given types, either PrimitiveTypes or structured DataTypes.

Related works TR1–TR3 are proposed in [15–17, 20]. In [12–14, 18, 19, 21–24], all UML
attributes are translated into data properties only.

Example Section 7 example 2 and 3

Table 5. Multiplicity of attributes and the defined rules

UML element Multiplicity of attributes
Description of UML
element

In [2], multiplicity bounds ofMultiplicityElement are specified in the form of
<lower-bound> “..” <upper-bound>. The lower-bound is of a non-negative
Integer type and the upper-bound is of an UnlimitedNatural type. The strictly
compliant specification of UML in version 2.5 defines only a single value range
for MultiplicityElement. However, in practical examples it is sometimes useful
not limit oneself to a single interval. Therefore, the below UML to OWL
mapping covers a wider case – a possibility of specifying more value ranges for
a multiplicity element. Nevertheless, if the reader would like to strictly follow the
current UML specification, the particular single lower..upper bound interval is
therein also comprised.
In comparison to UML, the OWL specification [30] defines three class
expressions ObjectMinCardinality, ObjectMaxCardinality and
ObjectExactCardinality for specifying the individuals that are connected by
an object property to at least, at most or exactly to a given number
(non-negative integer) of instances of the specified class expression. Analogically,
DataMinCardinality, DataMaxCardinality and DataExactCardinality
class expressions are used for data properties.

Symbol of UML
element

Transformation rules TR1: If UML attribute is specified with the use of OWL ObjectProperty, its
multiplicity should be specified analogously to TR1 from Table 9 (multiplicity
of association ends). If UML attribute is specified with the use of OWL
DataProperty, its multiplicity should be specified with the use of axiom:
SubClassOf(:ClassName multiplicityExpression)
We define multiplicityExpression as one of class expressions: A, B, C or D:
A. a DataExactCardinality class expression if UML MultiplicityElement has
lower-bound equal to its upper-bound, e.g. “1..1”, which is semantically
equivalent to “1”.

74 Małgorzata Sadowska, Zbigniew Huzar

B. a DataMinCardinality class expression if UML MultiplicityElement has
lower-bound of Integer type and upper-bound of unlimited upper-bound,
e.g. “2..*”.
C. an ObjectIntersectionOf class expression consisting of
DataMinCardinality and DataMaxCardinality class expressions if UML
MultiplicityElement has lower-bound of Integer type and upper-bound of Integer
type, e.g. “4..6”.
D. an ObjectUnionOf class expression consisting of a combination of
ObjectIntersectionOf class expressions (if needed) or
DataExactCardinality class expressions (if needed) or one
DataMinCardinality class expression (if the last range has unlimited
upper-bound), if UML MultiplicityElement has more value ranges specified, e.g.
“2, 4..6, 8..9, 15..*”.
The following is the result of application of TR1 to the above diagram:
SubClassOf(:ScrumTeam

ObjectExactCardinality(1 :scrumMaster :Employee))
SubClassOf(:ScrumTeam ObjectIntersectionOf(

ObjectMinCardinality(3 :developer :Employee)
ObjectMaxCardinality(9 :developer :Employee)))

Verification rules VR1: Regardless of whether or not the UML attribute is specified with the use
of OWL DataProperty or ObjectProperty, the verification rule is defined
with the use of the SPARQL query (only applicable for multiplicities with
maximal upper-bound not equal “*”).
SELECT ?vioInd (count (?range) as ?n)
WHERE {?vioInd :leaf ?range } GROUP BY ?vioInd
HAVING (?n > maxUpperBoundValue)

where maxUpperBoundValue is a maximal upper-bound value of the multiplicity
range. If the query returns a number greater than 0, it means that UML
multiplicity is in contradiction with the domain ontology (?vioInd lists
individuals that cause the violation).
The following is the result of definition of VR1 to the above diagram:
maxUpperBoundValue for scrumMaster : 1
SPARQL query for scrumMaster :
SELECT ?vioInd (count (?range) as ?n)
WHERE { ?vioInd : scrumMaster ?range } GROUP BY ?vioInd
HAVING (?n > 1)
maxUpperBoundValue for developer : 9
SPARQL query for developer :
SELECT ?vioInd (count (?range) as ?n)
WHERE { ?vioInd : developer ?range } GROUP BY ?vioInd
HAVING (?n > 9)
VR2: Check if the domain ontology contains SubClassOf axiom, which
specifies CE with different multiplicity of attributes than it is derived from the
UML class diagram.
SubClassOf(:ScrumTeam CE)

Comments to the rules 1.It should be noted that upper-bound of UML MultiplicityElement can be
specified as unlimited: “*”. In OWL, cardinality expressions serve to restrict the
number of individuals that are connected by an object property expression to
a given number of instances of a specified class expression [30]. Therefore, UML
unlimited upper-bound does not add any information to OWL ontology, hence
it is not transformed.
2. Regarding TR1: the rule relies on the SubClassOf(CE1 CE2) axiom,
which restricts CE1 to necessarily inherit all the characteristics of CE2, but not
the other way around. The difference of using EquivalentClasses(CE1 CE2)

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 75

axiom is that the relationship is implied to go in both directions (and the
reasoner would infer in both directions).
3. Regarding VR1: As motivated in [17], reasoners that base on Open World
Assumption can detect a violation of an upper limit of the cardinality
restrictions only. This is caused by the fact that in Open World Assumption it is
assumed that there might be other individuals beyond those that are already
presented in the ontology. The verification rules for the cardinality expressions
are defined with the use of SPARQL queries, which are aimed to verify whether
or not the domain ontology does have any individuals that are contradictory to
TR1 axiom. Therefore, the VR1 verifies the existence of individuals that are
connected to the selected object property a number of times that is greater than
the specified UML multiplicity.
4. The rule VR2 verifies if the ontology contains axioms which describe
multiplicity of Attributes different than the multiplicity specified in the UML
class diagram.

Related works The related works present only partial solutions for multiplicity of attributes.
In [29], a solution for a single value interval is proposed. In [17], multiplicity
associated with class attributes is transformed to a single expression of exact,
maximum or minimum cardinality. In [24], multiplicity is transformed only into
maximum or minimum cardinality.

Example Section 7 example 2

5.2. Transformation of UML associations

Table 6. Binary Associations between two different Classes and the defined rules

UML element Binary Association (between two different Classes)
Description of UML
element

Following [2], a binary Association specifies a semantic relationship between two
memberEnds represented by Properties. Please note that in accordance with
specification [2], the association end names are not obligatory. In the method of
validation and the prototype tool we followed the same convention which is
adopted for all metamodel diagrams throughout the specification ([2, page 61]):
If an association end is unlabeled, the default name for that end is the name of
the class to which the end is attached, modified such that the first letter is
a lowercase letter. Due to the fact that our method of transformation requires
additionally unique names, either the modeller has to rename the names, or the
tool in such cases automatically adds subsequent numbers to the names.
For transformation of UML multiplicity of the association ends, refer to Table 9.

Symbol of UML
element
Transformation rules TR1: Specify declaration axiom(s) for object properties

Declaration(ObjectProperty(:team))
Declaration(ObjectProperty(:goalie))
TR2: Specify object property domains for association ends (note: if the
association contains an AssociationClass, the domains should be transformed in
accordance with TR1 from Table 10)
ObjectPropertyDomain(:team :Player)
ObjectPropertyDomain(:goalie :Team)
TR3: Specify object property ranges for association ends
ObjectPropertyRange(:team :Team)
ObjectPropertyRange(:goalie :Player)

76 Małgorzata Sadowska, Zbigniew Huzar

TR4: Specify InverseObjectProperties axiom for the association
InverseObjectProperties(:team :goalie)

Verification rules VR1: Check if AsymmetricObjectProperty axiom is specified for any of
UML association ends.
AsymmetricObjectProperty(:goalie)
AsymmetricObjectProperty(:team)
VR2: Check if the domain ontology contains ObjectPropertyDomain
specified for the same OPE but different CE than it is derived from the UML
class diagram.
ObjectPropertyDomain(:team CE), where CE 6= :Player
ObjectPropertyDomain(:goalie CE), where CE 6= :Team
VR3: Check if the domain ontology contains ObjectPropertyRange axiom
specified for the given OPE but different CE than it is derived from the UML
class diagram.
ObjectPropertyRange(:team CE), where CE 6= :Team
ObjectPropertyRange(:goalie CE), where CE 6= :Player

Comments to the rules 1. TR4 is specified to state that both resulting object properties are part of one
UML Association.
2. Regarding VR1: A binary Association between two different Classes may not
be asymmetric. Please refer to Table 7 for explanation of asymmetric binary
Association from a Class to itself.
3. Regarding VR2: If the domain ontology contains ObjectPropertyDomain
specified for the same OPE but different CE than it is derived from the UML
class diagram, the Association is defined in the ontology but between different
Classes.
4. Regarding VR3: If the domain ontology contains ObjectPropertyRange
axiom specified for the given OPE but different CE than it is derived from the
UML class diagram, the Association is defined in the ontology but between
different Classes.

Limitations of the
mapping

1. UML Association has two important aspects. The first is related to its
existence and it can be transformed to OWL. It should be noted that UML
introduces an additional notation related to communication between objects.
The second one concerns navigability of the association ends which is
untranslatable because OWL does not offer any equivalent concept.
2. Both UML aggregation and composition can be only transformed to OWL as
regular Associations. This approach loses the specific semantics related to the
composition or aggregation, which is untranslatable to OWL.

Related works In [14–22, 25, 27], TR1–TR3 rules for the transformation of UML binary
association to object property domain and range are proposed. In [15, 20, 26],
TR4 rule is additionally proposed.
In [17, 20], a unidirectional association is transformed into one object property
and a bi-directional association into two object properties (one for each
direction). This interpretation does not seem to be sufficient because if an
association end is not navigable in UML 2.5, access from the other end may be
possible, but it might not be efficient ([2, page 198]).

Example Section 7 example 1 and 3

Table 7. Binary Association from the Class to itself and the defined rules

UML element Binary Association from a Class to itself
Description of UML
element

A binary Association [2] contains two memberEnds represented by Properties.
For transformation of multiplicity of the association ends, refer to Table 9.

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 77

Symbol of UML
element

Transformation rules TR1–TR4: The same as TR1–TR4 from Table 6. TR5: Specify
AsymmetricObjectProperty axiom for each UML association end
AsymmetricObjectProperty(:isPartOf)
AsymmetricObjectProperty(:isDividedInto)

Verification rules VR1 is the same as VR2 from Table 6.
VR2 is the same as VR3 from 6.

Comments to the rules 1. In TR2 domain and range of binary association is the same UML class. VR4
checks if the domain ontology does not specify a different domain or range for
the Association.
2. In TR5 object property OPE is defined as asymmetric. In OWL, if an
individual x is connected by OPE to an individually, then y cannot be connected
by OPE to x.

Limitations of the
mapping

The same as presented in Table 6.

Related works For TR1–TR4 related works are analogous as in Table 6, while TR5 is our
new proposition. In [15], the UML binary association from the Class to itself is
converted to OWL with the use of two ReflexiveObjectProperty axioms. We
do not share this approach because a specific association may be reflexive but in
the general case it is not true. The ReflexiveObjectProperty axiom states
that each individual is connected by OPE to itself. In consequence, it would
mean that every object of the class should be connected to itself. The UML
binary Association has a different meaning where the association ends have
different roles.

Example Section 7 example 2

Table 8. N -ary associations and the defined rules

UML element N -ary Association
Description of UML
element

UML n-ary Association [2] specifies the relationship between three or more
memberEnds represented by Properties. For transformation of UML multiplicity
of the association ends refer to Table 9.

Symbol of UML
element

Transformation rules Not possible to directly represent UML n-ary associations in OWL 2. The
following is a partial transformation based on the pattern presented in [32]. The
pattern requires creating a new class and N new properties to represent the n-ary
association. The figure below shows the corresponding classes and properties.

78 Małgorzata Sadowska, Zbigniew Huzar

TR1: Specify declaration axiom for the new class which represent the n-ary
association (declaration axioms for other classes are added following Table 2)
Declaration(Class(:Schedule))
TR2: Specify declaration axiom(s) for object properties
Declaration(ObjectProperty(:student))
Declaration(ObjectProperty(:course))
Declaration(ObjectProperty(:lecturer))
TR3: Specify object property domains for association ends
ObjectPropertyDomain(:student :Student)
ObjectPropertyDomain(:course :Course)
ObjectPropertyDomain(:lecturer :Lecturer)
TR4: Specify object property ranges for association ends
ObjectPropertyRange(:student :Schedule)
ObjectPropertyRange(:course :Schedule)
ObjectPropertyRange(:lecturer :Schedule)
TR5: Specify SubClassOf(CE1ObjectSomeValuesFrom(OPE CE2))
axioms, where CE1 is a newly added class, OPE are properties representing the
UML Association and CE2 are corresponding UML Classes
SubClassOf(:Schedule ObjectSomeValuesFrom(:student :Student))
SubClassOf(:Schedule ObjectSomeValuesFrom(:course :Course))
SubClassOf(:Schedule ObjectSomeValuesFrom(:lecturer :Lecturer))

Verification rules None
Limitations of the
mapping

Properties in OWL 2 are only binary relations. Three solutions to represent an
n-ary relation in OWL are presented in W3C Working Group Note [32] in a form
of ontology patterns. Among the proposed solutions for n-ary association, we
selected one the most appropriate to UML and we supplemented it by adding
unlimited “*” multiplicity at every association end of the UML n-ary association.

Related works The transformation rules (TR1, TR2, TR5) of a n-ary association base on the
pattern proposed in [32]. TR3, TR4 complement the rules, analogically as it is
in binary associations. In [15], a partial transformation for n-ary association is
proposed, but one rule should be modified because an object property expression
is used in the place of a class expression.

Table 9. Multiplicity of association ends and the defined rules

UML element Multiplicity of Association ends
Description of UML
element

Description of multiplicity is presented in Table 5 (multiplicity of attributes). If
no multiplicity of association end is defined, the UML specification implies
a multiplicity of 1.

Symbol of UML
element
Transformation rules TR1: For each association end with the multiplicity different than “*” specify

axiom:
SubClassOf(:ClassName multiplicityExpression)

We define multiplicityExpression as one of class expressions: A, B, C or D:
A. an ObjectExactCardinality if UML MultiplicityElement has lower-bound
equal to its upper-bound, e.g. “1..1”, which is semantically equivalent to “1”.
B. an ObjectMinCardinality class expression if UML MultiplicityElement
has lower-bound of Integer type and upper-bound of unlimited upper-bound,
e.g. “2..*”.
C. an ObjectIntersectionOf consisting of ObjectMinCardinality and
ObjectMaxCardinality class expressions if UML MultiplicityElement has
lower-bound of Integer type and upper-bound of Integer type, e.g. “4..6”.

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 79

D. an ObjectUnionOf consisting of a combination of ObjectIntersectionOf
class expressions (if needed) OR ObjectExactCardinality class expressions
(if needed) OR one ObjectMinCardinality class expression (if the last range
has an unlimited upper-bound), if UML MultiplicityElement has more value
ranges specified, e.g. “2, 4..6, 8..9, 15..*”.
The following is a result of application of TR1 to the above diagram:
SubClassOf(:Leaf ObjectExactCardinality(1 :flower :Flower))
SubClassOf(:Flower ObjectUnionOf(

ObjectExactCardinality(2 :leaf :Leaf)
ObjectIntersectionOf(ObjectMinCardinality(4 :leaf :Leaf)
ObjectMaxCardinality(6 :leaf :Leaf))))

TR2: Specify FunctionalObjectProperty axiom if a multiplicity of the
association end equals 1.
FunctionalObjectProperty(:flower)

Verification rules VR1: The rule is defined with the use of the SPARQL query (only applicable
for multiplicities with maximal upper-bound not equal “*”).
SELECT ?vioInd (count (?range) as ?n)
WHERE { ?vioInd :leaf ?range } GROUP BY ?vioInd
HAVING (?n > maxUpperBoundValue)

where maxUpperBoundValue is a maximal upper-bound value of the multiplicity
range. If the query returns a number greater than 0, it means that UML
multiplicity is in contradiction with the domain ontology (?vioInd lists
individuals that cause the violation).
The following is a result of application of VR1 to the above diagram:
maxUpperBoundValue for flower : 1
SPARQL query for flower :
SELECT ?vioInd (count (?range) as ?n)
WHERE { ?vioInd :flower ?range } GROUP BY ?vioInd
HAVING (?n > 1)
maxUpperBoundValue for leaf : 6
SPARQL query for leaf :
SELECT ?vioInd (count (?range) as ?n)
WHERE { ?vioInd :leaf ?range } GROUP BY ?vioInd
HAVING (?n > 6)
VR2: Check if the domain ontology contains SubClassOf axiom, which
specifies CE with different multiplicity of association ends than is derived from
the UML class diagram.
SubClassOf(:Leaf CE)
SubClassOf(:Flower CE)

Comments to the rules 1. The TR1, TR2 and VR1 rules are explained in Table 5.
2. Regarding TR2: The FunctionalObjectProperty axiom states that each
individual can have a maximum of one outgoing connection of the specified
object property expression.
3. The rule VR2 verifies whether or not the ontology contains axioms, which
describe multiplicity of association ends different than multiplicity specified in
the UML class diagram.
4. We have considered one additional validation rule for checking if the domain
ontology contains FunctionalObjectProperty axiom specified for the
association end which multiplicity is different from 1:
FunctionalObjectProperty(:leaf)

However, after analyzing of this rule, it would never be triggered. This is caused
by the fact that the violation of cardinality is checked by TR1 rule. And
specifying FunctionalObjectProperty axiom in the ontology along with the
transformation axiom describing cardinality different than 1, makes the ontology
inconsistent.

80 Małgorzata Sadowska, Zbigniew Huzar

Related works The related works present partial solutions for multiplicity of association ends.
In [14, 18, 19, 26], the multiplicity of an association end is mapped to
SubClassOf axiom containing a single ObjectMinCardinality or
ObjectMaxCardinality class expression. In [17], ObjectExactCardinality
expression is also considered and TR2 rule is additionally proposed. In
[12, 13, 15, 21, 22, 24], multiplicity is only suggested to be transformed into
OWL cardinality restrictions.

Example Section 7 example 1, 2 and 3

Table 10. Association class (the association is between two different classes) and the defined rules

UML element AssociationClass (the Association is between two different Classes)
Description of UML
element

AssociationClass [2] is both an Association and a Class, and preserves the
semantics of both. Table 11 presents AssociationClass in the case when
association is from a UML Class to itself.

Symbol of UML
element

Transformation rules The binary association between Person and Company UML classes should be
transformed to OWL in accordance with the transformations TR1, TR3–TR4
from Table 6. The object property ranges should be specified in accordance with
TR2 from Table 6. The transformation of object property domains between
Person and Company UML classes should be transformed with TR1 rule below.
Transformation of multiplicity of the association ends are specified in Table 9.
The attributes of the UML association class :Job should be specified in
accordance with the transformation rules presented in Table 4. If multiplicity of
attributes is specified, it should be transformed in accordance with the guidelines
from Table 5. TR1: Specify object property domains for Association ends
ObjectPropertyDomain(:person ObjectUnionOf(:Company :Job))
ObjectPropertyDomain(:company ObjectUnionOf(:Person :Job))
TR2: Specify declaration axiom for UML association class as OWL Class:
Declaration(Class(:Job))
TR3: Specify declaration axiom for object property of UML AssociationClass
Declaration(ObjectProperty(:job))
TR4: Specify object property domain for UML AssociationClass
ObjectPropertyDomain(:job ObjectUnionOf(:Person :Company))
TR5: Specify object property range for UML association class
ObjectPropertyRange(:job :Job)

Verification rules VR1: Check if :Job class has the HasKey axiom defined in the domain
ontology.
HasKey(:Job (OPE1 . . .OPEm) (DPE1 . . .DPEn))
VR2: Check if the domain ontology contains ObjectPropertyDomain axiom
specified for a given OPE (from Association ends and AssociationClass) but
different CE than is derived from the UML class diagram.
ObjectPropertyDomain(:personCE),

where CE 6=ObjectUnionOf(:Company :Job),
ObjectPropertyDomain(:company CE),

where CE 6=ObjectUnionOf(:Person :Job)
ObjectPropertyDomain(:job CE),

where CE 6=ObjectUnionOf(:Person :Company)

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 81

VR3: Check if the domain ontology contains ObjectPropertyRange axiom
specified for the same object property of UML association class but different CE
than it is derived from the UML class diagram.
ObjectPropertyRange(:job CE), where CE 6= :Job

Comments to the rules 1. The proposed transformation of UML association class covers both the
semantics of the UML class (TR1–TR2, plus the transformation of attributes
possibly with multiplicity), as well as UML Association (TR3–TR5, plus the
transformation of multiplicity of Association ends).
2. Regarding TR1 and TR3: The domain of the specified property is restricted
to those individuals that belong to the union of two classes.
3. Explanation of VR1 is analogous to VR1 from Table 2.
4. VR2 checks if the UML Association and AssociationClass is specified
correctly with respect to the domain ontology. VR3 checks if the domain
ontology does not specify a different range for the AssociationClass.

Related works TR1, TR3–TR5 transformation rules of the UML association class to OWL
are original propositions and the proposed transformations to OWL cover full
semantics of the UML AssociationClass.
The literature [14, 15, 25] present only partial solutions for transforming UML
association classes. In [14], it is only suggested that UML AssociationClass be
transformed with the use of the named class (here: Job) and two functional
properties that demonstrate associations (here: Job–Person and Job–Company).
In [15, 25] some rules are with an unclear notation, more precisely
AssociationClass is transformed to OWL with the use of TR2 rule and a set of
mappings which base on a specific naming convention.

Example Section 7 example 3

Table 11. Association class (the Association is from a UML Class to itself) and the defined rules

UML element AssociationClass (the Association is from a UML Class to itself)
Description of UML
element

AssociationClass [2] is both an Association and a Class, and preserves the
semantics of both. Table 10 presents AssociationClass in the case when
association is between two different classes.

Symbol of UML
element

Transformation rules All comments presented in Table 10 in TR section are applicable also for
AssociationClass where association is from a UML Class to itself. Additionally,
TR5 from Table 7 has to be specified.
Transformation rules TR1, TR2, TR3 and TR5 are the same as TR1, TR2,
TR3 and TR5 from Table 10. Except for TR4, which has form:
TR4: Specify object property domain for UML AssociationClass
ObjectPropertyDomain(:employment :Job)

Verification rules VR1 and VR3: The same as VR1 and VR3 from Table 10.
VR2: Check if the domain ontology contains ObjectPropertyDomain axiom
specified for a given OPE (from Association ends and AssociationClass)
but different CE than is derived from the UML class diagram.
ObjectPropertyDomain(:boss CE),

where CE 6=ObjectUnionOf(:Job :Employment),
ObjectPropertyDomain(:worker CE),

where CE 6=ObjectUnionOf(:Job :Employment)
ObjectPropertyDomain(:employment CE), where CE 6= :Job

82 Małgorzata Sadowska, Zbigniew Huzar

Comments to the rules The same as presented in Table 10.
Related works The same as presented in Table 10.

5.3. Transformation of UML generalization relationship

Table 12. Generalization between classes and the defined rules

UML element Generalization between Classes
Description of UML
element

Generalization [2] defines specialization relationship between Classifiers. In case
of UML classes it relates a more specific Class to a more general Class.

Symbol of UML
element
Transformation rules TR1: Specify SubClassOf(CE1 CE2) axiom for the generalization between

UML classes, where CE1 represents a more specific and CE2 a more general
UML Class.
SubClassOf(:Manager :Employee)

Verification rules VR1: Check if the domain ontology contains SubClassOf(CE2 CE1) axiom
specified for classes, which take part in the generalization relationship, where
CE1 represents a more specific and CE2 a more general UML Class.
SubClassOf(:Employee :Manager)

Related works In [15, 17–19, 21–23, 25–27, 29] TR1 is specified. In [12, 13], generalizations are
only suggested to be transformed to OWL with the use of SubClassOf axiom.

Example Section 7 example 1 and 2.

Table 13. Generalization between associations and the defined rules

UML element Generalization between Associations
Description of UML
element

Generalization [2] defines specialization relationship between Classifiers. In case
of the UML associations it relates a more specific Association to more general
Association.

Symbol of UML
element

Transformation rules TR1: Specify two SubObjectPropertyOf(OPE1 OPE2) axioms for the
generalization between UML Association, where OPE1 represents a more specific
and OPE2 a more general association end connected to the same UML Class.
SubObjectPropertyOf(:manages :works)
SubObjectPropertyOf(:boss :employee)

Verification rules VR1: Check if the domain ontology contains SubObjectPropertyOf(OPE2
OPE1) axiom specified for associations, which take part in the generalization
relationship, where OPE1 represents a more specific and OPE2 a more general
UML association end connected to the same UML Class.
SubObjectPropertyOf(:works :manages)
SubObjectPropertyOf(:employee :boss)

Related works In [15, 17, 18, 26, 27, 29], TR1 rule is proposed additionally with two
InverseObjectProperties axioms (one for each association). This table does
not add a transformation rule for InverseObjectPropertie axioms because
the axioms were already added while transforming binary associations (see
Tables 6, 7.

Example Section 7 example 1

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 83

Table 14. GeneralizationSet with {incomplete, disjoint} constraints and the defined rules

UML element GeneralizationSet with {incomplete, disjoint} constraints
Description of UML
element

UML GeneralizationSet [2] groups generalizations; incomplete and disjoint
constraints indicate that the set is not complete and its specific Classes have no
common instances.

Symbol of UML
element

Transformation rules TR1: Specify DisjointClasses axiom for every pair of more specific Classes in
the Generalization.
DisjointClasses(:Dog :Cat)

Verification rules VR1: Check if the domain ontology contains any of SubClassOf(CE1 CE2)
or SubClassOf(CE2 CE1) axioms specified for any pair of more specific
Classes in the Generalization.
SubClassOf(:Dog :Cat)
SubClassOf(:Cat :Dog)

Comments to the rules 1. TR and VR for Generalization between UML Classes are specified in
Table 12.
2. Regarding TR1: the DisjointClasses(CE1 CE2) axiom states that no
individual can be at the same time an instance of both CE1 and CE2 for CE1 6=
CE2.

Related works In [15, 17, 29], TR1 rule is proposed.

Table 15. GeneralizationSet with {complete, disjoint} constraints and the defined rules

UML element GeneralizationSet with {complete, disjoint} constraints
Description of UML
element

UML GeneralizationSet [2] is used to group generalizations; complete and
disjoint constraints indicate that the generalization set is complete and its
specific Classes have no common instances.

Symbol of UML
element

Transformation rules TR1: Specify DisjointUnion axiom for UML Classes within the
GeneralizationSet.
DisjointUnion(:Person :Man :Woman)

Verification rules VR1: Check if the domain ontology contains SubClassOf(CE1 CE2) or
SubClassOf(CE2 CE1) axioms specified for any pair of more specific Classes
in the Generalization.
SubClassOf(:Man :Woman)
SubClassOf(:Woman :Man)
VR2: Check if the domain ontology contains DisjointUnion(C CE1.. CEN)
axiom specified for the given more general UML Class (here :Person) and at
least one more specific UML Class different than those specified on the UML
class diagram.

84 Małgorzata Sadowska, Zbigniew Huzar

DisjointUnion(:Person CE1.. CEN)
Comments to the rules 1.TR and VR for Generalization between UML Classes are specified in

Table 12.
2. VR2 checks if the GeneralizationSet with {complete, disjoint} constraints is
defined correctly with respect to domain ontology.

Related works In [15, 17, 29], TR1 is proposed.
Example Section 7 example 2

Table 16. GeneralizationSet with {incomplete, overlapping} constraints and the defined rules

UML element GeneralizationSet with {incomplete, overlapping} constraints
Description of UML
element

UML GeneralizationSet [2] is used to group generalizations; incomplete and
overlapping constraints indicate that the generalization set is not complete and
its specific Classes do share common instances. If no constraints of
GeneralizationSet are specified, {incomplete, overlapping} are assigned as default
values ([2, p. 119]).

Symbol of UML
element

Transformation rules None
Verification rules VR1: Check if the domain ontology contains DisjointClasses(CE1 CE2)

axiom specified for any pair of more specific Classes in the Generalization.
DisjointClasses(:ActionMovie :HorrorMovie)

Comments to the rules 1. TR and VR for Generalization between UML Classes are specified in
Table 12.
2. OWL follows Open World Assumption and by default incomplete knowledge
is assumed, hence the UML incomplete and overlapping constraints of
GeneralizationSet do not add any new knowledge to the ontology, so no TR are
specified.
3. UML overlapping constraint states that specific UML Classes in the
Generalization do share common instances. Therefore, the DisjointClasses
axiom is a verification rule VR1 for the constraint (the axiom assures that no
individual can be at the same time an instance of both classes).

Related works None

Table 17. GeneralizationSet with {complete, overlapping} constraints and the defined rules

UML element GeneralizationSet with {complete, overlapping} constraints
Description of UML
element

UML GeneralizationSet [2] is used to group generalizations; complete and
overlapping constraints indicate that the generalization set is complete and its
specific Classes do share common instances.

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 85

Symbol of UML
element

Transformation rules TR1: Specify EquivalentClasses axiom for UML Classes within the
GeneralizationSet.
EquivalentClasses(:User ObjectUnionOf(:Root :RegularUser))

Verification rules VR1: Check if the domain ontology contains DisjointClasses(CE1 CE2)
axiom specified for any pair of more specific Classes in the Generalization.
DisjointClasses(:Root :RegularUser)
VR2: Check if the domain ontology contains EquivalentClasses axiom
specified for the given more general UML Class (here :User) and
ObjectUnionOf containing at least one UML Class different than specified on
the UML class diagram for the more specific classes.
EquivalentClasses(:User ObjectUnionOf(CE1..CEN)), where
ObjectUnionOf(CE1..CEN) 6=ObjectUnionOf(:Root :RegularUser)

Comments to the rules 1. TR and VR for Generalization between UML Classes are specified in
Table 12.
2. Explanation for VR1 is presented in Table 16.
3. VR2 checks if the GeneralizationSet with {complete, overlapping} constraint
is compliant with the domain ontology.

Related works In [15], TR1 rule is defined with additional DisjointClasses(:Dog :Cat)
axiom. However, the DisjointClasses axiom should not be specified for the
UML Classes which may share common instances.

5.4. Transformation of UML data types

Table 18. Primitive types and the defined rules

UML element PrimitiveType
Description of UML
element

The UML PrimitiveType [2] defines a predefined DataType without any
substructure. The UML specification [2] predefines five primitive types: String,
Integer, Boolean, UnlimitedNatural and Real.

Symbol of UML
element
Transformation rules It is impossible to define unambiguously the transformation of UML String and

UML Real type, therefore, the decision on the final transformation is left to the
modeller. The proposed transformations for the two types base on their
similarity in UML 2.5 and OWL 2 languages.
The transformation between UML predefined primitive types and OWL 2
datatypes:
TR1: UML String has only a similar OWL 2 type: xsd:string
String types in the sense of UML and OWL are countable sets. It is possible to
define an infinite number of equivalence functions, which is left to the user,
wherein, the UML is imprecise as to what the accepted characters are.
TR2: UML Integer has an equivalent OWL 2 type: xsd:integer
TR3: UML Boolean has an equivalent OWL 2 type: xsd:boolean
TR4: UML Real has two similar OWL 2 types: xsd:float and xsd:double
Both UML and OWL 2 languages describe types that are subsets of the set of

86 Małgorzata Sadowska, Zbigniew Huzar

real numbers. The subsets are countable. If one accepts a 32 or 64-bit precision
of UML Real type, they will obtain an appropriate compatibility with OWL 2
xsd:float or xsd:double types.
TR5: UML UnlimitedNatural can be explicitly defined in OWL 2 as:
DatatypeDefinition(:UnlimitedNatural

DataUnionOf(xsd:nonNegativeInteger
DataOneOf("∗"∧∧xsd:string)))

Verification rules None
Comments to the rules The UML specification [2] on page 717 defines the semantics of five predefined

PrimitiveTypes. The specification of OWL 2 [30] also offers predefined datatypes
(many more than UML).
TR1: An instance of UML String [2] defines a sequence of characters. Character
sets may include non-Roman alphabets. On the other hand, OWL 2 supports
xsd:string defined in XML Schema [33]. The value space of xsd:string [33] is
a set of finite-length sequences of zero or more characters that match the Char
production from XML, where Char is any Unicode character, excluding the
surrogate blocks, FFFE, and FFFF. The cardinality of xsd:string is defined as
countably infinite. Due to the fact that the ranges of characters differ, UML
String and OWL 2 xsd:string are only similar datatypes.
TR2: An instance of UML Integer [2] is a value in the infinite set of integers
(. . . ,−2,−1, 0, 1, 2, . . .). OWL 2 supports xsd:integer defined in XML Schema
[33]. The value space of xsd:integer is an infinite set {. . . ,−2,−1, 0, 1, 2, . . .}.
The cardinality is defined as countably infinite. The UML Integer and OWL 2
xsd:integer types can be seen as equivalent.
TR3: An instance of UML Boolean [2] is one of the predefined values: true and
false. OWL 2 supports xsd:boolean defined in XML Schema [33], which
represents the values of two-valued logic :{true, false}. The lexical space of
xsd:boolean is a set of four literals: ‘true’, ‘false’, ‘1’ and ‘0’ but the lexical
mapping for xsd:boolean returns true for ‘true’ or ‘1’, and false for ‘false’ or ‘0’.
Therefore the UML Boolean and xsd:boolean types can be seen as equivalent.
TR4: An instance of UML Real [2] is a value in the infinite set of real numbers.
Typically [2] an implementation will internally represent Real numbers using
a floating point standard such as ISO/IEC/IEEE 60559:2011, whose content is
identical [2] to the predecessor IEEE 754 standard. On the other hand, OWL 2
supports xsd:float and xsd:double, which are defined in XML Schema [33].
The xsd:float [33] is patterned after the IEEE single-precision 32-bit floating
point datatype IEEE 754-2008 and the xsd:double [33] after the IEEE
double-precision 64-bit floating point datatype IEEE 754-2008. The value space
contains the non-zero numbers m× 2e, where m is an integer whose absolute
value is less than 253 for xsd:double (or less than 224 for xsd:float), and e is
an integer between −1074 and 971 for xsd:double (or between −149 and 104
for xsd:float), inclusive. Due to the fact that the value spaces differ, UML Real
and OWL 2 xsd:double (or xsd:float) are only similar datatypes.
TR5: An instance of UML UnlimitedNatural [2] is a value in the infinite set of
natural numbers (0, 1, 2. . .) plus unlimited. The value of unlimited is shown
using an asterisk (‘*’). UnlimitedNatural values are typically used [2] to denote
the upper-bound of a range, such as a multiplicity; unlimited is used whenever
the range is specified as having no upper-bound. The UML UnlimitedNatural can
be defined in OWL and added to the ontology as a new datatype (TR5).

Related works The related works are not precise with respect to the transformation of primitive
types. In [17, 27–29], some mappings of UML and OWL types are only
mentioned.

Example Section 7 example 2

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 87

Table 19. Structured data types and the defined rules

UML element Structured DataType
Description of UML
element

The UML structured DataType [2] has attributes and is used to define complex
data types.

Symbol of UML
element

Transformation rules TR1: Specify declaration axiom for UML data type as OWL class:
Declaration(Class(:FullName))
TR2: Specify declaration axiom(s) for attributes – as OWL data or object
properties respectively (see Table 4 for more information regarding attributes)
Declaration(DataProperty(:firstName))
Declaration(DataProperty(:secondName))
TR3: Specify data (or object) property domains for attributes
DataPropertyDomain(:firstName :FullName)
DataPropertyDomain(:secondName :FullName)
TR4: Specify data (or object) property ranges for attributes (OWL 2 datatypes
for UML primitive types are defined in Table 18)
DataPropertyRange(:firstName xsd:string)
DataPropertyRange(:secondName xsd:string)
TR5: Specify HasKey axiom for the UML data type expressed in OWL with
the use of a class uniquely identified by the data and/or object properties.
HasKey(:FullName () (:firstName :secondName))

Verification rules VR1: Check if the domain ontology contains DataPropertyDomain axiom
specified for DPE where CE is different than given UML structured DataType
DataPropertyDomain(:firstName CE), where CE 6= :FullName
DataPropertyDomain(:secondName CE),

where CE 6= :FullName
VR2: Check if the domain ontology contains DataPropertyRange axiom
specified for DPE where CE is different than given UML PrimitiveType
DataPropertyRange(:firstName DR), where DR 6=xsd:string
DataPropertyRange(:secondName DR),

where DR 6=xsd:string
Comments to the rules 1. UML DataType [2] is a kind of Classifier, whose instances are identified only

by their values. All instances of a UML DataType with the same value are
considered to be equal [2]. A similar meaning can be assured in OWL with the
use of HasKey axiom. The HasKey axiom [30] assures that each instance of
the class expression is uniquely identified by the object and/or data property
expressions.
2. VR1 checks whether the data properties indicate that the UML attributes
are correct for the specified UML structured DataType.
3. VR2 checks whether the data properties indicate that the UML attributes of
the specified UML structured DataType have correctly specified PrimitiveTypes.

Limitations of the
mapping

Due to the fact that we define the UML structure DataType as an OWL Class
and not as an OWL Datatype (see Section 6.3 for further explanation), the
presented transformation results in some consequences. A limitation is posed by
the fact that the instances of the UML DataType are identified only by their
value [2], while the TR1 rule opens a possibility
of explicitly defining the named instances for the Entity in OWL.

Related works In [28, 29] TR1–TR5 rules and in [15] TR2–TR5 rules are proposed for the
transformation of UML structured DataType. In [17], it is only noted that UML
DataTypes can be defined in OWL with the use of DatatypeDefinition axiom

88 Małgorzata Sadowska, Zbigniew Huzar

but no example is provided. The related works specify exclusively the data
properties as attributes of the structured data types in TR2. We extend the
state-of-the-art TR2 transformation rule by the possibility of defining also
object properties, wherever needed (see Table 4).

Example Section 7 example 2

Table 20. Enumeration and the defined rules

UML element Enumeration
Description of UML
element

UML Enumerations [2] are kinds of DataTypes, whose values correspond to one
of user-defined literals.

Symbol of UML
element

Transformation rules TR1: Specify declaration axiom for UML Enumeration as OWL Datatype:
Declaration(Datatype(:VisibilityKind))
TR2: Specify DatatypeDefinition axiom including the named Datatype
(here :VisibilityKind) with a data range in a form of a predefined enumeration of
literals (DataOneOf).
DatatypeDefinition(:VisibilityKind

DataOneOf(‘‘public’’ ‘‘private’’ ‘‘ protected ’’ ‘‘ package’’))
Verification rule VR1: Check if the list of user-defined literals in the Enumeration on the class

diagram is correct and complete with respect to the OWL datatype definition for
:VisibilityKind included in the domain ontology.
The SPARQL query:
SELECT ?literal { :VisibilityKind owl:equivalentClass ?dt.

?dt a rdfs:Datatype ;
owl:oneOf/rdf:rest∗/rdf:first ?literal }

returns a list of literals of the enumeration from the domain ontology. The list of
literals should be compared with the list of user-defined literals on the class
diagram if the UML Enumeration includes a correct and complete list of literals.

Limitations of the
mapping

Enumerations [2] in UML are specializations of a Classifier and therefore can
participate in generalization relationships. OWL has no construct allowing for
generalization of datatypes. See Section 6.3 for further explanation.

Related works In [17, 20, 28, 29], UML Enumeration is transformed to OWL with the use of
TR1–TR2 rules.

5.5. Transformation of UML comments

Table 21. Comment and the defined rules

UML element Comment to the Class
Description of UML
element

In accordance with [2], every kind of UML Element may own Comments which
add no semantics but may represent information useful to the reader. In OWL it
is possible to define the annotation axiom for OWL Class, Datatype,
ObjectProperty, DataProperty, AnnotationProperty and
NamedIndividual. The textual explanation added to UML Class is identified
as useful for conceptual modelling [7], therefore the Comments that are
connected to UML Classes are taken into consideration in the transformation.

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 89

Symbol of UML
element
Transformation rules TR1: Specify annotation axiom for UML Comment

AnnotationAssertion(rdfs:comment
:Class ‘‘Class description ’’ ∧∧xsd:string)

Verification rule Not applicable
Comments to the rule As UML Comments add no semantics, they are not used in any method of

semantic validation [1]. In OWL the AnnotationAssertion [30] axiom does
not add any semantics either, and it only improves readability.

Related works The transformation of UML Comments in the context of mapping to OWL has
not been found in literature.

6. Influence of UML–OWL differences
on transformations

Obviously, OWL 2 and UML 2.5 languages differ
from each other.

In general, notice that OWL ontologies are
based on the Open World Assumption while
UML class diagrams are based on Closed World
Assumption. We can compare a UML class dia-
gram to a given OWL ontology assuming that
this ontology is in a given state. Examining that
the UML class diagram conforms to the OWL on-
tology we transform the diagram into equivalent
OWL representation and check if this representa-
tion forms a subset of the ontology. So, the notion
of semantic equivalence relates only to the UML
class diagram and its OWL representation.

The further part of the section focuses exclu-
sively on two selected differences which influence
the form of transformations.

6.1. Instances

OWL 2 defines several kinds of axioms: declara-
tions, axioms about classes, axioms about objects
and data properties, datatype definitions, keys,
assertions (used to state that individuals are
instances of, e.g. class expressions) and axioms
about annotations. What can be observed is that
the information about classes and their instances
(in OWL called individuals) coexists within a sin-
gle ontology.

On the other hand, in UML two different
kinds of diagrams are used in order to present the
classes and objects. UML defines object diagrams
which represent instances of class diagrams at

a certain moment in time. The object diagrams
focus on presenting attributes of objects and
relationships between objects.

Despite the fact that information about the
objects is not present in UML class diagrams,
verification rules in the form of SPARQL queries
take advantage of the knowledge about individu-
als in the domain ontology. The rules are useful in
validation of class diagrams against the selected
domain ontologies as they can check, for exam-
ple, if an abstract class is indeed abstract (does
not have any direct instances in ontology) or if
multiplicity restrictions are specified correctly.

6.2. Disjointness in OWL 2 and UML

In OWL 2 an individual can be an instance of
several classes [34]. It is also possible to state
that no individual can be an instance of selected
classes, which is called class disjointness. The
information that some specific classes are dis-
joint is part of domain knowledge which serves
a purpose of reasoning.

OWL specification emphasises [34]: In prac-
tice, disjointness statements are often forgotten
or neglected. The arguable reason for this could
be that intuitively, classes are considered dis-
joint unless there is other evidence. By omitting
disjointness statements, many potentially useful
consequences can get lost.

What can be observed in typical existing
OWL ontologies, axioms of disjointness (Dis-
jointClasses,DisjointObjectProperties and
DisjointDataProperties) are stated for classes,
object properties or data properties only for the
most evident situations. If disjointness is not

90 Małgorzata Sadowska, Zbigniew Huzar

specified, the semantics of OWL states that the
ontology does not contain enough information
that disjointness takes place. For example, it is
possible that the information is actually true but
it has not been included in the ontology.

On the other hand, in a UML class diagram
every pair of UML classes (which are not within
one generalization set with an overlapping con-
straint) is disjoint, where disjointness is under-
stood in the way that the classes have no common
instances. This aspect of UML semantics could be
mapped to OWL with the use of an extensive set
of additional transformations. The transforma-
tions would not be intuitive from the perspective
of OWL and should add a lot of unnecessary
information which might never be useful due to
the fact that, e.g. one should consider every pair
of classes on the diagram and add additional
axioms for it.

For the purpose of completeness of our revi-
sion, below we present transformation rules also
for disjointness:
– Transformation rule for disjointness of UML

classes (TRA): Specify DisjointClasses ax-
iom for every pair of UML Classes: CE1,
CE2 where CE1 6= CE2 and the pair is
not in the generalization relation or within
one generalization set with an overlap-
ping constraint. Comment: The TRA rule
for classes within a generalization relation-
ship was originally proposed in [17, 18,
20]. We have refined the rule in order to
cover only the pairs of classes which are
not only in a direct generalization rela-
tion but also not within one Generaliza-
tionSet with an overlapping constraint. This
is caused by the fact that the Generaliza-
tionSet with the overlapping constraint (see
Tables 16 and 17) defines specific Classes,
which do share common instances. Please
note that UML GeneralizationSet with dis-
joint constraint adds DisjointClasses ax-
ioms – either directly or indirectly through
DisjointUnion axiom (see Tables 14 and
15).

– Transformation rule for disjointness of UML
attributes (TRB): Specify DisjointObject-

Properties axiom for every pair OPE1,
OPE2 where OPE1 6= OPE2 of object prop-
erties within the same UML Class (domain
of both OPE1 and OPE2 is the same OWL
Class) and specify DisjointDataProper-
ties axiom for every pair DPE1, DPE2 where
DPE1 6= DPE2 of object properties within
the same UML Class (domain of both DPE1
and DPE2 is the same OWL Class).
Comment: The TRB rule is original proposi-
tion.

– Transformation rule for disjointness of UML
associations (TRC): Specify DisjointOb-
jectProperties axiom for every pair of asso-
ciation ends OPE1 and OPE2 where OPE1 6=
OPE2 and OPE1 is not generalized by OPE2
and OPE2 is not generalized by OPE1 and
domain and range of OPE1 and OPE2 are
the same classes.
Comment: In [17, 20], it is suggested that
DisjointObjectProperties and Disjoint-
DataProperties axioms for all properties
that are not in a generalization relationship
should be specified. In a general case this
suggestion is not clear, but we have modified
the rule to be applicable for UML associations
which are not in generalization relationship.
Even though the TRA, TRB and TRC rules
are reasonable from the point of view of cov-
ering semantics of a class diagram to OWL,
they have not been implemented in a tool
for validation of UML class diagram [4] due
to their questionable usefulness from the per-
spective of pragmatics. This is caused by the
fact that including these rules would lead
to a large increase in the number of axioms
in the ontology, which would increase the
computational complexity.

6.3. Concepts of class and datatype
in UML and OWL

OWL 2 allows specifying declaration axioms for
datatypes:
Declaration(Datatype(:DatatypeName))

However, the current specification of OWL 2
[30] does not offer any constructs neither to spec-

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 91

ify the internal structure of the datatypes, nor
the possibility to define generalization relation-
ships between the datatypes. Both are available
in UML 2.5.

Please note that the OWL HasKey, Data-
PropertyDomain and ObjectPropertyDo-
main axioms can only be defined for the class
expressions (not for the data ranges). Therefore
the TR2–TR5 rules in Table 19 can only be
specified if the UML structured DataType is de-
clared as an OWL Class. This transformation
has its consequences, which are presented in Ta-
ble 19.

If future extensions of the OWL language al-
low one to precisely define the internal structure
of datatypes, by analogy, as it is possible in UML,
the proposed transformation of UML structured
DataType presented in Table 19 should then be
modified. Additionally, if future extensions of the
OWL language allow one to define generalization
relationships between datatypes, the currently
valid limitation of the transformation of UML
Enumeration presented in Table 20 will no longer
be applicable.

7. Examples of UML–OWL
transformations

This section presents some examples of transfor-
mations of UML class diagrams to their equiv-

alent OWL representations. The UML class di-
agram examples are relatively small but cover
a number of different UML elements. For clarity
of reading, the examples include references to
tables from Section 5.

The order of transformations is arbitrary (the
resulting set of axioms will always be the same
despite the order) but we suggest to conduct the
transformations starting from Table 2 to Table 21.
In this way, all the classes with attributes will
be mapped to OWL first, then the associations
and generalization relationships and finally data
types and comments.

Each example includes two tables contain-
ing transformational and verificational part of
UML class diagram (e.g. in Example 1 there
are two tables: 22 and 23). Each verificational
part should be considered in the context of the
selected domain ontology. The Table 23 which
presents verificational part of the diagram from
Example 1 has been supplemented with addi-
tional comments of how each verificational ax-
iom or verificational query should be interpreted.
The comments and the ontological background
presented in Table 23 is also applicable to other
examples.

Example 1

Figure 1. Example 1 of UML class diagram (see Tables 22, 23)

92 Małgorzata Sadowska, Zbigniew Huzar

Table 22. Transformational part of UML class diagram from Example 1

Set of transformation axioms Transformation rules
Transformation of UML Classes
Declaration(Class(:A)) Table 2 TR1
Declaration(Class(:B))
Declaration(Class(:C))
Declaration(Class(:D))
Transformation of UML binary Associations between two different Classes
Declaration(ObjectProperty(:b)) Table 6 TR1
Declaration(ObjectProperty(:c))
Declaration(ObjectProperty(:cR1))
Declaration(ObjectProperty(:dR1))
Declaration(ObjectProperty(:cR2))
Declaration(ObjectProperty(:dR2))
ObjectPropertyDomain(:b :C)
ObjectPropertyDomain(:c :B)
ObjectPropertyDomain(:cR1 :D)
ObjectPropertyDomain(:dR1 :C)
ObjectPropertyDomain(:cR2 :D)
ObjectPropertyDomain(:dR2 :C)

Table 6 TR2

ObjectPropertyRange(:b :B)
ObjectPropertyRange(:c :C)
ObjectPropertyRange(:cR1 :C)
ObjectPropertyRange(:dR1 :D)
ObjectPropertyRange(:cR2 :C)
ObjectPropertyRange(:dR2 :D)

Table 6 TR3

InverseObjectProperties(:b :c)
InverseObjectProperties(:cR1 :dR1)
InverseObjectProperties(:cR2 :dR2)

Table 6 TR4

Transformation of UML multiplicity of Association ends
SubClassOf(:C ObjectExactCardinality(5 :b :B)) Table 9 TR1
SubClassOf(:B ObjectUnionOf(ObjectExactCardinality(7 :c :C)
ObjectIntersectionOf(ObjectMinCardinality(10 :c :C)
ObjectMaxCardinality(12 :c :C))))
SubClassOf(:C ObjectExactCardinality(1 :dR1 :D))
SubClassOf(:D ObjectExactCardinality(1 :cR1 :C))
SubClassOf(:C ObjectExactCardinality(1 :dR2 :D))
SubClassOf(:D ObjectExactCardinality(1 :cR2 :C))
FunctionalObjectProperty(:dR1)
FunctionalObjectProperty(:cR1)
FunctionalObjectProperty(:dR2)
FunctionalObjectProperty(:cR2)

Table 9 TR2

Transformation of UML Generalization between Classes
SubClassOf(:B :A) Table 12 TR1
Transformation of UML Generalization between Associations
SubObjectPropertyOf(:cR2 :cR1)
SubObjectPropertyOf(:dR2 :dR1)

Table 13 TR1

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 93

Table 23. Verificational part of UML class diagram from Example 1

Verificational part of UML class diagram Verification rules
Transformation of UML Classes
If the domain ontology contains any HasKey axiom with any internal structure
(OPE1,. . . , DPE1. . .) defined for :A, :B, :C or :D UML Class, the element should be
UML structured DataType not UML Class.

Table 2 VR1

HasKey(:A (OPE1 . . .OPEmA) (DPE1 . . .DPEnA))
HasKey(:B (OPE1 . . .OPEmB) (DPE1 . . .DPEnB))
HasKey(:C (OPE1 . . .OPEmC) (DPE1 . . .DPEnC))
HasKey(:D (OPE1 . . .OPEmD) (DPE1 . . .DPEnD))
Transformation of UML binary Associations between two different Classes
If the domain ontology contains any of below defined AsymmetricObjectProperty
axioms, the defined UML Association is incorrect.
AsymmetricObjectProperty(:b)
AsymmetricObjectProperty(:c)
AsymmetricObjectProperty(:cR1)
AsymmetricObjectProperty(:dR1)
AsymmetricObjectProperty(:cR2)
AsymmetricObjectProperty(:dR2)

Table 6 VR1

If the domain ontology contains any of the below-defined ObjectPropertyDomain
axioms where class expression is different than the given UML Class, the Association
is defined in the ontology but between different Classes, than it is specified on the
diagram.

Table 6 VR2

ObjectPropertyDomain(:b CE), where CE 6= :C
ObjectPropertyDomain(:c CE), where CE 6= :B
ObjectPropertyDomain(:cR1 CE), where CE 6= :D
ObjectPropertyDomain(:dR1 CE), where CE 6= :C
ObjectPropertyDomain(:cR2 CE), where CE 6= :D
ObjectPropertyDomain(:dR2 CE), where CE 6= :C

If the domain ontology contains any of below-defined ObjectPropertyRange axioms
where the class expression is different than the given UML Class, the Association is
defined in the ontology but between different Classes.

Table 6 VR3

ObjectPropertyRange(:b CE), where CE 6= :B
ObjectPropertyRange(:c CE), where CE 6= :C
ObjectPropertyRange(:cR1 CE), where CE 6= :C
ObjectPropertyRange(:dR1 CE), where CE 6= :D
ObjectPropertyRange(:cR2 CE), where CE 6= :C
ObjectPropertyRange(:dR2 CE), where CE 6= :D
Transformation of UML multiplicity of Association ends
If the verification query returns a number greater than 0, it means that UML multiplicity
is in contradiction with the domain ontology (?vioInd lists individuals that cause the
violation).

Table 9 VR1

SELECT ?vioInd (count (?range) as ?n)
WHERE { ?vioInd :b ?range } GROUP BY ?vioInd
HAVING (?n > 5)
SELECT ?vioInd (count (?range) as ?n)
WHERE { ?vioInd :c ?range } GROUP BY ?vioInd
HAVING (?n > 12)
SELECT ?vioInd (count (?range) as ?n)
WHERE { ?vioInd :dR1 ?range } GROUP BY ?vioInd
HAVING (?n > 1)

94 Małgorzata Sadowska, Zbigniew Huzar

SELECT ?vioInd (count (?range) as ?n)
WHERE { ?vioInd :cR1 ?range } GROUP BY ?vioInd
HAVING (?n > 1)
SELECT ?vioInd (count (?range) as ?n)
WHERE { ?vioInd :dR2 ?range } GROUP BY ?vioInd
HAVING (?n > 1)
SELECT ?vioInd (count (?range) as ?n)
WHERE { ?vioInd :cR2 ?range } GROUP BY ?vioInd
HAVING (?n > 1)

If the domain ontology contains FunctionalObjectProperty axiom specified for the
association end which multiplicity is different from 1, the multiplicity is incorrect.
FunctionalObjectProperty(:b)
FunctionalObjectProperty(:c)

Table 9 VR2

If the domain ontology contains SubClassOf axiom, which specifies class expression
with different multiplicity of the association ends than is derived from the UML class
diagram, the multiplicity is incorrect.
SubClassOf(:C CE), where CE 6=ObjectExactCardinality(5 :b :B)
SubClassOf(:B CE), where
CE 6=ObjectUnionOf(ObjectExactCardinality(7 :c :C)

ObjectIntersectionOf(ObjectMinCardinality(10 :c :C)
ObjectMaxCardinality(12 :c :C)))

SubClassOf(:C CE), where CE 6=ObjectExactCardinality(1 :dR1 :D)
SubClassOf(:D CE), where CE 6=ObjectExactCardinality(1 :cR1 :C)
SubClassOf(:C CE), where CE 6=ObjectExactCardinality(1 :dR2 :D)
SubClassOf(:D CE), where CE 6=ObjectExactCardinality(1 :cR2 :C)

Table 9 VR3

Transformation of UML Generalization between Classes
If the domain ontology contains the defined SubClassOf axiom specified for Classes,
which take part in the generalization relationship, the generalization relationship should
be inverted on the diagram.
SubClassOf(:A :B)

Table 12 VR1

Transformation of UML Generalization between Associations
If the domain ontology contains the defined SubObjectPropertyOf axioms specified
for Association, which take part in the generalization relationship, the generalization
relationship should be inverted on the diagram.

Table 13 VR1

SubObjectPropertyOf(:cR1 :cR2)
SubObjectPropertyOf(:dR1 :dR2)

Example 2

Figure 2. Example 2 of UML class diagram (see Tables 24, 25)

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 95

Table 24. Transformational part of UML class diagram from Example 2

Set of transformation axioms Transformation rules
Transformation of UML Classes
Declaration(Class(:A)) Table 2 TR1
Declaration(Class(:B))
Declaration(Class(:C))
Declaration(Class(:D))
Transformation of UML attributes
Declaration(DataProperty(:a1)) Table 4 TR1
Declaration(ObjectProperty(:a2))
DataPropertyDomain(:a1 :A) Table 4 TR2
ObjectPropertyDomain(:a2 :A)
DataPropertyRange(:a1 xsd:integer) Table 4 TR3
ObjectPropertyRange(:a2 :T) Table 18 TR2
Transformation of UML multiplicity of attributes
SubClassOf(:A ObjectExactCardinality(2 :a2 :T)) Table 5 TR1
Transformation of UML binary Association from the Class to itself
Declaration(ObjectProperty(:aR1))
Declaration(ObjectProperty(:aR2)) Table 7 TR1
ObjectPropertyDomain(:aR1 :A)
ObjectPropertyDomain(:aR2 :A) Table 7 TR2
ObjectPropertyRange(:aR1 :A)
ObjectPropertyRange(:aR2 :A) Table 7 TR3
InverseObjectProperties(:aR1 :aR2) Table 7 TR4
AsymmetricObjectProperty(:aR1)
AsymmetricObjectProperty(:aR2)

Table 7 TR5

Transformation of UML multiplicity of Association ends
SubClassOf(:A ObjectExactCardinality(1 :aR1 :A)) Table 9 TR1
SubClassOf(:A ObjectExactCardinality(1 :aR2 :A))
FunctionalObjectProperty(:aR1) Table 9 TR2
FunctionalObjectProperty(:aR2)
Transformation of UML Generalization between Classes
SubClassOf(:B :A) Table 12 TR1
SubClassOf(:C :A)
SubClassOf(:D :A)
Transformation of UML GeneralizationSet with {complete, disjoint} constraints
DisjointUnion(:A :B :C :D) Table 15 TR1
Transformation of UML structured DataType
Declaration(Class(:T)) Table 19 TR1
Declaration(DataProperty(:t1)) Table 19 TR2
Declaration(DataProperty(:t2))
DataPropertyDomain(:t1 :T) Table 19 TR3
DataPropertyDomain(:t2 :T)
DataPropertyRange(:t1 xsd:string) Table 19 TR4
DataPropertyRange(:t2 xsd:boolean) Table 18 TR1

Table 18 TR3
HasKey(:T () (:t1 : t2)) Table 19 TR5

96 Małgorzata Sadowska, Zbigniew Huzar

Table 25. Verificational part of UML class diagram from Example 2

Verificational part of UML class diagram Verification rules
Transformation of UML Classes
HasKey(:A (OPE1 . . .OPEmA) (DPE1 . . .DPEnA))
HasKey(:B (OPE1 . . .OPEmB) (DPE1 . . .DPEnB))
HasKey(:C (OPE1 . . .OPEmC) (DPE1 . . .DPEnC))
HasKey(:D (OPE1 . . .OPEmD) (DPE1 . . .DPEnD))

Table 2 VR1

Transformation of UML attributes
DataPropertyDomain(:a1 CE), where CE 6=A
ObjectPropertyDomain(:a2 CE), where CE 6=A

Table 4 VR1

DataPropertyRange(:a1 DR), where
DR 6=xsd:integer ObjectPropertyRange(:a2 CE), where
CE 6= :T

Table 4 VR2
Table 18 TR2

Transformation of UML multiplicity of attributes
SELECT ?vioInd (count (?range) as ?n)
WHERE { ?vioInd :a2 ?range } GROUP BY ?vioInd
HAVING (?n > 2)

Table 5 VR1

SubClassOf(:A CE), where
CE 6=ObjectExactCardinality(2 :a2 :T)

Table 5 VR2

Transformation of UML binary Association from the Class to itself
ObjectPropertyDomain(:aR1 CE), where CE 6= :A
ObjectPropertyDomain(:aR2 CE), where CE 6= :A

Table 7 VR1

ObjectPropertyRange(:aR1 CE), where CE 6= :A
ObjectPropertyRange(:aR2 CE), where CE 6= :A

Table 7 VR2

Transformation of UML multiplicity of Association ends
SELECT ?vioInd (count (?range) as ?n) Table 9 VR1
WHERE { ?vioInd :aR1 ?range } GROUP BY ?vioInd
HAVING (?n > 1)
SELECT ?vioInd (count (?range) as ?n)
WHERE { ?vioInd :aR2 ?range } GROUP BY ?vioInd
HAVING (?n > 1)
SubClassOf(:A CE), where CE 6=ObjectExactCardinality(1 :aR1 :A)
SubClassOf(:A CE), where CE 6=ObjectExactCardinality(1 :aR2 :A)

Table 9 VR3

Transformation of UML Generalization between Classes
SubClassOf(:A :B)
SubClassOf(:A :C)
SubClassOf(:A :D)

Table 12 VR1

Transformation of UML GeneralizationSet with {complete, disjoint} constraints
SubClassOf(:B :C)
SubClassOf(:C :B)
SubClassOf(:C :D)
SubClassOf(:D :C)
SubClassOf(:B :D)
SubClassOf(:D :B)

Table 15 VR1

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 97

Transformation of UML structured DataType
Check if the :T class is specified in the domain ontology as a subclass
(SubClassOf axiom) of any class expression, which does not have HasKey
axiom defined.

Table 19 VR1

Example 3

Figure 3. Example 3 of UML class diagram (see Tables 26 and 27)

Table 26. Transformational part of UML class diagram from Example 3

Set of transformation axioms Transformation rules
Transformation of UML Classes
Declaration(Class(:A))
Declaration(Class(:B))

Table 2 TR1

Transformation of UML attributes
Declaration(ObjectProperty(:d)) Table 4 TR1
ObjectPropertyDomain(:d :C) Table 4 TR2
ObjectPropertyRange(:d :D) Table 4 TR3
Transformation of UML binary Associations between two different Classes
Declaration(ObjectProperty(:a))
Declaration(ObjectProperty(:b))

Table 6 TR1

ObjectPropertyDomain(:a ObjectUnionOf(:B :C))
ObjectPropertyDomain(:b ObjectUnionOf(:A :C))

Table 6 TR2
Table 10 TR1

ObjectPropertyRange(:a :A)
ObjectPropertyRange(:b :B)

Table 6 TR3

InverseObjectProperties(:a :b) Table 6 TR4
Transformation of UML multiplicity of Association ends
SubClassOf(:A ObjectMinCardinality(2 :b :B)) Table 9 TR1
Transformation of UML AssociationClass
Declaration(Class(:C)) Table 10 TR2
Declaration(ObjectProperty(:c)) Table 10 TR3
ObjectPropertyDomain(:c ObjectUnionOf(:A :B)) Table 10 TR4
ObjectPropertyRange(:c :C) Table 10 TR5

98 Małgorzata Sadowska, Zbigniew Huzar

Table 27. Verificational part of UML class diagram from Example 3

Verificational part of UML class diagram Verification rules
Transformation of UML Classes
HasKey(:A (OPE1 . . .OPEm) (DPE1 . . .DPEn))
HasKey(:B (OPE1 . . .OPEm) (DPE1 . . .DPEn))

Table 2 VR1

Transformation of UML attributes
ObjectPropertyDomain(:d CE), where CE 6= :C Table 4 VR1
ObjectPropertyRange(:d CE), where CE 6= :D Table 4 VR2
Transformation of UML binary Associations between two different Classes
AsymmetricObjectProperty(:a)
AsymmetricObjectProperty(:b)

Table 6 VR1

Transformation of UML multiplicity of Association ends
FunctionalObjectProperty(:a)
FunctionalObjectProperty(:b)

Table 9 VR2

SubClassOf(:A CE), where CE 6=ObjectMinCardinality(2 :b :B)
SubClassOf(:B CE), where CE = any explicitly specified multiplicity

Table 9 VR3

Transformation of UML AssociationClass
HasKey(:C (OPE1 . . .OPEm) (DPE1 . . .DPEn)) Table 10 VR1
ObjectPropertyDomain(:a CE), where CE 6=ObjectUnionOf(:B :C)
ObjectPropertyDomain(:b CE), where CE 6=ObjectUnionOf(:A :C)
ObjectPropertyDomain(:c CE), where CE 6=ObjectUnionOf(:A :B)

Table 10 VR2

ObjectPropertyRange(:c CE), where CE 6= :C Table 10 VR3

8. Tool support for validation
and automatic correction of
UML class diagrams

The transformation and verification rules pre-
sented in Section 5 have been implemented in
a tool. All the defined rules are proved to be fully
implementable. As a result, the tool allows one
to transform any UML class diagram built of dif-
ferent kinds of UML elements (listed in Section 5,
and selected based on their importance from the
perspective of pragmatics) to OWL 2 represen-
tation. In comparison to other available tools
which allow transforming UML class diagrams
to an OWL 2 representation, the range of the
transformed constructions is wider as it benefits
from the results of the conducted systematic
literature review and its analysis, revision and
extension.

Due to the fact that the tool is still under devel-
opment, the following webpage has been created
in which the tool with the installation instructions

will be later accessible: https://sourceforge.net/
projects/uml-class-diagrams-validation/

After the development and experiment phases
are finished, the tool will be made available on-
line.

The tool has been tested with a number of
test cases aimed to determine whether the tool
fully and correctly implemented the transforma-
tion and verification rules, as well as the vali-
dation method. At least one test case has been
prepared for every normalization, transformation
and verification rule. Additionally, a number of
test cases have been prepared to cover popular
assemblies of UML elements, e.g. an association
from a class to itself, an association between two
classes, two associations between two classes, two
associations between three classes, etc. Each rule
has been independently checked if it returns the
expected result. In total, the number of test cases
was as follows:
1. 80 test cases for ontology normalization rules,
2. 40 test cases for transformation rules,

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 99

3. 25 test cases for verification rules.
The tool passed all test cases.

The implementation of the transformation
and verification rules as well as the method of
validation explained in [1], resulted in a function-
ality of the tool allowing for validation if a UML
class diagram is compliant with the selected do-
main ontology. Furthermore, on the basis of the
result of validation, the tool automatically gen-
erates ontology-based suggestions for diagram
corrections. In [4], a few initial suggestions for
diagram corrections have been presented. The
initial list of suggestions has been revised and
extended, and currently the tool automatically
generates suggestions of two kinds:
1. What has to be corrected in the UML class

diagram in order for the diagram not to be

contradictory with the selected domain on-
tology (approximately 30 types of sugges-
tions – one for violation of every verification
rules plus one general suggestion listing in-
correct UML elements if a transformation
rule has caused the inconsistency in the do-
main ontology). This list of suggestions is
reported by the tool for the modeller and
strongly advised his or her attention (Exam-
ple 4 and 5).

2. Based on the domain ontology of what might
be additionally included in the class diagram
(9 types of suggestions). Whether or not to
consider this list of proposed suggestions is
for the modeller to decide. Depending on the
specific requirements, the suggestions may be
incorporated in the diagram (Example 6).

Example 4

Table 28. Example of what has to be corrected in the diagram based on the ontology:
abstract class verification

Suggestion: the class is not abstract
Axiom(s) in the OWL
domain ontology

Declaration(Class(:Town))
ClassAssertion(:Town :Madrid)

Element on the
UML class diagram
Result of validation:

100 Małgorzata Sadowska, Zbigniew Huzar

Example 5

Table 29. Example of what has to be corrected in the diagram based on the ontology:
enumeration verification

Suggestion: the enumeration is incorrectly defined
Axiom(s) in the OWL
domain ontology

DatatypeDefinition(:AccommodationRating
DataOneOf(‘‘OneStarRating’’ ‘‘TwoStarRating’’ ‘‘ThreeStarRating’’

‘‘ FourStarRating’’ ‘‘ FiveStarRating’’))

Element on the
UML class diagram

Result of validation:

Example 6

Table 30. Example of what may be incorporated in the diagram based on the ontology:
attribute verification

Suggestion: Insert missing attribute, missing type of attribute or missing multiplicity of attribute
Axiom(s) in the OWL
domain ontology

Declaration(Class(:Contact))
ObjectPropertyDomain(:person :Contact)
ObjectPropertyRange(:person :FullName)
Declaration(Class(:FullName))
DataPropertyDomain(:firstName :FullName)
DataPropertyRange(:firstName xsd:string)
DataPropertyDomain(:secondName :FullName)
DataPropertyRange(:secondName xsd:string)
HasKey(:FullName () (:firstName :secondName))
Declaration(DataProperty(:hasEMail))
DataPropertyDomain(:hasEMail :Contact)
DataPropertyRange(:hasEMail xsd:string)

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 101

Declaration(DataProperty(:hasStreet))
DataPropertyDomain(:hasStreet :Contact)
DataPropertyRange(:hasStreet xsd:string)
Declaration(DataProperty(:hasCity))
DataPropertyDomain(:hasCity :Contact)
DataPropertyRange(:hasCity xsd:string)
Declaration(DataProperty(:lastUpdate))
DataPropertyDomain(:lastUpdate :Contact)
DataPropertyRange(:lastUpdate xsd:dateTime)
SubClassOf(:Contact DataExactCardinality(1 :lastUpdate))

Element on the
UML class diagram

Legend:
white rows – suggestions of UML elements which might be included in the class diagram
grey rows – UML elements already included in the class diagram

9. Conclusions

The paper presents rules for transforming UML
class diagrams to their OWL 2 representations.
All the static elements of UML class diagrams
commonly used in business or conceptual mod-
elling have been considered. The vast majority of
the elements can be fully transformed to OWL 2
constructs. The presented transformation rules
result from an in-depth analysis and extension
of the state-of-the-art transformation rules iden-
tified through a systematic literature review. In
total, 41 transformation rules have been described
(not counting our complementation to the rules of
disjointness presented in Section 6). 25 transforma-
tion rules have been directly extracted from the lit-
erature, 8 rules originate in the literature but have
been extended by us in order to reflect the seman-
tics of UML elements in OWL more precisely, and
8 transformation rules are our new propositions.

In addition to the transformation rules, we
have defined all the presented verification rules
(26 in total). The verification rules are aimed
at checking the compliance of the OWL repre-
sentation of UML class diagram with the given
OWL domain ontology. The described transfor-
mation and verification rules are crucial in the
method of semantic validation of UML class dia-
grams [1]. The approach validates automatically
if a selected class diagram is compliant with the
selected OWL 2 domain ontology.

The developed method and the tool are
a pragmatic attempt of bringing together the
differences in the philosophy of UML and OWL 2
languages. In order to make the process auto-
matic, the tool has been supplemented with all
the transformation and verification rules, and
has been tested with a wide range of test cases.
The inclusions to the tool are the result of prag-
matic thinking. For example, the implementa-

102 Małgorzata Sadowska, Zbigniew Huzar

tion allowed observing that it is worth extend-
ing the tool so that it automatically generates
ontology-based suggestions for diagram correc-
tions.

The tool already offers a range of new possi-
bilities for practical application of domain ontolo-
gies. However, as a consequence, the proposed
approach creates a need for greater involvement
of domain ontologies in modeling.

The research background of our considera-
tions can be supported by other publications, e.g.
[35–37]. The potential of reusing domain ontolo-
gies for the purpose of validation is promising and
may help the modelers through automation. The
choice of OWL is justified by the growing number
of the already created ontologies in this language.
For future work, the development of the tool is
planned to be finished soon. The next step of
work is preparation of experiment aimed at val-
idation of the tool and the method in practice.
The experiment is aimed to state the practicality
of our proposal.

References

[1] M. Sadowska and Z. Huzar, “Semantic validation
of UML class diagrams with the use of domain
ontologies expressed in OWL 2,” in Software
Engineering: Challenges and Solutions. Springer
International Publishing, 2016, pp. 47–59.

[2] Unified Modeling Language, Version 2.5, OMG,
2015. [Online]. http://www.omg.org/spec/UML/
2.5

[3] OWL 2 Web Ontology Language Document
Overview (Second Edition), W3C, 2012. [Online].
https://www.w3.org/TR/owl2-overview/

[4] M. Sadowska, “A prototype tool for semantic
validation of UML class diagrams with the use
of domain ontologies expressed in OWL 2,” in
Towards a Synergistic Combination of Research
and Practice in Software Engineering. Springer
International Publishing, 2017, pp. 49–62.

[5] M. Sadowska and Z. Huzar, “The method of nor-
malizing OWL 2 DL ontologies,” Global Journal
of Computer Science and Technology, Vol. 18,
No. 2, 2018, pp. 1–13.

[6] A. Korthaus, “Using UML for business ob-
ject based systems modeling,” in The Unified
Modeling Language. Physica-Verlag HD, 1998,
pp. 220–237.

[7] H.E. Eriksson and M. Penker, Business Model-
ing With UML: Business Patterns at Work. New
York, USA: John Wiley & Sons, Inc., 2000.

[8] E.D. Nitto, L. Lavazza, M. Schiavoni, E. Tra-
canella, and M. Trombetta, “Deriving executable
process descriptions from UML,” in Proceedings
of the 24th International Conference on Software
Engineering, ICSE ’02. New York, NY, USA:
ACM, 2002, pp. 155–165.

[9] C. Fu, D. Yang, X. Zhang, and H. Hu, “An ap-
proach to translating OCL invariants into OWL
2 DL axioms for checking inconsistency,” Auto-
mated Software Engineering, Vol. 24, No. 2, 2017,
pp. 295–339.

[10] B. Kitchenham and S. Charters, “Guidelines for
performing systematic literature reviews in soft-
ware engineering,” Keele University & Univer-
sity of Durham, EBSE Technical Report EBSE
2007-01, 2007.

[11] X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang,
“A map of threats to validity of systematic liter-
ature reviews in software engineering,” in 23rd
Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 2016, pp. 153–160.

[12] Z. Xu, Y. Ni, W. He, L. Lin, and Q. Yan,
“Automatic extraction of OWL ontologies from
UML class diagrams: a semantics-preserving ap-
proach,” World Wide Web, Vol. 15, No. 5, 2012,
pp. 517–545.

[13] Z. Xu, Y. Ni, L. Lin, and H. Gu, “A seman-
tics-preserving approach for extracting OWL on-
tologies from UML class diagrams,” in Database
Theory and Application, Communications in
Computer and Information Science. Berlin, Hei-
delberg: Springer, 2009, pp. 122–136.

[14] M. Mehrolhassani and A. Elçi, “Developing on-
tology based applications of semantic web us-
ing UML to OWL conversion,” in The Open
Knowlege Society. A Computer Science and In-
formation Systems Manifesto, Communications
in Computer and Information Science. Berlin,
Heidelberg: Springer, 2008, pp. 566–577.

[15] O. El Hajjamy, K. Alaoui, L. Alaoui, and M. Ba-
haj, “Mapping UML to OWL2 ontology,” Jour-
nal of Theoretical and Applied Information Tech-
nology, Vol. 90, No. 1, 2016, pp. 126–143.

[16] C. Zhang, Z.R. Peng, T. Zhao, and W. Li,
“Transformation of transportation data models
from Unified Modeling Language to Web Ontol-
ogy Language,” Transportation Research Record:
Journal of the Transportation Research Board,
Vol. 2064, No. 1, 2008, pp. 81–89.

[17] J. Zedlitz, J. Jörke, and N. Luttenberger, “From
UML to OWL 2,” in Knowledge Technology,

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 103

Communications in Computer and Informa-
tion Science. Berlin, Heidelberg: Springer, 2012,
pp. 154–163.

[18] A.H. Khan and I. Porres, “Consistency of UML
class, object and statechart diagrams using on-
tology reasoners,” Journal of Visual Languages
& Computing, Vol. 26, 2015, pp. 42–65.

[19] A.H. Khan, I. Rauf, and I. Porres, “Consistency
of UML class and statechart diagrams with state
invariants,” in Proceedings of the 1st Interna-
tional Conference on Model-Driven Engineer-
ing and Software Development, S. Hammoudi,
L.F. Pires, J. Filipe, and R.C. das Neves, Eds.,
Vol. 1. SciTePress Digital Library, 2013, p. 1–11.

[20] J. Zedlitz and N. Luttenberger, “Transforming
between UML conceptual models and OWL 2
ontologies,” in Terra Cognita 2012 Workshop,
Vol. 6, 2012, p. 15.

[21] W. Xu, A. Dilo, S. Zlatanova, and P. van Oost-
erom, “Modelling emergency response processes:
Comparative study on OWL and UML,” in
Proceedings of the Joint ISCRAM-CHINA and
GI4DM Conference, Harbin, China, 2008,
pp. 493–504.

[22] N. Gherabi and M. Bahaj, “A new method
for mapping UML class into OWL ontology,”
International Journal of Computer Applications
Special Issue on Software Engineering, Databases
and Expert Systems, Vol. SEDEXS, No. 1, 2012,
pp. 5–9. [Online]. https://research.ijcaonline.
org/sedex/number1/sedex1002.pdf

[23] H.S. Na, O.H. Choi, and J.E. Lim, “A method
for building domain ontologies based on the
transformation of UML models,” in Fourth In-
ternational Conference on Software Engineer-
ing Research, Management and Applications
(SERA’06), D.K. Baik, D. Primeaux, N. Ishii,
and R. Lee, Eds., IEEE, 2006, pp. 332–338.

[24] M. Bahaj and J. Bakkas, “Automatic conversion
method of class diagrams to ontologies maintain-
ing their semantic features,” International Jour-
nal of Soft Computing and Engineering, Vol. 2,
No. 6, 2013, pp. 65–69.

[25] A. Belghiat and M. Bourahla, “Transforma-
tion of UML models towards OWL ontologies,”
in 2012 6th International Conference on Sci-
ences of Electronics, Technologies of Informa-
tion and Telecommunications (SETIT), 2012,
pp. 840–846.

[26] S. Höglund, A.H. Khan, Y. Liu, and I. Porres,
“Representing and validating metamodels using
OWL 2 and SWRL,” in Proceedings of the 9th

Joint Conference on Knowledge-Based Software
Engineering, 2010.

[27] K. Kiko and C. Atkinson, “A detailed com-
parison of UML and OWL,” University of
Mannheim, Fakultät für Mathematik und In-
formatik, Lehrstuhl für Softwaretechnik, Tech.
Rep. TR-2008-004, 2008.

[28] J. Zedlitz and N. Luttenberger, “Data types in
UML and OWL-2,” in The Seventh International
Conference on Advances in Semantic Processing,
2013, pp. 32–35.

[29] J. Zedlitz and N. Luttenberger, “Conceptual
modelling in UML and OWL-2,” International
Journal on Advances in Software, Vol. 7, No. 1
& 2, 2014, pp. 182–196.

[30] OWL 2 Web Ontology Language Struc-
tural Specification and Functional-Style Syn-
tax (Second Edition), W3C, 2012. [Online].
https://www.w3.org/TR/owl2-syntax/

[31] OWL 2 Web Ontology Language New Features
and Rationale (Second Edition), W3C, 2012.
[Online]. https://www.w3.org/TR/owl2-new-
features/

[32] N. Noy and A. Rector, Defining N-ary Relations
on the Semantic Web, W3C, 2006. [Online]. https:
//www.w3.org/TR/swbp-n-aryRelations/

[33] W3C XML Schema Definition Language (XSD)
1.1 Part 2: Datatypes, W3C, 2012. [Online].
https://www.w3.org/TR/xmlschema11-2/

[34] OWL 2 Web Ontology Language Primer
(Second Edition), W3C, 2012. [Online].
https://www.w3.org/TR/owl2-primer/

[35] I. Dubielewicz, B. Hnatkowska, Z. Huzar, and
L. Tuzinkiewicz, “Domain modeling in the
context of ontology,” Foundations of Computing
and Decision Sciences, Vol. 40, No. 1, 2015,
pp. 3–15. [Online]. https://content.sciendo.com/
view/journals/fcds/40/1/article-p3.xml

[36] B. Hnatkowska, Z. Huzar, L. Tuzinkiewicz,
and I. Dubielewicz, “A new ontology-based
approach for construction of domain model,”
in Intelligent Information and Database Sys-
tems, N.T. Nguyen, S. Tojo, L.M. Nguyen, and
B. Trawiński, Eds., Cham: Springer International
Publishing, 2017, pp. 75–85.

[37] I. Dubielewicz, B. Hnatkowska, Z. Huzar, and
L. Tuzinkiewicz, “Domain modeling based on
requirements specification and ontology,” in
Software Engineering: Challenges and Solutions,
L. Madeyski, M. Śmiałek, B. Hnatkowska, and
Z. Huzar, Eds., Cham: Springer International
Publishing, 2017, pp. 31–45.

e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 105–139, DOI 10.5277/e-Inf190104

A Three Dimensional Empirical Study of Logging
Questions from Six Popular Q & A Websites

Harshit Gujral∗, Abhinav Sharma∗, Sangeeta Lal∗, Lov Kumar∗∗
∗Jaypee Institute of Information Technology, Noida, Uttar-Pradesh, India

∗∗BITS-pilani Hydrabad Campus, Hydrabad, India
harshitgujral12@gmail.com, sharma1997abhinav@gmail.com, sangeeta@jiit.ac.in,

lovkumar505@gmail.com

Abstract
Background: Q & A websites such as Stack Overflow, Server Fault, provide an open platform for
users to ask questions and to get help from experts present worldwide. These websites not only help
users by answering their questions but also act as a knowledge base. These data present on these
websites can be mined to extract valuable information that can benefit the software practitioners.
Software engineering research community has already understood the potential benefits of mining
data from Q & A websites and several research studies have already been conducted in this area.
Aim: The aim of the study presented in this paper is to perform an empirical analysis of logging
questions from six popular Q & A websites.
Method: We perform statistical, programming language and content analysis of logging questions.
Our analysis helped us to gain insight about the logging discussion happening in six different
domains of the Stack Exchange websites.
Results: Our analysis provides insight about the logging issues of software practitioners: logging
questions are pervasive in all the Q & A websites, the mean time to get accepted answer for logging
questions on SU and SF websites are much higher as compared to other websites, a large number
of logging question invite a great amount of discussion in the SoftwareEngineering Q & A website,
most of the logging issues occur in C++ and Java, the trend for number of logging questions is
increasing for Java, Python, and JavaScript, whereas, it is decreasing or constant for C, C++, C#,
for the Server Fault and Superuser website ‘C’ is the dominant programming language.

Keywords: classification, debugging, ensemble, logging, machine learning, source code
analysis, tracing

1. Introduction

Logging is an important programming practice
that is performed by inserting log statements
in the source code. These log statements are
used to record important runtime information
about the program execution. Software devel-
opers can use this runtime information at the
time of debugging. In addition to debugging,
logging is important in several other software
development activities such as anomaly detec-
tion [1], performance problem diagnosis [2]. For

example, Fu et al. [1] use log messages timings to
differentiate normal and anomalous executions.
Nagaraj et al. [2] purpose a system that compares
the state of normal execution sequence (normal
performance) and bad execution sequences (bad
performance) and identify the states that are
different between the two execution sequences.
Logging is an important activity for software
development, however software developers often
face challenges In logging due to changing na-
ture of source code as well as logging libraries.
For example, software developers face difficulty

Submitted: 4 August 2018; Revised: 28 February 2019; Accepted: 28 February 2019; Available online: 31 May 2019

106 Harshit Gujral et al.

in identifying code constructs that needs to be
logged [3, 4], log level that needs to assigned
to log statements [5] or issues in migrating log
libraries [6]. Hence, recently several techniques
have been proposed by the software engineering
research community to help software developers
in source code logging [3–5, 7].

The techniques proposed in the literature for
helping software developers in logging are use-
ful, but, at present there is little understanding
about the major logging concerns of the different
software practitioners like software developers,
system administrators, database administrators,
etc. A detailed study of the most frequent log-
ging concerns of the software practitioners can
be beneficial in further improving the existing
logging techniques or tools. Information present
on the technical Q & A websites can be a great
resource for identifying the logging concerns of the
software practitioners. Table 1 shows 6 logging
questions from six popular Stack Exchange Q & A
websites, i.e. Stack Overflow (SO) [8], Server
Fault (SF) [9], SuperUser (SU) [10], Database
Administrators (DB) [11], Android Enthusiast
(AE) [12], and Software Engineering (SE) [13].
Each question in Table 1 received thousands of
views from the software development commu-
nity. For example, question 1 received 192,320
views. This indicates the impact and reach of
Q & A websites in software development com-
munity. In the question 1, the user has asked
a questions on SF website which is related to
‘Enabling MySQL logging’. It shows that users
face issue in enabling MySQL logging. In question
6, the user has asked about ‘best practices of log-
ging user actions in production’. In this question,
user wants more information about logging prac-
tices of user action. We believe that a detailed
characterization study of the logging questions
asked on these websites can provide a valuable
insights about the logging needs of software devel-
opment community.

The software engineering research commu-
nity has already recognized the potential of the
Q & A websites in various applications [14, 15].
For example, Pinto et al. [14] analyze the SO
questions to find application-level energy con-

sumption related issues. Mario et al. [15] ana-
lyze SO questions to find mobile development
related issues. Barua et al. [16] analyze questions
on the SO website to find software development
related trends. All these studies analyze impor-
tant aspects of software development. However,
at present there is no research study that ana-
lyzes the data from the Q & A website for iden-
tifying source code logging issues. In this paper,
we take the first step towards analyzing the log-
ging concerns of software developers from popular
Q & A websites.

The overall goal of our research is to im-
prove the understanding about the logging is-
sues that software practitioners face the most.
In particular, we aim at systematically analyz-
ing the questions from Q & A websites. We hy-
pothesize that Q & A websites represents an
important knowledge base and can be beneficial
in identifying the source code logging concerns
of the software developers. The findings of this
paper can be beneficial to software practition-
ers in many ways. Product manager can use
this study to perform market analysis to find
logging tools that are gaining popularity. Soft-
ware practitioners can use this study to find
logging tools/libraries that are commonly used
by other software practitioners. These findings
can be used by the Stack Exchange team for
site moderation/archiving purpose. Additionally,
software engineering research community can
use the results presented in this paper to fur-
ther improve the current logging prediction or
improvement studies.

In this work, we perform a three dimensional,
large scale and an in-depth empirical study of
logging questions asked on six popular commu-
nity based Q & A websites from the Stack Ex-
change network. We analyze more than 82 K
questions from six popular programming Q & A
websites with respect to three different research
dimensions, i.e. statistical analysis, programming
language analysis, and content analysis and an-
swer a total of 7 research questions. The results
of our empirical analysis show several interesting
insights such as logging questions are pervasive
in all the programming websites. It shows that

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 107

Table 1. Example of logging related questions from various websites: WN: Website Name

S.No. WN Question
Id Title View

Count Tags

1 SF 71071 How to enable MySQL logging? 192,320 MySQL,
logging

2 SO 56628 How do you clear the SQL Server transaction log? 965,799 sql-server,
transaction-log

3 SU 176165 Where Linux places the messages of boot? 139,650 Linux, boot,
centos, logging

4 AE 14430 How can I view and examine the Android log? 355,050 logging
5 DB 4043 Can I see Historical Queries run on a SQL Server

database?
173,358 sql-server, SQL,

logs
6 SE 168059 Best practices for logging user actions in production 49,435 C#, asp.net,

logging

nearly 1.06–11.6% of all the logging questions
invite a great amount of discussion. The work pre-
sented in this paper is a significant extension of
our previously accepted work Empirical Analysis
of the Logging Questions on the Stack Overflow
Website at Conference on Software Engineering
& Data Sciences (CoSEDS-2018).

The remainder of the paper is organized as
follows. In Section 2, we describe the closely
related studies in context to the work presented
in this paper and the novel research contribu-
tion made by this work. In Section 3, we de-
scribe the various research dimensions and their
respective research questions, research method
that we followed, the experimental dataset, and
the results of the empirical study. In Section
4, we give various threats to validity related
to the finding of this paper. In Section 5 we
conclude the paper and provide details about
future directions and finally, in Section 6, we
give acknowledgment.

2. Related work

In this section, we review the closely related work
to our research and list down our specific research
contributions. We divide related work into multi-
ple lines of research, i.e. 1) Empirical analysis of
logging statement, 2) Logging prediction studies,
and 3) Empirical analysis of Q & A websites.

2.1. Empirical analysis of logging
statement

Logging is a cross-cutting software development
concern and has attracted attention of many
researchers. Logging statements present in the
source code have been analyzed with respect to
several dimensions, such as type of changes
in log statements ([17]), reasons of migrat-
ing from one logging library to other ([6]),
source code constructs that are logged
more frequently as compared to others
([18, 19]), relationship between code quality
and logging statements [20], uses of differ-
ent log levels in source code ([5]). These anal-
ysis provide important information to software
developers. For example, Yuan et al. [21] analyze
four open source projects written in C\C++. They
identify type of changes to logging statements
where software developers spend most of their
time. Shang et al. [20] analyze modifications done
to logging statements for Java projects. They
report four major reasons for logging modifica-
tion, i.e. debugging, feature change, inaccurate
logging level, and redundant logging. Chen et
al. [17] replicate the study performed by Yuan
et al. [21] for Java projects and report several
differences in the results. For example, in Java
projects deleting and moving log printing code
accounts to 26% and 10% to all logging modi-
fications whereas in C\C++ it accounts to only

108 Harshit Gujral et al.

2%. Kabinna et al. [6] identify reasons for log-
ging library migration on Java software projects.
They report two major reasons, i.e. flexibility and
performance improvement, for logging library mi-
gration. Li et al. [5] analyze log-levels of various
open-source Java projects and report several in-
teresting findings. They report that no single log
level dominates. They also report that different
projects show varying distribution of log levels.
In another study, Li et al. [22] analyze four Java
software projects and identify 20 reasons for log-
ging change in source code. They categorize these
20 reasons into four categories: changing con-
text code, improving logging, dependency-driven
changes, and fixing logging issues. Yuan et al. [23]
analyze 250 randomly sampled bug reports from
five large C\C++ projects and report the most
frequently occurring error patterns that need to
be logged. Fu et al. [18] work on analyzing logged
and non-logged code constructs. They analyze log
statements and their logged code snippets from
two closed-source systems at Microsoft (written
in C#). They categorize the log statements in five
categories: assertion-check, return-value-check,
exception, logic-branch and observing-point log-
ging. They further perform a detailed study of
70 non-logged catch-blocks and find reasons of
not logging. Lal et al. [19] analyze logged and
non-logged catch-blocks. They report several dis-
tinguishing characteristics between logged and
non-logged catch-blocks. For example, try-blocks
associated with logged catch-blocks have much
higher complexity (measures using SLOC, num-
ber of operators and number of method calls) as
compared to that of non-logged catch-blocks.

All of the above studies analyze logging state-
ments present in the source code. In contrast to
these studies, in this work, we analyze logging
questions from six Stack Exchange sites to get
insights about the logging issues that software
developers face most frequently.

2.2. Logging prediction studies

Logging is crucial for software development and
hence, in past researchers spent a great amount of
effort for providing software developers with tools

and techniques that can help them in source code
Logging. For example, Fu et al. [18] and Zhu et al.
[24] propose a tool LogAdvsior to help software
developers in logging prediction for exception
types and return value check code snippets for
C# projects. Lal et at. [3, 4] propose LogOpt
and LogOptPlus, machine learning models for
catch-blocks and if-blocks logging prediction for
Java projects. Li et al. [5] propose model for
log level prediction. Kabinna et al. [25] propose
a model for log statement stability prediction for
Java projects. Lal et al. [7] propose a method
LogIm for predicting logging statement for if and
catch-blocks for imbalanced dataset. In another
study, Lal et al. [26] use ensemble of classifiers
for doing cross-project logging prediction.

The work presented in this paper, is comple-
mentary to above studies. We work on identifying
the most frequent logging issues of the software
developers. Hence, the findings of this work can
be beneficial in further improving these logging
prediction models. For example, researchers can
select in which language software practitioners
face most of the logging issues and can provide
logging tools for the same. Researchers can iden-
tify which are the most frequent libraries in which
software practitioners facing the issues and hence,
can provide solutions to apply logging prediction
for these logging libraries.

2.3. Empirical analysis of
Q & A websites

The Stack Exchange is network of popular Q & A
sites and is actually a knowledge base, several re-
search studies have already been conducted using
the data from Stack Exchange websites. Pinto et
al. present an empirical study on analyzing 300
Stack Overflow questions and 550 Stack Overflow
answers on problems related to application-level
energy consumption [14]. They study distinctive
characteristics, most common problems, main
causes and solutions recommended on software
energy consumption [14]. Mario et al. apply topic
modelling to discover hot-topics on mobile de-
velopment by mining questions and answers on
Stack Overflow [15]. Their findings reveal that

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 109

most of the questions are on compatibility is-
sues, crash reports and database connection [15].
Beyer et al. conduct a manual categorization of
Android app development related issues on Stack
Overflow [27]. They investigate 450 Android re-
lated posts and conclude that developers mainly
have issues related to usage of API components
such as User Interface and Core Elements [27].

Yang et al. study security related questions
on Stack Overflow and cluster security related
questions (such as cryptography and mobile se-
curity) based on their text [28]. They discover
that security related questions belong to five
main categories, i.e. web security, mobile secu-
rity, cryptography, software security, and sys-
tem security [28]. Malik et al. manually analyse
1000 posts on Android energy consumption [29].
Their study reveals that most of the questions
are related to improper implementation, sensor
and radio utilization [29]. Nagy et al. present
a study in mining Stack Overflow for discovering
error-prone patterns in SQL queries [30]. Their
study reveals that the SQL statements of the
code blocks can be automatically analyzed to
identify error-prone patterns which can be used
in a recommendation system [30].

Above studies analyze one aspect of program-
ming or software development and none of these
studies focus on analyzing questions related to
logging. In contrast to these studies, the work pre-
sented in this paper focuses on analyzing source
code logging questions on six StackExhange web-
sites.

3. Empirical study

3.1. Research dimensions and research
questions

Table 2 shows three main research dimensions
(RDs) and respective research questions (RQs)
considered in this work. Following is a brief de-
scription of each RD and respective RQs:
RD1: Statistical Analysis of Logging Ques-
tions on the Stack Exchange Sites: In RD1,
we explore how software development commu-

nities use Stack Exchange websites for asking
logging related issues. For this, we analyze several
parameters related to logging questions. We ana-
lyze the trend of logging question with accepted
answers (RQ1), number of answers posted for
each logging question (RQ2), and time taken by
each logging question to get the accepted answer
(RQ3).

Successful questions (question with an ac-
cepted answer) depict satisfaction of the program-
mer. These trends are essential for development
of logging tools and libraries. We conducted this
analysis on six websites and hence, it broadens
the observation of satisfaction of logging users
across various platforms. For an instance, signif-
icantly more accepted questions were observed
in Database Administrator (DB) than Android
(AE). This also gives the sense of how alive is
logging today and how much more research and
development is required in order to satisfy the
needs of programmers dealing with source-code
logging

Number of answers per question is the sign of
the amount of discussion source-code logging is
attracting on these six-websites. Additionally, if
a question is attracting a large amount of discus-
sion then it may symbolize the presence of some
widely occurring error or some ambiguity faced
by the programmers. Study of these cases will
aid in developers and researchers in developing
tools and methods that would be easy to use
and debug. For example, logcat, alogcat and adb
questions invite great amount of discussion in
Android.

Time taken to get an accepted-answer to
a question corresponds to the time taken to solve
user’s posted issue. Lesser the time, quicker the
solution. If some questions are taking large time
in getting accepted-answer, it can depict the
presence of some esoteric (lesser known) issues
that need to be researched in order to present
a palatable solution. If a logging tool or library is
associated with large time-taken then concerned
developers should intervene with a solution or
some version update in order to fix such problems.
For example, our analysis shows that questions
asked on SE website invite a great amount of

110 Harshit Gujral et al.

Table 2. Details of research dimensions and research questions

Research dimension Research questions

Statistical analysis

1. What is the trend of successful and ordinary or unsuccessful questions on logging
across years and across Stack Exchange sites?
2. What is the trend of logging question in terms of quantity of answers per question
across years and across websites?
3. How much time it takes to get the accepted answer of logging questions?

Programming
language analysis

4. How pervasive is software logging related questions on community based Q & A
websites across programming languages?
5. What is the distribution of logging questions with respect to different program-
ming language for each Q & A website?

Content analysis

6. What are the main discussion logging topics in various websites?
7. What is the distribution of logging-related tags across various Stack Exchange
websites? And how persuasive is the commonality between these tags along various
Stack Exchange websites?

discussion. On SE website the user is asking fun-
damental questions like which methods of better
for logging file or database.
RD2: Analysis of Logging Questions with
Respect to Different Programming Lan-
guages: In RD2, we analyze trend of logging
questions with respect to different programming
languages. First, we analyze how pervasive soft-
ware logging questions are on the community
based Q & A websites across programming lan-
guages (RQ4). Second, we analyze, the distri-
bution of logging questions with respect to dif-
ferent programming language for each Q & A
website (RQ5).

Analysis of RQ4 provides insight into the
development of source-code logging tools and
libraries. The results of this RQ will be helpful
to analyze the dependency of the programming
languages with source-code logging. The results
will help in estimating programmer’s interest
and discussion with respect to various languages.
This will help developers to understand emerging
trends in programming languages and they would
be able to wisely choose a programming language
for building logging tools. For example, our re-
sults show that maximum number of logging
questions are asked in Java and C++. Companies
can use this information to build new logging
tools.

The RQ5 which is an extension of RQ4. In
this RQ, we analyze programming language dis-
tribution across six-websites. This would aid de-
velopers to choose programming language based
upon various environment and platforms. For Ex-
ample, Server (SF) and super-user (SU) oriented
applications suggest a large interest in C-based
logging tools while for software engineering, C#,
Java, and C++ seems to be a viable option.
RD3: Content Analysis of Logging Ques-
tions on the Stack Exchange Sites: We ana-
lyze the information present in logging questions.
We perform two types of analysis in this: First, we
identify the main topics present in the title and
description of logging questions (RQ6). Second,
we analyze the tags associated with the logging
questions (RQ7).

Results of this dimension provide an overview
of most discussed logging topics. This insight will
help developers to keep in mind these discussions
while developing logging tools and libraries. It
would also aid to keep a track of logging-related
issues and needs of programmers. In RQ6, we
focus on analyzing the content of the post. An-
swer of this RQ, provides important insight like
Android users face logging issues in network con-
nections. Research community can use this infor-
mation to further improve logging functionality
of network related functions in Android OS.

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 111

The analysis of RQ7, provide information
about cross-discipline logging tools and practices,
for example, the transaction log is used in both
server environment (SF), Stack Overflow (SO)
and database (DB) while event-logging practice
is observed in super-user (SU) and Stack Over-
flow (SO). This knowledge is the use-case for
researchers and developers to select logging prac-
tices and tools that are compatible with multiple
platforms and environments.

3.2. Research method

In this subsection, we describe the research meth-
ods followed in this work. There are several
Q & A websites such as Stack Exchange [31],
Quora [32], where people can post their ques-
tions and other people or experts can reply to
their questions. In this work, we select Stack
Exchange websites for our analysis because it
is a network of so many popular Q & A sites.
At the time of this study, there were a total
of 133 websites present in the Stack Exchange
network. The Stack Exchange network consists
of websites related to various domains such as
software development, tourism, academia. Our
aim in this work is to analyze questions related
to logging. Hence, analysis of all of these web-
sites is not required and is out-of-scope of this
paper. Thus, we carefully selected six technical
Q & A websites from all these websites. Follow-
ing is the criteria and essential properties that
we took into account while selecting websites
for our study:
Type – Software development/Uses: In this
work, we are analyzing questions related to log-
ging. Hence, we select websites related to soft-
ware development and programming.
Number of users – At least 1000: We select
websites having at least 1000 users in order to
draw statistically significant conclusions.
Number of questions – At least 1000: We
select websites having at least 1000 questions so
that we can draw statistically significant conclu-
sions.
Age of the website – At least 2 years old:
We select websites having at least 2 years of

history. Website which are not so old or are in
there beginning phase may not be appropriate
for our study as they may not have enough log-
ging questions to infer any statistically significant
conclusion.

3.3. Experimental dataset details

Matching to our selection criteria we select follow-
ing six popular websites that are frequently used
by software practitioners. All the six websites
are actively used by thousands of users.
Stack Overflow (SO): SO is a Q & A web-
site created for professional and enthusiast pro-
grammers [8]. It is created in the year 2008, i.e.
≈ 10 years old. At the time of this study, it
consisted of ≈ 8.2 million users, ≈ 14 million
total questions and ≈ 75 K logging questions.
Server Fault (SF): SF is a Q & A website
for system and network administrators [9]. It is
created in the year 2009, i.e. ≈ 9 years old. At
the time of this study, it consisted of ≈ 0.3 mil-
lion users, ≈ 0.2 million questions, and ≈ 4.2 K
logging questions.
Superuser (SU): SU is a Q & A website for
computer enthusiasts and power users [10]. It is
created in the year 2009, i.e. ≈ 9 years old. At
the time of this study, it consisted of ≈ 0.6 mil-
lion users, ≈ 0.3 million questions, and ≈ 1.2 K
logging questions.
Database Administrators (DB): DB is a Q
& A website for database professionals who wish
to improve their database skills and learn from
others in the community [11]. It is created in the
year 2009, i.e. ≈ 9 years old. At the time of this
study, it consisted of ≈ 0.1 million users, ≈ 60 K
questions, and ≈ 1.1 K logging questions.
SoftwareEngineering (SE): SE is a Q & A
website for professionals, academics, and stu-
dents working within the systems development
life cycle [13]. It is created in the year 2010, i.e.
≈ 8 years old. At the time of this study, it con-
sisted of ≈ 0.2 million users, ≈ 47 K questions,
and 198 logging questions.
Android (AE): AE is a Q & A website for
enthusiasts and power users of the Android oper-
ating system [12]. It is created in the year 2010,

112 Harshit Gujral et al.

Figure 1. Research method followed in this study

i.e. ≈ 8 years old. At the time of this study, it
consisted of ≈ 0.1 million users, ≈ 46 K questions,
and 183 logging questions.

3.4. Dataset preparation

In this subsection, we describe the steps that we
used to extract the relevant dataset for our study.
For this study, we have used the data dump pro-
vided by Stack Overflow community. This dataset
is in XML format and consists of details of all
the questions asked by users. For each website,
it provides 7 files: badges.xml, comments.xml,
posts.xml, posthistory.xml, user.xml, votes.xml,
postlinks.xml. For this study we have used
posts.xml file. This file consists of information
each post. For example, if for a give question there
are three answers, then a total of four post will be
included in this file. This file consists of informa-

tion like, title of the questions, description of the
questions, date on which the questions asked, etc.
Next, we extract all the logging questions. Manual
identification of all the logging questions can be
a tedious task. Hence, we adopt a method to auto-
matically find the logging questions. We use tags
assigned to questions to identify logging questions.
The Stack Exchange community assigns a set to
tag to each question. These tags are chosen care-
fully to describe the domain of the question. We
use a 2-phase method to select all the logging tags.
Figure 1 present the main steps of our 2-phase
method. Below we describe our 2-phase method:
Phase 1: In phase 1, we define a regular expres-
sion, i.e. *log* to retrieve all the logging tags.
We notice that this approach is very effective
in finding logging tags, as we were able to re-
trieve several logging tags using this approach.
For example, we are able to retrieve tags such as

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 113

transaction-log, syslog, syslog. However, we notice
that this approach results in lots false positives
also. For example, tags like ‘login’, or ‘logins’
were also outputted. Hence, we manually remove
false positives from the dataset.
Phase 2: We noticed that the phase 1, is not
able to retrieve logging questions because the
regular expression used in the phase 1 is not able
to retrieve tags such as SLF4J. Hence, we decided
to add these kinds of tags manually. We select top
6 programming language from the tiobe index,
i.e. Java, C, C++, Python, C#, and JavaScript.
We perform an exhaustive Google search to iden-
tify all the logging libraries used for these six
programming languages. For example, Log4J and
SLF4J for Java, Log4C for C, C++. We add tags
related to these libraries in our list.

Using process followed in Phase 1 and in
Phase 2, we retrieve a total of 169 tags.We
extract all the questions consisting of any of
these tags. We extracted 82199 logging from
these six websites. We made all our dataset
publicly available to allow replication of the re-
sults by software engineering research community
(https://github.com/newtein/StackExLogging).
For each website, we compute the percentage
that logging questions have with respect to total

questions. Table 3 shows that SF and DB have
the highest percentage of logging questions. This
table also shows that a large number of questions
are asked on logging.

3.5. Research contributions

In context to work done in literature, in this work,
we perform the first study (to the best of our
knowledge) of logging questions on six popular
Stack Exchange websites with respect to three
dimensions. We identify several RQ’s related to
statistical and content analysis of logging ques-
tions. We answer each RQ by conducting empirical
analysis on more than 82 K logging questions.

3.6. RD1: Statistical analysis

In this subsection, we present the results of vari-
ous RQ’s related to statistical properties of log-
ging questions. This research dimension provides
information about how the behavior of program-
mers is changing over time. Statistical trends
are observed from posted questions and answers.
This dimension of research may not have a di-
rect application for a user but it is in-fact quite
essential to understand how source-code logging

Table 3. Experimental dataset details of Stack Exchange website – Stack Overflow: SO, SuperUser: SU,
Server Fault: SF, DBA: DB, SoftwareEngineering: SE, Android: AE

Field SO SU SF DB SE AE
Total Number of
Unique Users

8287574 630516 346259 114789 241851 154687

Total questions 14995834 363915 252963 60948 47362 46559
Total questions with
accepted answer

8034235 154322 125601 29400 27762 13316

Total logging
questions

75185 1275 4227 1131 198 183

Total logging
questions with
accepted answer

39674 541 2163 555 110 50

Percentage of logging
questions to total
questions

0.19 0.14 0.62 0.78 0.10 0.17

Timestamp of the
First Question

8/1/2008 7/15/2009 4/30/2009 10/22/2009 9/27/2010 9/1/2010

Timestamp of the
Last Question

12/3/2017 11/30/2017 12/1/2017 12/1/2017 11/19/2017 11/28/2017

114 Harshit Gujral et al.

is evolving over the years? This gives a sense of
how alive is logging today and how much more
research and development is required in order to
satisfy the needs of programmers dealing with
source-code logging.

3.6.1. RQ1: What is the trend of successful and
ordinary or unsuccessful questions on
logging across years and across Stack
Exchange sites?

Motivation: On Stack Exchange sites a ques-
tion can receive multiple answers. The user who
has asked the question can review these answers.
If he is satisfied with one of these answers, he
can mark that answer as accepted [33]. However,
if none of these answers, answer the question
correctly, the user has the right to not select
any of these answers as accepted. Each ques-
tion can have only one accepted answer. In the
literature [14], Stack Exchange questions are clas-
sified into three categories: successful (questions
with accepted answer), ordinary (questions that
have answers but none of them is accepted) and
unsuccessful (questions that do not have any an-
swer). In this RQ, we analyze the trend of logging
questions and logging questions with accepted
answers on various Stack Exchange websites. Ac-
cepted answers are indicators of quality of re-
sponses to questions. Accepted answers shows
that questions on logging are receiving helpful
responses. We believe that identifying number
of logging questions that are successful can be
beneficial in identifying the behavior and satisfac-
tion of software development community towards
logging.
Approach: In this RQ, we extract total logging
questions and logging questions with accepted
answers (i.e. successful logging questions) for
each of the six websites. We extract this data
for all the years from 2008 to 2017. Using this
information, we plot histogram showing the total
number logging questions and total successful
logging questions for each of the six website. We
also plot cumulative logging questions and cu-
mulative successful logging questions for all the
six websites.

Results: Figure 2 shows the histogram of total
logging question and successful logging questions.
It also shows the trend of cumulative logging
questions and cumulative successful logging ques-
tions. From Figure 2, we draw several interesting
observations. First, it shows that irrespective of
the website logging questions occur consistently
across all the websites. For example, on SU web-
site users had asked 50–177 questions in each
year between 2009 and 2017. Second, we observe
that the frequency and intensity of questions dif-
fer across the websites. For example, a total of
75185 logging question are asked on SO whereas
1131 logging questions are asked on DBA in the
years 2008–2017. This huge difference in the num-
ber of logging question between DBA and SO
does not necessarily means that database have
less logging issues. It can be also be due to dif-
ference in the popularity and user base of the
websites. For example, the SO website has much
bigger user base and is much more popular than
other Stack Exchange websites, and hence, has
much more logging questions as compared to other
sites. Third, we observe that there is no trend
(increasing or decreasing) in number of logging
questions asked over the years for all the web-
sites. Fourth, we observe that all the websites
have a large number of successful logging ques-
tions. For example, 33–78% of logging questions
have received an accepted answer on the SO web-
site.
RQ1 conclusions: Logging is an important con-
cern that occurs frequently in different domains.
We observe a large number of successful logging
questions. However, we do not observe any trend
in terms of frequency of total logging questions
and successful logging questions across the years
for any website.

3.6.2. RQ2: What is the trend logging questions
in terms of quantity of answers per
question across years and across websites?

Motivation: In this RQ, we analyze the number
of answers posted for each logging questions. On
Stack Exchange sites, users can post any number
of answer to each questions. We consider answer

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 115

(a) AE (b) DB

(c) SF (d) SE

(e) SO (f) SU

Figure 2. Distribution of logging questions with accepted answers

116 Harshit Gujral et al.

(a) AE (b) DB

(c) SF (d) SE

(e) SO (f) SU

Figure 3. Box plot showing answer count of all the logging questions

Table 4. Percentage of the questions that received ≥5 answers –
Stack Overflow: SO, SuperUser: SU, Server Fault: SF,

DBA: DB, SoftwareEngineering: SE, Android: AN

SO SU SF DB SE AN
2.8 2.35 3.76 1.06 11.61 2.18

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 117

(a) AE (b) DB

(c) SF (d) SE

(e) SO (f) SU

Figure 4. Word cloud of tags of logging questions that received more than 5 answers

count posted for each question as a measure of
discussion. Increase in number of answers can
be an indication towards increase in discussion
required for logging questions.
Approach: To answer this RQ, we compute
number of answers received for each logging ques-
tion for each year for all the six websites. Using

this information, we compute descriptive statis-
tics such as Quartile-1 (Q1), Median, Quartile-3
(Q3), Min and Max and create box-plots. We
compute descriptive statistics to gain insight on
the data characteristics and its basic features.
Results: Figure 3 shows box-blot of number
of answers received for each logging question

118 Harshit Gujral et al.

for all the websites. We study the central ten-
dency of the data in-terms of the median val-
ues. The median values of the answer count for
the sites AE, DB, SF, SE, SO and SU in the
year 2014 are 1, 1, 1, 2, 1, and 1, respectively.
The box-plot in Figure 3 reveals the dispersion
in the data which is the spread of the values
around the median. We draw several interesting
observations from the Figure 3. First, we notice
that for all the websites, the median value of
the number of answers received for each ques-
tion is higher in the initial years (2008–2011) as
compared to later years (2012–2017). For exam-
ple, for SE website the median values of answer
count is 5 (2010), 3 (2011), 2.5 (2012) and 2
(2013–2017). For this outcome, one reason can
be that old questions receive more answers over
the period of time.

Second, we observe presence of several out-
liers in all the websites. We show the outliers in
Figure 3 using dots so that they are clearly visible
and displayed separately and do not exaggerate
the range values. We observe that the SO website
has the highest number of outliers as compared
to any other website. To get insight about the
questions receiving a large number of answers, we

further analyze logging questions that received
≥5 answers. Table 4 shows the percentage of
logging questions that receive ≥5 answers. Our
analysis shows that ≈1.06–11.61% of questions
in all the websites received ≥5 answers. It is
interesting to find that the SE website has the
highest percentage of questions that received ≥5
answers.

Third, we analyze tags assigned to logging
questions that received ≥5 answers. We build
word cloud of tags associated with these ques-
tions (refer to Fig. 4). We observe the word cloud
of each website highlights a different set of tags.
For example, in Android logging questions are
related to logcat, alogcat and adb. In DB website,
all the 12 questions are related to transaction-logs.
The SE websites word-cloud highlights tags like
exception, practice. The logging questions in SE
website are related to logging practices. The most
discussed logging questions on the SO website
are related to logging libraries such as log4net,
log4j, SLF4J. Table 5 provide more details about
the questions that we analyzed.
RQ2 conclusions: Approximately 1.06–11.61%
of all the logging questions invite a great amount
of discussion.

Table 5. Analysis of the questions that received ≥5 answers: Stack Overflow: SO, SuperUser: SU, Server
Fault: SF, DBA: DB, SoftwareEngineering: SE, Android: AN

S.No. WB Tag ID Context
1 AE root-access 157 A rooted device can monitor the logcat (a command line

tool that dumps a log of system messages) stream on
the phone for this he needs root access.

2 AE touchscreen 13992 is there an existing app that could be installed and could
record touch interactions on the background?

3 AE Android
logging

14430 Android logging can be viewed and examined by use of adb
logcat(android debug bridge it can control device over
USB from a computer), alogcat(software testing tool
that control full control over intents), logcat extreme
(user interface that records and monitors logcat).

4 AE data
connection,
data-moni-
toring,
celluar-ra-
dio

35702 Logging information about data-connection, rate along
with the location can be monitored by using phone’s radio
without sending any additional data which is available through
logcat or through network buffer on user’s phone using alogcat
or adb.

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 119

Table 5 continued

S.No. WB Tag ID Context

5 DBA sql-server,
transac-
tion-log,
dbcc,
database-size,
shrink

41215 Shrinking of database on SQL server using DBCC while trans-
action log showed that no transactions where open can be
done using log_reuse_wait_desc query and further sp_re-
movedbreplication query to remove replication related objects.

6 DBA sql-server,
transac-
tion-log, r2,
backup

45876 The only difference between full backup and copy-only-full-
backup is that the full backup does not break up the differential
log chain while neither of them breaks the transaction log
chain nor they truncate the transaction log file.

7 DBA sql-server,
transac-
tion-log,
backup,
delete

13757 Prior taking the backup, to safely remove the SQL server trans-
action log file use sp_detach_db procedure. This procedure
make sure that SQL server records the fact that database was
shut down cleanly.

8 DBA sql-server,
backup,
transac-
tion-log

162628 Taking a transaction log backup and truncating the log and
then deleting the transaction log backups this would only
work if the tool is using its own tracking to know which log
files are to be restored for the proper functioning of log-chain.

9 DBA sql-server,
transac-
tion-log,
mainte-
nance

12474 During the maintenance of transaction-log file it should be
make sured that there are no error in backing up transaction
log otherwise file size would grow and system would run out
of space.

10 SF monitoring 1845
24428
53000
53699
53894

437369

Here monitoring of different types of log files, systems and
their different features is being made.

11 SF syslog,
logfiles

96720
42527
49042
62687

Different tools like logrotate, splunk linked to syslog log files
are studied.

12 SF Apache 322116
355311

To catch all access log with Apache virtual hosts, to write
useful awk and grep scripts for Apache logs and such other log
based features based are provided by Apache.

13 SE exceptions 15502
20109

130250
272771
306032

Different features to handle different types of logging excep-
tions.

14 SE object 82, 499
230, 131

It provides features like best design perspective for log-
ging, need of logging while doing TDD(Test-driven develop-
ment).

120 Harshit Gujral et al.

Table 5 continued

S.No. WB Tag ID Context

15 SE debugging 84, 301
225, 903

It explains use of the concept like timestamping, main-
taining transactions log and logging for the purpose of
debugging.

16 SE design 27, 595
782, 499

153

It provides different design perspective for best logging prac-
tices.

17 SE programming 2, 727
713, 729
415, 500

It tells us to write efficient programs which make significant
use of logging.

18 SU monitoring 103, 222
143, 658

226

It explains monitoring concepts of logging from the net-
work perspective.

19 SU filesystems 22, 674
420, 321
236, 100

It explains filesystems with respect to logging issues.

20 SU Linux 106073
222912
226744
330590
351387

It helps in logging different processes, files in operating
system Linux (Ubuntu).

21 SU Windows 153
106073
145086
219401

It helps in logging different processes and files in OS
Windows.

22 SO log4net 192456
756125

50599689
50591008

The Apache log4net library is a tool to help the programmer
output log statements to a variety of output targets.

23 SO log4j, 1140358
12532339

728295

Apache Log4j is a Java-based logging utility.

24 SO logcat 7959263
2250112
3280051

19897628

Logcat is a command-line tool that dumps a log of system
messages, including stack traces when the device throws an
error and messages that you have written from your app with
the Log class.

25 SO boost 34362871
17844085
39247778
34394896

Boost is a set of libraries for the C++ programming language
that provide support for tasks and structures such as linear
algebra, pseudorandom number generation, multithreading,
image processing, regular expressions, and unit testing.

26 SO SLF4J 11916706
7421612
8965946

14024756
11639997

SLF4J or Simple Logging Facade for Java provides a Java
logging API by means of a simple facade pattern.

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 121

3.6.3. RQ3: How much time it takes to get the
accepted answer for logging questions?

Motivation: In this RQ, we compute time taken
by the logging questions to get an accepted an-
swer. We believe that answer to this RQ can
be beneficial in identifying type of logging is-
sues that are most time consuming. For example,
server related issues can be more time consuming
as compared to others.
Approach: We perform three types of analysis
to answer this RQ. First, we compute the average
time taken by the logging questions to get ac-
cepted answer. Second, we compute average time
taken by the logging questions to get accepted
answer for each year separately for all the six
websites. We also compute standard deviation
for both the analysis. Third, we create box plot
of the time taken by the logging questions to
get the accepted answer. We compute both av-
erage time graph and box-plot because average
computation is affected by outliers and can give
mis-leading results, whereas in box-plot analysis
all the outliers are clearly visible.
Results: Figure 6 shows the average acceptance
time for all the logging questions for all the years
combined. Figure 6 shows that mean time to
get accepted answer for SU and SF websites are
much higher as compared to other websites. The
mean time of acceptance of SU and SF web-
sites in 36761.93 (in hours) and 26034.32 (in
hours), respectively. The standard deviation of
SU (198665.32) website is much higher as com-
pared to other websites, i.e. AE (76106.25), DB
(119476.32), SF (159452.76), SE (167535.09), and
SO (138574.83).

Figure 5 shows the average acceptance time
for all the logging questions for all the years sepa-
rately. We observe that for each website whenever
there is an increase in the mean acceptance time,
there is corresponding increase in the standard
deviation, which indicates presence of potential
outliers, i.e. questions that took a large amount
of time to get the accepted answer in all the
websites. Additionally, we observe presence of
several questions which took almost 0 time in
getting accepted answer. For example, SO has

156 questions that took 0 second to get an ac-
cepted answer. Figure 5d shows that the mean
time taken by the SE questions is very less for all
the years. In year 2012, there are some question
in SE that took much longer to get the accepted
answer. The SE website invites questions on pro-
gramming practices. If there is some question
which is taking a large amount of time, it can
indicate some fundamental programming issue or
concern with logging in which software develop-
ers are facing problem. We analyze five questions
on SE website that took large amount of time to
get accepted answers (refer to Table 6). Following
is the detailed analysis of two such questions:

In question 1 (id: 291757), the user is asking
about “a better method to handle precondition
and logging”. The experts suggested the user
to use throw and assert statements. Following
a snippet of expert comment:

When implementing this, you should
rarely decide on how to handle the error,
at the place where it occurs; instead, you
should throw an exception and let client
code decide.
In question 2 (id: 208471), the user was asking

a fundamental question about a better method
between file or database to use for logging. The
expert suggested the user to use file as he was not
needing any complex processing of the log used.
Following is the snippet of expert comment:

Both options seem valid to me. In such
cases, a useful rule to apply is to do
the Simplest Thing That Could Possibly
Work. Text files are easier to get started
with and are expected to work reasonably
well at least in the beginning. Once re-
quirements arise that are better satisfied
using a database, it will be trivial to im-
port them. Using this strategy, you post-
pone design decisions as long as possible
(but not longer than that). As such, you
don’t do unnecessary work. When, if ever,
it will be needed, you will have a much
better understanding of what exactly it
is you need. Hence, you are more likely
to build the Right Thing and not waste
time building the Wrong Thing.

122 Harshit Gujral et al.

(a) AE (b) DB

(c) SF (d) SE

(e) SO (f) SU

Figure 5. Mean time to get accepted answer for logging questions

Figure 7 shows the box plot of the time
taken by the logging questions to get the ac-
cepted answer. Figure 7 shows that the median
acceptance time of logging questions on the AE
website is much higher as compared to that of
other websites. For example, the median accep-
tance time (in minutes) for logging question on
the AE website is 3093.39 (2011), 113.2 (2012),
4475.32 (2013), 292.30 (2014), 790.49 (2015),

277.74 (2016) whereas for the SO website is the
median acceptance time is 46.96 (2011), 65.41
(2012), 78.43 (2013), 111.94 (2014), 139.91 (2015),
151.86 (2016). There can be several reasons for
this kind of behavior for example may be AE
logging questions are more complex as compared
to other logging questions or there can be lack of
user participation of the AE website as compared
to other websites.

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 123

Figure 6. Combined mean

RQ3 conclusions: The mean time to get ac-
cepted answer for logging questions on SU and
SF websites are much higher as compared to
other websites, whereas, the median acceptance
time of logging questions asked on AE is much
higher as compared to the other 5 websites.

3.7. RD2: Programming language
analysis

This research dimension provides an insight into
the development of source-code logging tools
and libraries. Results would be helpful to ana-
lyze the dependency of programming language
with source-code logging across various plat-
form. Results estimate programmer’s interest
and discussion with respect to various languages.
This will help developers to choose a program-
ming language for developing logging tools based
upon various environment and platforms. For
Example, Server (SF) and super-user (SU) ori-
ented applications suggest a large interest in
C-based logging tools while for software engineer-
ing, C#, Java, and C++ seems to be a viable op-
tion.

3.7.1. RQ4: How pervasive is software logging
related questions on community based
Q & A websites across programming
languages over the years?

Motivation: In this RQ, we analyze the dis-
tribution of logging question in different pro-
gramming languages over past several years. Log-
ging frameworks for various programming lan-
guages can vary in-terms of their capabilities
and performance with respect to features such as
type-safety, thread-safety, flexibility and porta-
bility. Our objective is to gain insights on the
quantity of questions asked on logging frame-
works for multiple programming languages. We
believe that answer to this RQ, can be benefi-
cial in identifying the programming language(s)
in which software developers face most of the
logging issues. It can also be beneficial in iden-
tifying the languages in which logging interest
is increasing or decreasing. Answer to this RQ,
can be used to tune future logging automation
or prediction tools.
Approach: To answer this RQ, we select top
6 programming languages: C, C++, C#, Java,

Table 6. Top 5 most time consuming questions on the SE website

S.No. Question Id Answer Id Question Time (in minutes)
1 291757 292108 Better way of handling pre conditions and logging 4 647.95
2 208471 209261 Is SQLite a sensible option for data logging? 10 154.03
3 220557 223273 Finding patterns in logs 44 275.5
4 232143 244595 Strategy to store/average logs of pings 130 175.27
5 149346 298292 Logging asynchronously – how should it be done? 1 761 970.55

124 Harshit Gujral et al.

(a) AE (b) DB

(c) SF (d) SE

(e) SO (f) SU

Figure 7. Box Plot showing time to get accepted answer for logging questions

Python, and JavaScript. Next, we extract all the
logging related questions for these six program-
ming languages. We collect data from all the six
websites considered in this work, i.e. SO, SU, SF,
DB, SE, and AN. We extract these questions in
two steps:
– First, we manually identify the tags related

to popular logging libraries used in these six
programming languages. Table 7 shows the

list of tags that we identified. We select all
the questions consisting of any of these tags.
Logging questions are then assigned to their
respective programming languages.

– Second, we select all the questions that con-
sist of any of the programming language
tag, i.e. ‘C’, ‘C++’, ‘C#’, ‘Java’, ‘Python’,
‘JavaScript’. From these questions, we filter
all the questions that consists of any ‘logging

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 125

Table 7. Tags that we used to extract questions related to programming languages

Programming
language

Tags

Java Log4J, SLF4J, tinylog, logback, Apache Commons Logging, google-cloud-java,
commons-logging, jboss-logging, syslog4j, otroslogviewer, log4j, log4j2, log4jdbc, jul-to-slf4j,
hyperloglog.java, java.util.logging

C Log4C, sclog4c, syslog, zlog, zf_log, log4c
C++ glog, log4cplus, pantheios, boost::log, easylogging++, log4cxx, boost, boost-log,

boost-logger, boost.log, spdlog, log4cpp
Python pygogo, Logbook, google-cloud-python, django-logging, logger-python, hyperloglog.python,

unified-log, auth.log, graylog, graylog2
C# log4net, NLog, Enterprise Library, Common.Logging, log4net-configuration,

log4net-appender, log4net-filters
JavaScript js-logging, Log4js, log4JavaScript, JSNLog, Node-Loggly, Bunyan, Winston, Morgan,

Angular-Loggly, loglevel, jsnlog, log-level, logsene-js, node-nslog, truncate-logs-js

tag’. The logging questions are then assigned
to the respective programming language.

Results: Figure 8 present the number of log-
ging questions asked in each year (2008–2017)
for all the six programming language consid-
ered in this work. In this Figure, y-axis repre-
sents the number of logging questions asked in
each year. We kept the y-axis scale same for all
the programming languages for better visualiza-
tion of logging questions trend across the web-
site. We draw several interesting observations
from the Figure 8. First, it shows that users
have asked the highest number of logging re-
lated questions for Java and C++. A total of
51723 logging questions are asked on these web-
sites out of which 73% (i.e. 37935) questions be-
long to Java and C++. Second, it shows that the
number of logging questions are increasing for
Python and JavaScript. For example, the num-
ber of logging questions asked in Python are :
11 (2008), 66 (2009), 149 (2010), 247 (2011), 323
(2012), 465 (2013), 512 (2014), 571 (2015), 701
(2016), 789 (2017). We also observe an increas-
ing trend for logging questions in Java (except
in the year 2016). Whereas, we observe a de-
creasing trend for logging question in C++ and
C# after the year 2013.
RQ4 conclusions: A majority of logging ques-
tions belong to C++ and Java programming
language. The trend of number of logging

questions is increasing for Java, Python, and
JavaScript, whereas it is decreasing or constant
for C, C++, C#.

3.7.2. RQ5: What is the trend of logging
questions with respect to different
programming language for each Q & A
website?

Motivation: In this RQ, we analyze the dis-
tribution of logging questions with respect to
different programming languages for different
websites. Each website represents a specific do-
main. Analysis of the logging questions asked
in different programming language with respect
to different website can be beneficial identifying
the programming language in which most of the
questions arise on that domain.
Approach: To answer this RQ, we compute to-
tal number of logging questions asked in each year
on each website. For each website, we grouped
the logging questions with respect to each pro-
gramming language.
Results: Figure 9 shows the programming lan-
guage wise trend of logging question with re-
spect to each website. The results of the RQ4,
show that Java, C++ and C# are dominant pro-
gramming language in which most of the logging
questions are asked. However, results of the RQ5
show that different programming language show

126 Harshit Gujral et al.

(a) C# (b) C++

(c) C (d) Java

(e) JavaScript (f) Python

Figure 8. Count of logging questions for various programming languages

dominance (language in which the highest num-
ber of logging questions are asked) for different
website. For example, for the SO website C++ and
Java are dominant language whereas for the SF
and SU website, ‘C’ is the dominant programing
language. For the SE website, we did not observe
any particular trend with respect to different pro-
gramming languages. The AE and DB websites
consists of very few logging questions and hence,
we not able to extract any significant insight.

RQ5 Conclusion: Different websites have dif-
ferent programming language that is dominant.
For the SO website C++ and Java are dominant
language whereas for the SF and SU website, ‘C’
is the dominant programming language.

3.8. RD3: Content analysis

Source code logging exists in various forms and
across various disciplines. Results of this dimen-

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 127

(a) AE (b) DB

(c) SE (d) SF

(e) SO (f) SU

Figure 9. Count of logging questions for various programming languages for each of the six websites

sion provide an overview of most discussed log-
ging topics. This insight will help developers to
keep in mind these discussions while developing
logging tools and libraries. It would also aid to
keep a track of logging-related issues and needs
of programmers. Additionally, it also provides

insight about cross-discipline logging tools and
practices, for example, the transaction log is used
in both server environment (SF), Stack Overflow
(SO) and database (DB) while event-logging prac-
tice is observed in super-user (SU) and Stack
Overflow (SO).

128 Harshit Gujral et al.

Figure 10. Pre-processing steps of LDA

3.8.1. RQ6: What are the main discussion
logging topics in various websites?

Motivation: In this RQ, we analyze main dis-
cussion topics present in the logging questions.
Identifying major logging discussion topics can
be beneficial in finding logging tools and libraries
in which software developers face most difficul-
ties. Since, we are analyzing logging topics on six
websites, it can also be beneficial in identifying
types of problems that developers face on each
website.
Approach: We use LDA algorithm for identi-
fying topics present in the logging questions in
each website. We use Python library Gensim
[34] in our work. LDA algorithm require three
input parameters: corpus, number of topics, and
number of iterations. Hence we first create our
corpus. We extract title and description of each
question to build the initial corpus. We apply five
pre-processing steps to clean the initial corpus
(refer to Figure 10 for details). First, we remove
all the source code snippets from the description
of the questions, i.e. we remove all the content

between ‘<code>’ and ‘<code>’ tag. Second, we
remove all the HTML tags such as ‘<p>, <a
herf... >’ from the description of the questions.
Third, we remove all the English stop words, i.e.
‘the’, ‘is’, etc. Stop words are non-content bearing
terms that do not add meaningful insight towards
our goal. Fourth, we apply stemming to convert
words to their root form. For example, the term
‘programmers’ is converted to ‘programmer’. We
use Porter Stemmer algorithm for stemming [35].
Fifth, we remove all the words that occur only
once in the corpus. LDA takes number of topics,
i.e. K, as the second parameter. Since, there is
no best value known for K that is suitable for all
types of dataset. We vary the value of K from 10
to 50 and select the value giving the best results.
The third parameter to LDA algorithm in the
number of iterations. In this work, we set the
number of iterations equal to 500.
Results: We analyze results given by the LDA
algorithm. The results showed that for all the
websites we were getting meaningful topics for
K = 50, hence, we selected this value. Table 8
shows some of the topics discovered for each web-

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 129

site. Following is the detailed discussion about
the topics obtained in each website:
SO: We discovered logging topics related to
different domains on SO website. For exam-
ple, logging topics in OOP, classes, etc. Log-
ging topics in different programming languages
like Java, Python, C#, C. We also find top-
ics related to programming features like ob-
ject oriented programming language, file han-
dling, class features. Table 10 shows an il-
lustrative example of a logging question for
Python programming language asked on the
SO website.

SF: In SF website, we observe logging topics
related to issues to various servers like email
server, tomcat server, Apache server. In addition,
we observe topics related to networking and sys-
log. Table 10 shows an illustrative example of
a logging question related to networks asked on
the SF website.
SU: In SU website, we find logging topics related
to Windows, USB, message server, command line,
etc. Table 10 shows an illustrative example of
a logging question related to USB asked on the
SU website.

Table 8. Popular logging topic identified in all the six websites

Android Enthusiast, K = 50
Topics Words
document processing in system document, write, store, readonly, writing, system
log in Android applications adb, logcat, applications, Android, device, bootloader
log in tablet adb, tablet, file, files, log, applications
log in Android phone log, phone, app, Android, apps, time
log in device log, logs, apps, storage, device, problem
apps apps, google, exception, phone, install, exit
log in network connection log, WiFi, network, IP, DHCP, connect, logcat

Database Administrators, K = 50
Topics Words
Backup Restore Backup, log, transaction, backups, restore, recovery
Binarylog in MySQL Binlog, MySQL, Binlogs, Binary, Logs
databases null, bigint, int, varchar15, commit, set
rebuliding indexes index, rebuild, progress, task, query, source, end
SQL features table, rows, column, insert, values, id
memory allocation reserved, allocated, commited, pages, kb, node
transaction-log in databases select, query, transaction, log, table, join
log in databases server logs, db2, server2, server, databases, transaction
binlog in MySQL server binlog, mysqlbinlog, query, MySQL, server, endlogpos
PostgreSQL master, slave, Postgres, PostgreSQL, archive, wal
log in SQL databases server log, SQL, database, databases, server, mirroring
log in Oracle databases redo, Oracle, database, log, logs, files

Server Fault, K = 50
Topics Words
log in network TCP, UDP, log, port, lo, accept
syslog in messaging syslogng, log, destination, source, get, messages
log in email server ip, email, mail, Logwatch, server, postfix
log in Tomcat server log, file, Tomcat, logs, server, files
log in Apache server Apache, log, errorlog, logs, acesslog, server
different syslog in messages rsyslog, syslog,varlogmessages, log, logging, logs
log in SQL server server, log, database, server, backup, transaction

130 Harshit Gujral et al.

Table 8 continued

Stack Overflow, K = 50
Topics Words
OOP int, include, class, void, char, const
features of class public, void, static, class, private, new, import, null, return, string
log in Python logging, logger, import, Python, log, logback
log in Java log4j, spring, maven, class, log4j2, log4jwarn, logger
file handling file, included, main, line, appender, stdout
programming features undefined, reference, const, function, stdallocator, external
log in files file, log, files, logs, line, write
log in Java Tomcat file, log, log4j, logger, Tomcat, log4jproperties
C programing include, const, return, int, typedef, function
log in Python file logging, logger, file, log, Python, logback
log in file using C# log4net, appender, file, log, using, config

Superuser, K = 50
Topics Words
log in Windows computer Windows, log, application, logs, computer, service
log using USB USB, device, plugged, logs, file, drive
syslog in message server syslog, server, log, syslogd, mesaages, information
log in opengl file system, opengl, log, logs, file, extension
log in file using command line file, log, command, log, commands, output

Software Engineering, K = 50
Topics Words
Java public, void, static, try, catch, throw, class, exception
log in client server log, client, server, clients, logger,request
log in OOP’s exception, log, throw, method, catch, logging
software software, license, disclaimer, copyright, warranty, warranties
log in databases log, database, table, SQL, file, user
log in user application log, user, application, logging, logged, data
log and exceptions logger, log, exceptions, exception, logging, logginggetlogger
logging in project project, logging, compiled, library, shared, core
log in files log, files, appender, file, tests, application
multithreading in C in Unix multithreading, Unix, C, code, library, boost
log in applications logs, log, message, loglevel, application, information
log in systems system, logging, libraries, log, developer, exception
logging in languages and OS log4cxx, log4j, C, Java, Windows, Linux

Table 9. Categorical detail of observed logging-related tags

Category Name Tags Websites Description

General
Logging logging AE,

DB, SE,
SU, SO

Consider base of our analysis. Logging tag is used in
all the six websites.

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 131

Table 9 continued

Category Name Tags Websites Description

General

Log-ship-
ping

log-ship-
ping

DB, SF,
SO

It is a process of restoring transaction-log files
on a standby server after creating a backup of
transaction-logs on a primary database

Log Files logfiles, log-
files, trans-
action-log

SO, SF,
SU

It is a record of events that occurs in an operat-
ing system, software runs, etc. Transaction Log and
Event logs forms a sub category of log files [36].

Types of
Logging

Transaction-
log

transaction-
log

DB,
SO, SF

A transaction log is a log of communication or trans-
actions between a system and clients of that system.

Event Log event-log SO, SU Event logs aims to provide an audit trail that can be
employed to understand the activity of the system
and to diagnose problems. They forms the basis of
understand activities of complex systems such as
server applications.

Error-log error-log,
error-logging

SO,
DB, SU

Error-log is the collection of errors encountered dur-
ing execution of a program.

Binary-log binlog, bina-
rylog

SF, SO,
DB

A binary log consist of binary log files and an index
and is similar to transaction-log. They are used to
restore data after backup.

Syslog and
Syslog
utilities

Syslog syslog SO, SF,
SU

Syslog is the standard protocol for message logging.

Rsyslog ryslog SF, SO It is widely used in Unix and Unix-like operating
system as a utility for transferring log messages in
an IP network. It extends basic syslog protocol to
content-based filtering along with providing features
such as using TCP for transport.

syslogd syslogd SF, SU It provides provision for system logging and kernel
message trapping. It supports both local and remote
logging.

syslog-ng syslog-ng SO, SF syslog-ng extends syslogd model by adding
content-based filtering, flexible configuration, TCP
transport, etc.

Logging
Tools
and

Libraries

Graylog graylog,
graylog2

SO, SF Graylog is an Open-Source log capture tool and pro-
vides analysis solution for operational intelligence.

NXLog nxlog SO, SF NXLog is a log collector and supports log collection
from multitude of sources and formats, e.g. event logs
from TCP, UDP, file, databases, syslog, Windows
event log, etc.

Logparser logparser SO, SF,
DB

Logparser is a command line tool designed to au-
tomate tests for Internet Information Services (IIS)
logging.

Logwatch Logwatch SF, SU Logwatch is a log parser and analyser.
Logstash logsash SO, SF Logstash is used for managing events and logs. It

deals with log processing, storage and searching.

132 Harshit Gujral et al.

Table 9 continued

Category Name Tags Websites Description

Logging
Tools
and

Libraries

Hugo hugo SO, SU,
SF

The Hugo logging plugin is used to log debug state-
ments with the help of annotations.

Log4j log4k SO, SF Log4j is Java-based logging utility developed by
Apache Software Foundation.

Lynx lynx SU, SO Lynx is the Android logging library.
mysqlbinlog mysqlbinlog DB, SO It is a utility used to process binary and relay logs.
Boost Boost SO, SF,

SE
Boost is a C++ based logging library.

DB: In DB website, we observe logging topics
related to various domains like backup, SQL fea-
tures, indexes, memory allocation. Additionally,
we observe topics related to DB servers like Ora-
cle and MySQL servers. Table 10 shows an illus-
trative example of a logging question related to
transaction-log asked on the DB website.
AE: In AE website, we observe topics related to
document processing, tablet, Android phone, and
logs in network connection. Table 10 shows an
illustrative example of a logging question related
to networking asked on the AE website.
SE: In SE website, we obtain a wide variety
of logging topics related to OOP, Java, files,
databases, etc. Additionally, we observe topics
related to exception and multi-threading. Ta-
ble 10 shows an illustrative example of a logging
question related to object oriented programming
asked on the SE website.
RQ6 conclusions: For each website, we obtain
logging topics related to different features such
as programming language, transaction log, net-
working (Table 9).

3.8.2. RQ7: What is the distribution of
logging-related tags across various Stack
Exchange websites? And how persuasive
is the commonality between these tags
along various Stack Exchange websites?

Motivation: In this RQ, we analyse logging-re-
lated tags. Logging related tags mostly represent
logging libraries, tools and technologies. This is
a pressing need of our analysis to investigate

distribution of these logging tags across various
Q & A websites. This can be beneficial to find
common logging libraries across six-websites as
tags are the medium of classification on these
websites. Distribution of these logging tags across
various websites will provide us cues regarding
common logging tools and libraries employed
across various environments their trends. This
may help the developers to design a common
tool across different platforms capable of solving
multiple problems.
Approach: In order to provide a compen-
dious analysis, for this RQ, we have considered
logging-related tags that are present in at-least
two websites.
Results: Results of this analysis is divided into
four categories, first, General Logging tags, sec-
ond, Syslog and Syslog-based utilities, third,
types of logging, and fourth, logging tools and
libraries. Figure 11 depicts the observed results
of our analysis. Center of the bubble depicts
logging-related tags while its diameter corre-
sponds to observed frequency. Following are the
results of each category:
General Logging tags: This category consists
of tags namely logging, log-files and log-shipping.
The chief objective of log shipping is to ensure
high availability of database by creating backup
server that can replace production server quickly.
It is used by both server engineers and database
administrator on SF and DB respectively along
with that this technique is further supports by
well-known servers and databases namely Mi-

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 133

Table 10. Example post from various websites of the selected topic: WS: Website, QID: Question Id

WS Topic QID Title Body
SO log in

Python
41666158 log4j/logback

pass logger
level as
a parameter

I want to do something which seems really straightforward:
just pass a lot of logging commands (maybe all, but par-
ticularly WARN and ERROR levels) through a method in
a simple utility class. I want to do this in particular so that
during testing I can suppress the actual output to logging by
mocking the method which does this call.

SF log in
network

508349 Rsyslog not
logging from
remote
server

I am trying to set up a centralized log server. I have central
server (A) receiving logs via a remote server (B) on port 514.
I know it is receiving these. Here are a few entries from a tcp-
dump on port 514... I have made sure to restart rsyslog every
time I edit rsyslog.conf and I am running the start daemon
with the -r and -t flags, even though they are deprecated in
my current version. So why isn’t anything coming in on port
514 being written to test.log?

SU log
using
USB

849950 Logging
when
someone
connects or
removes
a USB
device
to/from
a Windows
machine

I am currently trying to find a way to log all of the connections
and disconnections of USB devices from all of the Windows
machines on our network. This information needs to automat-
ically be logged to a file on the machine, this file can then be
read by nxlog and then get shipped to our centralised logging
platform for processing. I was hoping that this information
would be logged by Windows logs automatically, but I found
that while some information about USB removable storage
appears to get logged to Event Viewer, this is quite limited
information and doesn’t pick up when USB keyboards and
mice are connected and disconnected. . .

DB Transaction
log

6996 How do I
truncate the
transaction
log in a SQL
Server 2008
database?

How do I truncate the transaction log in a SQL Server 2008
database? What are possible best ways? I tried this from
a blog as follows: 1) From the setting database to simple
recovery, shrinking the file and once again setting in full
recovery, you are in fact losing your valuable log data and
will be not able to restore point in time. Not only that, you
will also not be able to use subsequent log files. 2) Shrinking
database file or database adds fragmentation. There are a lot
of things you can do. First, start taking proper log backup
using the following command instead of truncating them and
losing them frequently.

AE log in
network
connec-
tion

85114 Does
Android save
a log of its
own IP
addresses?

I have a WiFi network to which I connect at work. The IP
address has always been DHCP, but today the DHCP server
is down. If I can figure out what IP address I had, I can set it
statically (after checking to make sure another device hasn’t
already taken it, via ping from my desktop). Does Android
have a log anywhere of the IP addresses it is leased? I have
root and thus can look at any file on my phone.

SE log in
OOP’s

255372 Logging
exception in
multi-tier
application

I’m building a multi-tier enterprise application using Spring.
I have different layers: Controller, Business and Provider.
Within the application I’ve built a custom error handling
mini-framework that is based on a single RuntimeException
which has an error code to discriminate different kind of
errors. . .

134 Harshit Gujral et al.

Figure 11. Bubble diagram of tags that are present in more than one website

crosoft SQL Server, 4D Server, PostgreSQL and
MySQL [37–39].
Syslog and Syslog-based utilities: Syslog is
the standard protocol for message logging. Sys-
log is commonly used for system management,
security auditing and debugging analysis [40]. It
provides provision for system logging and ker-
nel message trapping. Many utilities extends
syslog-based models, two of them are namely
Rsyslog and Syslog-ng. These are commonly used
by system programmers of SO and SF. Rsyslog
website claims it to be Swiss army knife for log-
ging [41]. Rsyslog extends basic syslog protocol
to content-based filtering along with providing
features such as using TCP for transport while
Syslog-ng extends syslogd-model and thereby en-
hancing existing features [42, 43]. Both of these
utilities are used for system logging while it is ob-
served that Rsyslog is more popular on SO and SF
than syslogd depending upon their tag frequency.

Types of Logging: Error Logging, Transaction
logging, Event-logging and Binary-logging are
some of the popular types of logging used by
programmers of SO, SF, DB and SU. Error-logs
are widely used for troubleshooting and bug fix
[44]. Error logging is observed on SO, DB and
SU. Event logs aims to provide an audit trail
that can be employed to understand the activity
of the system and to diagnose problems. They
forms the basis of understand activities of com-
plex systems such as server applications. Event
logging is observed in SU and SO Highest number
of transaction-log tags and binary log tags are
observed in DB. This may be attributed to the fact
that in order to allow the database to recover from
crashes or other errors and to basically maintain
consistent state, most of the databases maintain
a transaction log [45]. Binary log is similar to
transaction log, it records all changes in the
databases including both data and structure [46].

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 135

Logging Tools and Libraries: Many logging
tools and libraries are used by programmers to
manage and process logs. Some of the popu-
lar logging tools detected in our analysis are
Graylog, Graylog2, NXLog, Logparser, Logwatch,
Logstash, Hugo, Lynx, Log4j and mysqlbinlog.
Graylog and NXLog tag is frequently observed
in both SF and SO. Usage of Graylog may be
attributed to the fact that Graylog is a server
that collects log messages along with that pro-
vides an interface for analysis and monitoring
[47]. This tools is frequently used by Server Ad-
ministrators while NXLog’s high-performance
I/O layer make it capable of handling thousands
of parallel client connections in order to process
huge log volumes [48]. Thus making it suitable
for use in Server Environments. Logwatch pro-
vides feature to deliver a unified report of all
activity on a server through command line or
email to the administrator [49, 50]. Logparser is
designed to automate tests for IIS logging. IIS
is an extensible web server created by Microsoft
used by database and server administrators. It
aims to provide query axis to text-based data for,
e.g. log files, XML, CSV, etc. Logparser is fre-
quently observed on SF and SO while Logwatch
is chiefly present on SF only. mysqlbinlog is used
for processing binary log files and usage of this
tag is observed in SO and DB [51]. Among all
the above mention tools, frequency of usage of
Logstash tag is maximum on SF while frequency
of Log4j is maximum on SO. Logstash is one of
the components of ELT-stack. This ELT-stack
combination is widely used by Wikimedia Foun-
dation. Logstash collects all the log-events sent
by Wikimedia applications and stores them in an
Elasticsearch cluster followed by use of font-end
client Kibana in order to filter and display mes-
sages [52].

RQ7 conclusions: Syslog-based model
Rsyslog is more popular on SO and SF than
Syslogd-based model syslogng. System program-
mers tends to use transaction and binary logging
more than error and event logging. This may
be attributed to the fact that error and event
logging is not observed in SF while transaction
and binary logging is observed. DB Administra-

tors tends to use transaction logging and binary
logging frequently in order to maintain consis-
tency of their database. Among all the websites
observed tag frequency of transaction and binary
logging is highest for DB. Among all the logging
tools and libraries namely Logparser, Logwatch,
NXLog, GrayLog, Logstash, Hugo, Log4j, the
popularity of Logstash is maximum on SF while
popularity of Log4j is maximum on SO in terms
of tag-frequency.

4. Threats to validity

In this section, we discuss various threats to va-
lidity related to the results presented in this work.
Threats to external validity: In our study,
we conduct experiments on 82 K logging ques-
tions from six different Q & A websites of the
stack exchange network. These websites are sub-
ject to a general audience (e.g. SO) and spe-
cific audiences (e.g. AE, SF, DB, SU, and SE).
Hence, we have depicted the results of source
code logging analysis separately for each domain.
Logging-related results can be generalized within
a domain but may not be generalized across
domains. However, results of SO provides a ba-
sic level of generalization considering its vast
audience across multiple domains.
Threats to internal validity: For topic gener-
ation using LDA, we have used K = 50 for all
six websites. However, this is done irrespective
of the size of the corpus of each website. Fur-
ther, all the code snippets were removed from
the analysis using regular expressions along with
HTML tags. We notice that previous studies
analyzing content from Stack Exchange websites
have also removed source code present in the
description of posts [16]. We further minimize
the threats of internal validity by using built-in
Python libraries (for example, Sklearn, NLTK)
for doing data processing.
Threats to construct validity: It is con-
cerned with the identification of logging-related
tags that formed the basis of our study and
further interpretation of topics. Threats to
construct validity is categorized into 3 main

136 Harshit Gujral et al.

parts: the construction of programming
language-related tags, construction of gen-
eral logging-related tags and Interpreta-
tion of LDA-topics. First, There are several
programming languages. However, we selected 6
programming language through ostensible ran-
domization. Additionally, we use term program-
ming languages for programming languages as
well as scripting languages (JS). In order to deter-
mine the number of logging-related questions cor-
responding to programming languages, we have
used various logging libraries, tools, APIs, etc.
specific to that programming languages. Table 7
depicts these logging-related libraries, tools,
APIs, etc. corresponding to six-programming lan-
guages. These libraries are selected after rigorous
manual exploration of the internet and existing
research by best of our knowledge but due to
several programming-language related libraries
in the field, there may exist some libraries left
unexplored. Hence, C++ and Java have more
logging-related questions than Python and C
may be because some of Python or C related log-
ging libraries could be left unexplored. Moreover,
Boost is a set of libraries written in C++ and aims
to provide support for a multitude of tasks, for ex-
ample, algebra, unit testing, multithreading, etc.
Thus, Boost tag consists of a set of logging as well
as non-logging libraries for C++ which can affect
the results of the actual number of logging ques-
tions concerning C++. Second, Logging-related
Tags used in our analysis are depicted in Table 7.
Mostly, these tags are the comprehensive col-
lection of logging-related terms (transaction-log,
log-files, etc.) and logging-related libraries, Tools,
and APIs (SL4J, Logstash, etc.). Some of these
tags are used by developers in more than one
context, for example, Observed results of Lynx
and Hugo can be inconsistent as Lynx is a logging
library as well as a text-mode web browser while
Hugo is also a logging library but also a static
site generator written in Go. Third, Interpre-
tation of topics generated from LDA is not an
easy task [53] and can be subjective. Thus, first,
second author and corresponding author under-
stood the topics and derived the topic labels
and other authors verified them. In the cases

where topics were hard to interpret, we further
studied the questions related to them in order
to drive a label.

5. Conclusions and future work

Logging is an important software development
practice. Log statements present in the source
code are used to record important runtime in-
formation. Software practitioners can use this
information at the time of debugging. In past,
several research studies have been conducted that
propose solutions to help software developers in
source code logging. These solutions are helpful
but at present there is no study that analyzes the
issues that software developers face while logging.
In this paper, we perform a three dimensional,
empirical study of logging questions asked on
the six popular Q & A websites. We perform
statistical, programming language and content
analysis of logging questions. Our analysis helped
us to gain insight about the logging discussion
happening in six different domains of the Stack
Exchange websites.

Our analysis provides an insight about the
logging needs of software developers. Results of
our in-depth empirical study show that logging
questions are pervasive in all the Q & A websites.
The mean time to get accepted answer for logging
questions on SU and SF websites are much higher
as compared to other websites. It also shows that
a large number of logging question invite a great
amount of discussion in the SoftwareEngineering
Q & A website. We have found that software
developers face most of the logging issues in C++

and Java. It shows that the trend of number of
logging questions is increasing for Java, Python,
and JavaScript, whereas, it is decreasing or con-
stant for C, C++, C#. Researchers can use these
results to fine tune the automated logging tools
proposed by them. Companies can use these re-
sults to fine-tune their tools and to decide which
technique to support.

Our analysis also shows that different web-
sites have different dominant programming lan-
guage. For the SO website C++ and Java are

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 137

dominant language whereas for the SF and SU
website, ‘C’ is the dominant programming lan-
guage. Researchers can use this information, for
example, if they are providing automated log-
ging tool for server they can target it with ‘C’
language, whereas, if they are making general
purpose logging tool, they can target it with
‘C++’ or ‘Java’.

Since, this is the first study of on logging
issues of Q & A websites, in this we explored
different dimensions of logging question in future,
we will explore more specific logging problems
faced by software practitioners. We plan to ex-
tend this work in several dimensions. First, at
present we have performed topic analysis using
question title and description only. In future, we
plan to perform topic analysis of answers as well.
Second, we plan to perform sentiment analysis of
comments associated with logging questions. To
find the overall sentiment of users about logging.
Third, we plan to perform topic analysis for small
time intervals like 1–3 months in order to to find
how topic related to logging are changing over the
period of time. Fourth, we will perform analysis
of most popular logging questions irrespective of
the website on which they are asked.

6. Acknowledgment

We thank our advisor and mentor Dr. Ashish
Sureka for providing guidance and inputs in this
project.

References

[1] Q. Fu, J.G. Lou, Y. Wang, and J. Li, “Execu-
tion anomaly detection in distributed systems
through unstructured log analysis,” in Proceed-
ings of the Ninth IEEE International Conference
on Data Mining, ICDM ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 149–158.

[2] K. Nagaraj, C. Killian, and J. Neville, “Struc-
tured comparative analysis of systems logs to
diagnose performance problems,” in Proceedings
of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI’12,
2012, pp. 26–26.

[3] S. Lal and A. Sureka, “LogOpt: Static fea-
ture extraction from source code for automated
catch block logging prediction,” in Proceedings
of the 9th India Software Engineering Conference
(ISEC), 2016, pp. 151–155.

[4] S. Lal, N. Sardana, and A. Sureka, “LogOpt-
Plus: Learning to optimize logging in catch and
if programming constructs,” in Proceedings of
the IEEE 40th Annual Computer Software and
Applications Conference (COMPSAC), Vol. 1,
June 2016, pp. 215–220.

[5] H. Li, W. Shang, and A.E. Hassan, “Which log
level should developers choose for a new log-
ging statement?” Empirical Software Engineer-
ing, Vol. 22, No. 4, 2017, pp. 1684–1716.

[6] S. Kabinna, C.P. Bezemer, W. Shang, and
A.E. Hassan, “Logging library migrations: A case
study for the Apache Software Foundation
projects,” in Proceedings of the 13th Interna-
tional Conference on Mining Software Reposito-
ries, MSR ’16. New York, NY, USA: ACM, 2016,
pp. 154–164.

[7] S. Lal, N. Sardana, and A. Sureka, “Improv-
ing logging prediction on imbalanced datasets:
A case study on open source java projects,” In-
ternational Journal of Open Source Software
and Processes (IJOSSP), Vol. 7, No. 2, 2016,
pp. 43–71.

[8] StackExchange Community, StackOverflow home
page. [Online]. https://stackoverf low.com/
[accessed: 26.12.2017].

[9] StackExchange Community, Serverfualt stack ex-
change home. [Online]. https://serverfault.com/
[accessed: 26.12.2017].

[10] StackExchange Community, Superuser Stack
Exchange home page. [Online]. https:
//superuser.com/ [accessed: 26.12.2017].

[11] StackExchange Community, Database Admin-
istrators Stack Exchange home page. [Online].
https://dba.stackexchange.com/ [accessed:
26.12.2017].

[12] StackExchange Community, Android Enthusiasts
home page. [Online]. https://android.stackexcha
nge.com/ [accessed: 26.12.2017].

[13] StackExchange Community, SoftwareEngineer-
ing home page. [Online]. https://softwareengine
ering.stackexchange.com/ [accessed: 26.12.2017].

[14] G. Pinto, F. Castor, and Y.D. Liu, “Mining
questions about software energy consumption,”
in Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM, 2014,
pp. 22–31.

[15] M. Linares-Vásquez, B. Dit, and D. Poshyvanyk,
“An exploratory analysis of mobile development

138 Harshit Gujral et al.

issues using Stack Overflow,” in Proceedings of
the 10th Working Conference on Mining Software
Repositories. IEEE Press, 2013, pp. 93–96.

[16] A. Barua, S.W. Thomas, and A.E. Hassan,
“What are developers talking about? an analysis
of topics and trends in Stack Overflow,” Empiri-
cal Software Engineering, Vol. 19, No. 3, 2014,
pp. 619–654.

[17] B. Chen and Z.M.J. Jiang, “Characterizing log-
ging practices in Java-based open source soft-
ware projects – A replication study in Apache
Software Foundation,” Empirical Software Engi-
neering, Vol. 22, No. 1, 2017, pp. 330–374.

[18] Q. Fu, J. Zhu, W. Hu, J.G. Lou, R. Ding, Q. Lin,
D. Zhang, and T. Xie, “Where do developers
log? An empirical study on logging practices in
industry,” in Companion Proceedings of the 36th
International Conference on Software Engineer-
ing, ICSE Companion, 2014, pp. 24–33.

[19] S. Lal, N. Sardana, and A. Sureka, “Two level
empirical study of logging statements in open
source Java projects,” International Journal of
Open Source Software and Processes (IJOSSP),
Vol. 6, No. 1, 2015, pp. 49–73.

[20] W. Shang, M. Nagappan, and A.E. Hassan,
“Studying the relationship between logging char-
acteristics and the code quality of platform soft-
ware,” Empirical Software Engineering, Vol. 20,
No. 1, 2015, pp. 1–27.

[21] D. Yuan, S. Park, and Y. Zhou, “Characteriz-
ing logging practices in open-source software,”
in Proceedings of the 34th International Con-
ference on Software Engineering, (ICSE), 2012,
pp. 102–112.

[22] H. Li, W. Shang, Y. Zou, and A.E. Hassan, “To-
wards just-in-time suggestions for log changes,”
Empirical Software Engineering, Vol. 22, No. 4,
2017, pp. 1831–1865.

[23] D. Yuan, S. Park, P. Huang, Y. Liu,
M.M. Lee, X. Tang, Y. Zhou, and S. Savage,
“Be conservative: Enhancing failure diagno-
sis with proactive logging,” in Proceedings
of the 10th USENIX Conference on Oper-
ating Systems Design and Implementation
(OSDI), 2012, pp. 293–306. [Online]. http:
//dl.acm.org/citation.cfm?id=2387880.2387909

[24] J. Zhu, P. He, Q. Fu, H. Zhang, M. Lyu, and
D. Zhang, “Learning to log: Helping developers
make informed logging decisions,” in Proceedings
of the IEEE/ACM 37th IEEE International Con-
ference on Software Engineering (ICSE), Vol. 1,
May 2015, pp. 415–425.

[25] S. Kabinna, C.P. Bezemer, W. Shang, and
A.E. Hassan, “Examining the stability of logging
statements,” in Proceedings of the 23rd IEEE
International Conference on Software Analysis,
Evolution, and Reengineering (SANER), 2016,
pp. 326–337.

[26] S. Lal, N. Sardana, and A. Sureka, “ECLog-
ger: Cross-project catch-block logging prediction
using ensemble of classifiers,” e-Informatica Soft-
ware Engineering Journal, Vol. 11, No. 1, 2017,
pp. 9–40.

[27] S. Beyer and M. Pinzger, “A manual catego-
rization of android app development issues on
Stack Overflow,” in Software Maintenance and
Evolution (ICSME), 2014 IEEE International
Conference on. IEEE, 2014, pp. 531–535.

[28] X.L. Yang, D. Lo, X. Xia, Z.Y. Wan, and
J.L. Sun, “What security questions do developers
ask? A large-scale study of Stack Overflow posts,”
Journal of Computer Science and Technology,
Vol. 31, No. 5, 2016, pp. 910–924.

[29] H. Malik, P. Zhao, and M. Godfrey, “Going green:
An exploratory analysis of energy-related ques-
tions,” in Proceedings of the 12th Working Con-
ference on Mining Software Repositories. IEEE
Press, 2015, pp. 418–421.

[30] C. Nagy and A. Cleve, “Mining Stack Overflow
for discovering error patterns in SQL queries,” in
Software Maintenance and Evolution (ICSME).
IEEE, 2015, pp. 516–520.

[31] StackExchange Community, StackExchange.
[Online]. https://stackexchange.com/ [accessed:
26.12.2017].

[32] Quora Community, Quora Home Page. [Online].
https://www.quora.com/ [accessed: 26.12.2017].

[33] StackExchange Community, What does it mean
when an answer is “accepted”. [Online]. https:
//stackoverf low.com/help/accepted-answer
[accessed: 26.12.2017].

[34] Python Community, Latent Dirichlet Allocation
(LDA) in Python. [Online]. https://radimr
ehurek.com/gensim/models/ldamodel.html
[accessed: 9.04.2018].

[35] J. Han, M. Kamber, and J. Pei, Data Mining:
Concepts and Techniques, 3rd ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.,
2011.

[36] Neurobs, Neurobs. [Online]. https://www.ne
urobs.com/pres_docs/html/03_presentatio
n/07_data_reporting/01_logfiles/index.html
[accessed: 12.03.2018].

A Three Dimensional Empirical Study of Logging Questions from Six Popular Q & A Websites 139

[37] Wikipedia, 4th Dimension (software). [Online].
https://en.wikipedia.org/wiki/4th_Dimension
_(software) [accessed: 12.03.2018].

[38] PostgreSQL, Warm Standby Servers for High
Availability. [Online]. http://www.postgresql.org
/docs/8.2/static/warm-standby.html [accessed:
12.03.2018].

[39] MySQL Community, Reference Manual on
Configuring Replication. [Online]. https://de
v.mysql.com/doc/refman/5.7/en/replication-
configuration.html [accessed: 12.03.2018].

[40] Network Working Group, The Syslog Protocol.
[Online]. https://tools.ietf .org/html/rfc5424
[accessed: 12.03.2018].

[41] Rsyslog Community, Rsyslog. [Online]. https:
//www.rsyslog.com/ [accessed: 12.03.2018].

[42] Syslog-ng Community, Reliable, scalable,
secure central log management. [Online].
https://syslog-ng.com/ [accessed: 12.03.2018].

[43] Python Community, syslogd – Linux man page.
[Online]. https://linux.die.net/man/8/syslogd
[accessed: 12.03.2018].

[44] Techopedia, Error Log. [Online]. https://ww
w.techopedia.com/definition/26306/error-log
[accessed: 12.03.2018].

[45] T.A. Peters, “The history and development
of transaction log analysis,” Library Hi Tech,
Vol. 11, No. 2, 1993, pp. 41–66.

[46] MariaDB Community, Binary Log. [Online].
https://mariadb.com/kb/en/library/binary-
log/ [accessed: 12.03.2018].

[47] StackOverflow Community, Graylog. [Online].
https://stackoverflow.com/tags/graylog/info
[accessed: 3.05.2018].

[48] StackOverflow Community, NXLOG. [Online].
https://stackoverf low.com/tags/nxlog/info
[accessed: 3.05.2018].

[49] archlinux, Logwatch. [Online]. https://wiki.arch
linux.org/index.php/Logwatch [accessed:
3.05.2018].

[50] Bjorn, F. Crawford, J. Pyeron, J. Soref, K. Bauer,
M. Tremaine, O. Poplawski, and S. Jakobs, Log-
watch. [Online]. https://sourceforge.net/p/logw
atch/wiki/Home/ [accessed: 12.03.2018].

[51] MySQL Community, mysqlbinlog – Utliity
for Processing Binary Log Files. [Online].
https://logging.apache.org/log4j/2.x/ [accessed:
12.03.2018].

[52] Wikitech, Logstash – Wikitech. [Online]. https:
//wikitech.wikimedia.org/wiki/Logstash [ac-
cessed: 12.03.2018].

[53] A. Hindle, C. Bird, T. Zimmermann, and N. Na-
gappan, “Do topics make sense to managers and
developers?” Empirical Software Engineering,
Vol. 20, No. 2, 2015, pp. 479–515.

e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 141–202, DOI 10.5277/e-Inf190105

Empirical Studies on Software Product
Maintainability Prediction: A Systematic

Mapping and Review

Sara Elmidaoui∗, Laila Cheikhi∗, Ali Idri∗, Alain Abran∗∗
∗SPM Team, ENSIAS, Mohammed V University in Rabat, Morocco

∗∗Department of Software Engineering and Information Technology, École de Technologie Supérieure,
Montréal, Canada

sara.elmidaoui@um5s.net.ma, laila.cheikhi@um5.ac.ma, ali.idri@um5.ac.ma,
alain.abran@etsmtl.ca

Abstract
Background: Software product maintainability prediction (SPMP) is an important task to control
software maintenance activity, and many SPMP techniques for improving software maintainability
have been proposed. In this study, we performed a systematic mapping and review on SPMP
studies to analyze and summarize the empirical evidence on the prediction accuracy of SPMP
techniques in current research.
Objective: The objective of this study is twofold: (1) to classify SPMP studies reported in the
literature using the following criteria: publication year, publication source, research type, empirical
approach, software application type, datasets, independent variables used as predictors, dependent
variables (e.g. how maintainability is expressed in terms of the variable to be predicted), tools
used to gather the predictors, the successful predictors and SPMP techniques, (2) to analyze
these studies from three perspectives: prediction accuracy, techniques reported to be superior in
comparative studies and accuracy comparison of these techniques.
Methodology: We performed a systematic mapping and review of the SPMP empirical studies
published from 2000 up to 2018 based on an automated search of nine electronic databases.
Results: We identified 82 primary studies and classified them according to the above criteria.
The mapping study revealed that most studies were solution proposals using a history-based
empirical evaluation approach, the datasets most used were historical using object-oriented software
applications, maintainability in terms of the independent variable to be predicted was most
frequently expressed in terms of the number of changes made to the source code, maintainability
predictors most used were those provided by Chidamber and Kemerer (C&K), Li and Henry (L&H)
and source code size measures, while the most used techniques were ML techniques, in particular
artificial neural networks. Detailed analysis revealed that fuzzy & neuro fuzzy (FNF), artificial
neural network (ANN) showed good prediction for the change topic, while multilayer perceptron
(MLP), support vector machine (SVM), and group method of data handling (GMDH) techniques
presented greater accuracy prediction in comparative studies. Based on our findings SPMP is still
limited. Developing more accurate techniques may facilitate their use in industry and well-formed,
generalizable results be obtained. We also provide guidelines for improving the maintainability of
software.
Keywords: systematic mapping study, systematic literature review, software product
maintainability, empirical studies

Submitted: 27 June 2018; Revised: 5 April 2019; Accepted: 6 April 2019; Available online: 17 July 2019

142 Sara Elmidaoui et al.

1. Introduction

Maintainability of a software product is defined
in SWEBOK [1] as a quality characteristic that
“must be specified, reviewed, and controlled dur-
ing the software development activities in order
to reduce maintenance costs”. Many techniques
for software product maintainability prediction
(SPMP) have been proposed as a means to bet-
ter manage maintenance resources through a de-
fensive design [2]. However, predicting software
maintainability remains an open research area
since the maintenance behaviors of software sys-
tems are complex and difficult to predict [3].
Moreover, industry continues to search for appro-
priate ways to help organizations achieve reliable
prediction of software product maintainability.

A number of studies have been conducted in
this context [4–9]. For instance, Riaz et al. [4]
conducted a systematic literature review (SLR)
on a set of 15 primary studies dating from 1985
to 2008 to investigate techniques and methods
used to predict software maintainability. They
found that the number of studies varied from
one to two per year illustrating that this re-
search topic was still in emergence in 2008 and
had not yet reached a certain level of maturity.
Moreover, they showed that the choice among
prediction models for maintainability was not ob-
vious (12 out of 15 studies had proposed models).
Size, complexity and coupling were commonly
used independent variables for maintainability,
while maintainability expressed in terms of an
ordinal scale based on expert judgment was the
most commonly used dependent variable. A sub-
sequent SLR (from 1985 to 2010) by Riaz [5]
identified seven primary studies that focused on
relational database-driven applications (RDBAs).
The results showed little evidence for maintain-
ability prediction for relational database-driven
applications. He found that: expert judgment
was the most common prediction technique, cou-
pling related measures were the most common
predictors, and subjective assessment was the
most common dependent variable.

Orenyi et al. [6] conducted a survey on
object-oriented (OO) software maintainability
using a set of 36 studies published between 2003

and 2012. The authors investigated the use of
a quality model, sub-characteristics or measures
and techniques, and noted that regression analy-
sis techniques were the most used (31% of the 36
studies). Dubey et al. [7] provided an overview
of a set of 21 studies on maintainability tech-
niques for OO systems published between 1993
and 2011. In these latter two studies (not SLRs)
the authors did not provide a detailed analysis.
Fernandez-Saez et al. [8] conducted a systematic
mapping study (SMS) on a set of 38 primary
studies (collected from 1997 to 2010) in order to
discover empirical evidence related to the use of
UML diagrams in source-code maintenance and
the maintenance of UML diagrams themselves.
They found that “the use of UML is beneficial
for source code maintenance, since the quality
of the modifications is greater when UML dia-
grams are available, and most research concerns
the maintainability and comprehensibility of the
UML diagrams themselves”. To explore the use
of UML documentation in software maintenance,
the authors have published results from a survey
of software industry maintenance projects [9]
by 178 professionals from 12 different countries.
The findings were summarized as follows: “59%
indicated the use of a graphical notation and 43%
UML, most effective UML diagrams for software
maintenance were class, use case, sequence and
activity diagrams, the benefits of using UML
diagrams result in less time needed for a better
understanding and, thus an improved defect de-
tection, and larger teams seem to use UML more
frequently in software maintenance”.

A summarized context of this related work is
presented in Table 1 in terms of: purpose of the
study, research or mapping questions addressed,
type of study (SLR, SMS or another form of
literature review, such as survey, review, etc.),
period of collection, and the number of primary
studies for each study.

As can be seen from Table 1, while all stud-
ies shared an interest in the maintainability of
the software, they focused on different aspects
or topics within the field. The period of col-
lection and number of primary studies varied
among the reviews. Only three studies conducted
a rigorous review with SLR and SMS addressing

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 143

Table 1. Summarized context of related work

Study ID Purpose Research or mapping ques-
tions addressed

Type Period of
collection

#of
studies

[4] Understand the state of the
art of the software maintain-
ability prediction techniques
and metrics.

1) techniques, 2) accuracy
measures, 3) independent
variables, 4) dependent vari-
ables.

SLR 1985–2008 15

[5] Understand the state of the
art of the software maintain-
ability prediction techniques
and metrics in RDBAs.

1) techniques, 2) accuracy
measures, 3) independent
variables, 4) dependent vari-
ables.

SLR 1985–2010 7

[6] Review existing studies in
the area of OO software
maintainability measure-
ment.

Not provided Survey 2003–2012 36

[7] Review of studies on soft-
ware maintainability model
with OO system.

Not provided Survey 1993–2011 23

[8] Review of studies on mainte-
nance of UML diagrams and
their use in the maintenance
of code.

1) UML Diagrams, 2) depen-
dent variable, 3) state of the
art, 4) factors

SMS 1997–2010 38

[9] Survey on the use of UML
in software maintenance in
order to gather information
and opinions from a large
population.

Not provided Survey February
to April
of 2013

–

some research or mapping questions. The SMS
[8] focused on empirical studies concerning the
maintenance of UML diagrams and their use in
the maintenance of code. However, the scope of
this study was broader and focused not only on
UML diagrams but also provided a state-of-the
art review of software product maintainability
prediction in general. The SLR [4] addressed
four research questions (see Table 1), while our
study addressed additional questions related to
publication trends, publication sources, research
types, empirical approaches, software application
types, datasets, and tools used to gather these
independents variables. Moreover, in our study,
to provide answers to the mapping questions,
we classified the selected studies according to
a set of proposed criteria, whereas study [4] only
extracted data for some research questions, pre-
senting them in tables as reported in the primary
studies without providing any analysis. Further-

more, none of the previous studies dealt with the
accuracy of SPMP techniques whereas our study
analyzes and summarizes the evidence regarding
prediction accuracy of SPMP techniques as well
as identifies the most accurate in comparative
studies.

Since the publication of SLRs [4, 5] and SMS
[8] studies a number of new empirical studies
have been published, some proposing new tech-
niques, such as machine learning techniques, oth-
ers evaluated existing ones, while still others pro-
vided comparative studies to identify the most
accurate. Furthermore, since the first SLR on
software maintainability was published in 2008,
it was important to investigate what further re-
search had occurred since. Moreover, the number
of primary studies investigated was very small
(from 7 to 15) and the results obtained cannot
be conclusive. To establish the state-of-the-art
on this topic and reach a certain level of external

144 Sara Elmidaoui et al.

Table 2. Mapping and research questions

ID Mapping questions Motivation
MQ1 How has the frequency of SPMP

studies changed over time?
To identify the publication trend of SPMP studies over time.

MQ2 What are the main publication
sources?

To identify what and how many publication sources for SPMP
studies.

MQ3 What research types were used? To identify the different research types used in SPMP studies.
MQ4 What empirical approaches were

used?
To identify the empirical approaches that have been used to
validate SPMP techniques.

MQ5 What types of software applica-
tions were used?

To identify the software application types on which the SPMP
studies focused.

MQ6 What datasets were used? To identify the datasets used for SPMP empirical studies,
including the number of projects in the empirical studies.

MQ7 What dependent and independent
variables were used?

To identify: A) How maintainability was expressed in terms of
the variable to be predicted (e.g. dependent variable). B) What
measures or factors were used as predictors (i.e. independent
variables) for SPMP. C) Successful predictors for maintainabil-
ity as reported by the selected studies. D) Tools used to gather
predictors.

MQ8 What techniques were used in
SPMP?

To identify and classify the techniques used in SPMP studies.

ID Research questions Motivation
RQ1 What is the overall prediction ac-

curacy of SPMP techniques?
To identify to what extend the SPMP techniques provide
accurate prediction.

RQ2 Which SPMP techniques were re-
ported to be superior in compara-
tive studies?

To identify SPMP techniques reported to be superior in com-
parative studies.

RQ3 Which of the SPMP techniques
reported to be superior in compar-
ative studies also provided greater
accuracy?

To compare SPMP techniques that have been reported to be
superior in the comparative studies using the same prediction
context in terms of accuracy prediction.

validity [4], research published during the last
10 years of studies providing empirical validation
of their finding needs to be investigated. This
study differs from previous reviews in several
ways: it provides an up-to-date state-of-the-art
review of SPMP (from 2000 to 2018), the search
was conducted on nine digital libraries, a set
of 82 primary studies were selected, and classi-
fication criteria were proposed for purposes of
detailed and precise analysis of the results. A set
of eight mapping questions (MQs) were addressed
related to: (1) publication year, (2) publication
source, (3) research type, (4) empirical approach,
(5) software application type, (6) datasets, (7) in-
dependent variables (e.g. factors used as predic-
tors) and dependent variables (e.g. how main-
tainability is expressed in terms of the variable

to be predicted), and (8) techniques used, as well
as a set of three research questions (RQs) re-
lated to: (1) prediction accuracy, (2) techniques
reported superior in comparative studies and
(3) accuracy comparison of these techniques (see
Table 2). Therefore, the objective of this study
was twofold:
– to classify SPMP studies according to the

proposed criteria (see Table 3), and,
– to analyze and summarize the empirical evi-

dence of SPMP technique accuracy prediction
in current research.
The rest of the paper is organized as fol-

lows. Section 2 presents the methodology used
to conduct the study including the mapping and
research questions to be addressed, the research
strategy and selection of the primary studies.

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 145

Table 3. Classification criteria

Property Categories
Research types Solution proposal (SP), evaluation research (ER)
Empirical
approaches

History-based evaluation (HbE), case study (CS), experiment or family of experiments
(Ex)

Software applica-
tion types

Object-oriented applications (OOA), procedure-oriented applications (POA), web-based
applications (WbA), service-oriented applications (SOA), component-based applications
(CbA), not identified (NI)

Datasets Software engineering researchers (SER), open source software systems/projects (OSS),
private software projects/systems (PSP) dependent variable change, expert opinion,
maintainability index, maintainability level, maintainability time, others

Independent
variables

Chidamber and Kemerer (C&K), Li and Henry (L&H), class diagram, source code size,
McCabe complexity (McCabe), software quality attributes, Martin’s measures, Halstead
measures, Brito e Abreu and Carapuça (BA&C), factors, coding rule measures, quality
model for object-oriented design (QMOOD) measures, maintainability index (MI),
web-based application (WbA) measures, Jensen measures, effort measures, sequence
diagram, Lorenz and Kidd (L&K) measures, fault measures, database measures

Techniques Machine learning (ML), artificial neural network (ANN), fuzzy & neuro fuzzy (FNF),
regression & decision trees (DT), case-based reasoning (CBR), Bayesian networks (BN),
evolutionary algorithm (EA), support vector machine & regression (SVM/R), induc-
tive rule based (IRB), ensemble methods (EM), clustering methods (CM); statistical:
regression analysis (RA), probability density function (PD), Gaussian mixture model
(GMM), discriminant analysis (DA), weighted functions (WF), stochastic model (SM)

Section 3 summarizes the results by providing
answers to the mapping questions. Section 4
provides the results of the research questions.
Section 5 presents the threats to validity of the
work. Section 6 offers conclusions and possible
future directions.

2. Research methodology

In this study, we used the guidelines of Petersen
et al. [10] for conducting systematic reviews,
which include planning, conducting and report-
ing. According to Kitchenham, “Systematic Map-
ping Studies (SMS) use the same basic method-
ology as SLRs but aim to identify and classify all
research related to a broad software engineering
topic rather than answering questions about the
relative merits of competing technologies that
conventional SLRs address” [11]. In the planning
step, the review protocol was developed which
describes the procedure for conducting the re-
view. The steps of this protocol are summarized

as follows: (1) establishment of a set of map-
ping and research questions to address the issues
related to the review, (2) identification of the
search strategy including identification of search
terms, selection of sources to be searched, and
the search process, (3) selection of the set of
primary studies using inclusion and exclusion
criteria, (4) mapping of publications by extract-
ing data from each selected study, and (5) data
synthesis by grouping the overall results in order
to facilitate analysis and provide answers to the
mapping and research questions. The protocol
was established by holding frequent meetings
between authors. A detailed description of each
of these steps is provided in the following sub-
sections.

2.1. Mapping and research questions

In addition to our primary motivation to provide
and summarize evidence from published empir-
ical studies on SPMP, according to our set of
criteria, we identified eight mapping questions

146 Sara Elmidaoui et al.

(MQs) and three research questions (RQs) – see
Table 2.

The MQs are related to the structuring of the
SPMP research area with respect to the proper-
ties and categories described in Table 3. These
categories are defined and explained in the Ta-
bles A1 and A2 in the Appendix.

2.2. Search strategy

The search strategy used to identify the primary
studies included the following steps: identify the
search terms, apply these search terms to elec-
tronic databases to retrieve candidate studies,
use the search process to ensure that all relevant
studies are identified.

2.2.1. Search terms

The search terms were identified based on the
MQs and RQs by identifying keywords, synonyms
and alternative spellings. The main search terms
were: “maintainability”, “empirical”, “software”,
“prediction”, and “technique”. Table 4 provides
the main search terms and their alternatives
spellings. As can be seen from Table 4, for alter-
native terms related to maintainability we consid-
ered all the maintainability sub-characteristics
proposed in the standard ISO 9126 and used in
previous SLRs [4, 5].

The search terms were derived using the fol-
lowing series of steps [12]:
– Define the main search terms matching the

mapping questions listed above.
– Identify synonyms and alternative spellings

for the main terms.
– Use the Boolean OR to concatenate synony-

mous and alternative terms in order to re-
trieve any record containing either (or all) of
the terms.

– Use the Boolean AND to connect the main
terms in order to retrieve any record contain-
ing all the terms
The following set of search terms were used

to extract the primary studies: “(maintainability
OR analyzability OR modifiability OR testa-
bility OR compliance OR stability) AND (em-
pirical* OR evaluation* OR validation* OR
experiment* OR control* experiment OR case
study OR survey) AND (software product OR
software OR application OR system OR soft-
ware engineering) AND (predict* OR evaluat*
OR assess* OR estimat* OR measur*) AND
(method* OR technique* OR model* OR tool*
OR approach*)”

2.2.2. Literature resources

To search for primary studies, nine relevant and
important digital libraries in software engineering
used in previous SLRs and SMSs [4, 5, 12] were
chosen, which included journals, books, and con-
ference proceedings from: IEEE Xplore, Science
Direct, Springer Link, Ebsco, ACM Digital Li-
brary, Google Scholar, Scopus, Jstore, and DBLP.
The preconstructed search terms established in
the first step were applied to this set of nine digi-
tal libraries. The search focused on title, abstract
and keywords, and ranged from 2000 to 2018.

2.2.3. Search process

To ensure selection of the maximum number of
studies related to SPMP, a first round search (au-
tomated) was performed using the search terms
on each digital library to gather the overall set of
candidate studies. A second search round (man-
ual) was performed, which consisted of examining
the reference lists of the set of candidate studies
in order to identify new candidates based on

Table 4. Search terms

Main terms Alternative terms
maintainability analyzability, modifiability, testability, stability, compliance
empirical evaluation, validation, experiment, control experiment, case study, survey
software software product, software, application, system, software engineering
prediction prediction, evaluation, assessement, estimation, measurement
technique method, technique, model, tool, approach

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 147

the title. If the full study was not available, the
authors were contacted to obtain a copy of the
published work.

2.3. Study selection

After applying the search process, the full text of
the candidate studies retrieved were assessed by
two authors according to the following inclusion
and exclusion criteria.
– Inclusion criteria (IC): (1) empirical stud-

ies addressing prediction or assessment of
software product maintainability and/or its
sub-characteristics, (2) empirical studies us-
ing SPMP techniques.

– Exclusion criteria (EC): (1) studies that
discuss the process of software maintenance,
(2) studies that concentrate on software
maintainability generally and do not present
a technique to predict the software main-
tainability, (3) studies published before 2000,
(4) short studies (2–3 pages), (5) secondary
studies, and (6) studies by the same author;
if results were the same in both studies, the
most recent was used, otherwise both studies
were used.
The study was retained if it satisfied both

inclusion criteria, and rejected if it did not sat-
isfy at least one of the exclusion criteria. Once
applied, the decision to retain or reject the study
depended on the evaluation of the two authors.
In case of doubt or disagreement, a discussion
based on review of the full text ensued until
an agreement was reached. Duplicate titles and
titles out of scope of the review were rejected.

2.4. Study quality assessment

Quality assessment (QA) criteria were used to
assess the relevance of the candidate studies. QA
is necessary in order to limit bias in conducting
mapping and review studies, to gain insight into
potential comparisons and to guide the interpre-
tation of findings [12]. The quality of the relevant
studies was evaluated based on seven questions
as follows:
– QA1: Are the objectives of the study clearly

described and appropriate?

– QA2: Are the factors or measures used as
predictors of maintainability defined?

– QA3: Are the datasets adequately described?
– QA4: Are the SPMP techniques well-pre-

sented and defined?
– QA5: Is the accuracy criteria well-presented

and discussed?
– QA6: Is the most accurate technique clearly

stated?
– QA7: Are the findings of the study clearly

stated and presented?
These questions have three possible answers:

“Yes”, “partially”, and “No”. These answers are
scored as follows: (+1), (+0.5), and (0) respec-
tively. The quality score for each study was com-
puted by summing up the scores of the answers
to the QA questions. The maximum score for
all questions is 7 and the minimum 0. Studies
that scored greater than 50% of the perfect score
were considered for the review as in [4, 12]. The
QA was performed independently by two of the
authors. In the case of disagreement, the two
authors discussed the issue until a final consen-
sus was reached. After applying the QA criteria,
82 primary studies with an acceptable quality
score (i.e. more than 3.5) were selected. The de-
tailed quality scores for each study are presented
in Table A3 in the Appendix.

2.5. Data extraction and data synthesis

A data extraction form was completed with in-
formation for each selected primary study to
determine which apply to one of more of the
mapping or research questions. Two indepen-
dent researchers performed the extraction. In
the case of disagreement, a discussion was held
to reach consensus after a thorough review of
the study. To facilitate synthesis and analysis
of the data, the information collected was tab-
ulated and grouped into a file (see Table 5).
Various visualization techniques (such as charts
and frequency tables, etc.) were used to syn-
thesize the data, accumulate and combine facts
from the selected primary studies in order to
formulate answers to the mapping and research
questions. A narrative summary reports the
principal findings of the study, including collec-

148 Sara Elmidaoui et al.

Table 5. Data extraction form

Data extractor
Data checker
Study identifier
Name of database
Publication year
Author name(s)
URL
Article title
MQ2: Publication source
MQ3: Research type (see Table 3 and Table A1 in the Appendix)
MQ4: Empirical approach type (see Table 3 and Table A2 in the Appendix)
MQ5: Software application type (see Table 3)
MQ6: Datasets (see Table 3)
– Categories of datasets
– Historical datasets: name and number of projects
MQ7: Dependent and independent variables (see Table 3)
– Common types of factors or measures used as independent variables (predictors).
– Common types of factors or measures used as dependent variables.
– Successful predictors of maintainability as reported in the selected primary studies.
– Tools (tool name, description).
MQ8: Techniques (see Table 3)
– Categories of techniques: statistical and machine learning.
RQ1: Prediction accuracy
– Most used accuracy criteria.
– Accuracy prediction of SPMP techniques per most used dependent variable topics (identified in MQ7).
RQ2: SPMP techniques reported to be superior in comparative studies
– Techniques reported to be superior in comparative studies.
– Strengths and weakness of these techniques.
– Techniques having been reported to be superior and not.
RQ3: Accuracy comparison of the SPMP techniques identified in RQ2
– Selection of studies under the same prediction context (e.g. dataset, accuracy criteria, etc.).
– Accuracy comparison of SPMP techniques under this context.
– Selection of the most accurate SPMP techniques.

tion of a number of studies that state similar
and comparable viewpoints.

3. Mapping Results

To conduct the study the process defined dur-
ing the planning phase was implemented. Data
retrieval, study selection, data extraction, and
data synthesis were executed according to the

review protocol developed by the authors. To
begin with, the protocol was carried out by the
first author in order to search studies related
to the SPMP area. The first and second author
then discussed the candidate studies after remov-
ing duplicates. Finally, the selected studies were
checked by reading the full text of each study
in order to confirm whether the paper was to
be included or excluded from the list of primary
studies. In cases of disagreement, the authors

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 149

discussed the studies until an agreement was
reached.

Figure 1 presents the search steps together
with their corresponding results: (1) Applying
the search terms on the nine online databases
resulted in 41341 studies, (2) Removing duplicate
studies and those not related to the SPMP topic
resulted in 341 candidate studies, (3) Applying
the inclusion and exclusion criteria resulted in
75 relevant studies, (4) Scanning the list of refer-
ences and citations resulted in seven more studies
for a total of 82 relevant studies (see Table A4
in the Appendix for the summary of the search
results). All 82 studies were retained since they
had an acceptable quality score (see Table A5 in
the Appendix).

This section presents and discusses the results
obtained from review of the 82 primary studies
by providing answers to the mapping questions
(MQ1-8) in the following subsections. The classi-
fication of each of the selected studies was based
on the established classification criteria (see Ta-
ble 3, and Tables A1 and A2 in the Appendix)
and can be found in Table A6 in the Appendix.

3.1. Publication years (MQ1)

Figure 2 presents the distribution of SPMP stud-
ies per year, beginning in 2000. Interest in SPMP
increased slowly over the decade from 2003 to
2010, reached a peak in 2012 and in 2017 (10 and
11 studies, respectively) and decreased thereafter
while remaining relatively high between 2012 and
2017. Only three studies are shown for 2018 since
most of the published studies were not yet online
at the time the SMS was conducted.

3.2. Publication sources (MQ2)

Table 6 presents the distribution of the selected
primary studies over publication sources. Only
six journals (IJCA, JC, IST, IJSAEM, ESE,
and JSS), six conferences (SIGSOFT, QR2MSE,
ICSM, ICRITO, ICACCI, and CSMR) and one
symposium (HASE) had more than one selected
study. The other publication sources had only
one study and have been grouped into others.

Figure 3 shows graphically the distribution
of primary studies by source. Of the 82 selected

Figure 1. Search process steps and results

150 Sara Elmidaoui et al.

Figure 2. Distribution of selected SPMP studies per year

Table 6. Publication sources

Source Type #of studies Percentage
Information and Software Technology (IST) Journal 4 5%
Journal of Systems & Software (JSS) Journal 4 5%
International Journal Computer Applications (IJCA) Journal 3 4%
Empirical Software Engineering (ESE) Journal 3 4%
Journal of Computing (JC) Journal 2 2%
International Journal of System Assurance Engineering and
Management (IJSAEM)

Journal 2 2%

SIGSOFT Software Engineering Notes (SIGSOFT) Conference 2 2%
International Conference on Quality, Reliability, Risk, Mainte-
nance, and Safety Engineering (QR2MSE)

Conference 2 2%

IEEE International Conference on Software Maintenance
(ICSM)

Conference 2 2%

European Conference on Software Maintenance and Reengi-
neering (CSMR)

Conference 2 2%

International Conference on Reliability, Infocom Technologies
and Optimization (ICRITO)

Conference 2 2%

International Conference on Advances in Computing, Commu-
nications and Informatics (ICACCI)

Conference 2 2%

International Symposium on High Assurance Systems Engi-
neering (HASE)

Symposium 2 2%

Others (conference, symposium, journal, chapter, workshop) 1 each source 63%

studies, 41 (50%) were published in journals,
34 (42%) at conferences, four (5%) at a sym-
posium, two (2%) in a workshop, and one (1%)
a chapter.

3.3. Research types (MQ3)

Two main research types were identified from
the selected studies: solution proposal (SP) and

evaluation research (ER). Figure 4 shows that SP
was the most frequently used (48 studies or 59%)
followed by ER (34 studies or 41%), indicating
that the goal of researchers was to propose new
techniques or adapt old ones (SP), and then eval-
uate and/or compare existing techniques (ER) to
improve SPMP. Furthermore, of the 82 selected
studies, 41 (50%) conducted comparative stud-
ies to identify the most relevant techniques for

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 151

Figure 3. Distribution of primary SPMP studies by publication source

Figure 4. Research types of SPMP studies

predicting software product maintainability of
which 14 (34%) were SP studies and 27 (66%)
were ER studies.

3.4. Empirical approaches for validating
SPMP techniques (MQ4)

Figure 5 shows the three main empirical ap-
proaches used to validate SPMP techniques,
which are history-based evaluation (HbE), ex-
periment (Ex), and case study (CS). From Fig-
ure 5, HbE and Ex were the most frequently
employed approaches: 48 studies (58%) were em-
pirically validated on previously completed soft-
ware projects (HbE) and 26 studies (32%) were
validated under controlled conditions (Ex).

As shown in Table 7, the number of studies
using these two approaches has increased over
time. Note that only eight out of 82 (10%) of
selected studies investigated an SPMP technique
in a real-life context through a case study (CS).

3.5. Software application types (MQ5)

To validate SPMP techniques, the selected stud-
ies used data from different types of software
applications. A set of four main types were iden-
tified: object-oriented applications (OOA), pro-
cedure-oriented applications (POA), web-based
applications (WbA), service-oriented applica-
tions (SOA), and component-based applications
(CbA).

Figure 6 shows that OOA were the most fre-
quently used with 65 studies (79%), followed by
POA and SOA with four studies, each (5%), WbA
with two studies (2%), and CbA with one study
(1%). The remaining studies, denoted by NI (Not
Identified), did not specify the type of software ap-
plications studied. The high percentage for OOA
to empirically validate SPMP techniques is due
to the use of historical datasets (MQ6), most of
which involved object-oriented projects.Moreover,
based on the distribution of primary studies using

152 Sara Elmidaoui et al.

Figure 5. Empirical approaches for validating SPMP techniques

Table 7. Distribution of SPMP empirical approaches per time period

Empirical approach 2000–2005 2006–2011 2012–2018 Total
History-based evaluation (HbE) 2 10 36 48
Experiment (Ex) 5 4 17 26
Case Study (CS) 1 5 2 8

empirical approaches (MQ4) by software applica-
tion type (MQ5), it can be seen in Figure 6 that
OOA were frequently used in three empirical ap-
proaches: history-based evaluation (HbE) was the
most frequently used, followedby experiment (Ex),
and then case study (CS). Three other software
application types were used less frequently: POA
wasonlyused inHbEandExapproaches,WbAwas
used equally in CS and Ex approaches, SOA was
only used in HbE, while CbA was only used in CS.

Figure 7 shows the frequency of research
types (MQ3), empirical approaches (MQ4) and
software applications types (MQ5). It can be
remarked that:
– OOA were the most frequently studied in

both research types (31 for evaluation re-
search and 34 for solution proposal),

– POA, WbA, SOA, and CbA software appli-
cation types were less used (eight studies for
solution proposal research), and

– the remaining six studies did not clearly iden-
tify the software applications types consid-
ered.
Moreover, almost all evaluation research stud-

ies (31 of 34 studies) used the HbE evaluation
approach while the majority of solution proposal
studies used either Experiment (23 studies) or
HbE evaluation (17 studies) approaches. The

case study approach was less used and only in
solution proposal (eight studies).

3.6. Datasets (MQ6)

A variety of datasets from various sources were
used in the selected the primary studies. Three
main categories of datasets based on their origin
were identified:
– Software engineering researchers (SER): Pub-

lic datasets used by researchers from the soft-
ware engineering community: UIMS (user in-
terface management system), QUES (qual-
ity evaluation system), VSSPLUGIN (visual
source safe PLUGIN), PeerSim (peer-to-peer
simulator), etc.

– Open source software systems/projects
(OSS): Freely available datasets, such as
JHotdraw, Jtreeview (Java TreeView), JEdit,
Lucene, etc.

– Private software projects/systems (PSP): Pri-
vate data from large industrial projects, such
as: MIS (medical imaging system), FLM
(file letter monitoring system), EASY (EASY
classes online services collection), SMS (stu-
dent management System), IMS (inventory
management system), APB (angel bill print-
ing), and from academic software projects

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 153

Figure 6. Frequency of software application type per empirical approach

Figure 7. Frequency of research types, empirical approaches and software application types

Table 8. Number of SPMP studies per dataset sources

Dataset sources Used in # of
studies Percent

Private software
projects (PSP)

S1, S3, S4, S7, S10, S11, S12, S13, S15, S17, S18, S20, S22, S24,
S25, S30, S34, S36, S40, S47, S50, S51, S52, S53, S67, S74, S75,
S78, S79, S80, S81, S82

32 39%

Open sources
software projects
(OSS)

S5, S8, S16, S27, S28, S34, S36, S39, S41, S46, S48, S49, S59,
S60, S61, S62, S63, S64, S65, S66, S68, S70, S71, S72, S73, S76,
S77

27 33%

Software engineering
researchers (SER)

S2, S6, S9, S14, S19, S21, S23, S26, S29, S31, S32, S33, S35,
S37, S38, S42, S43, S44, S45, S54, S55, S57, S56, S58, S69

25 30%

developed by students, such as bank informa-
tion system (BIS) and Aggarwal datasets.
Table 8 presents the number and percent-

age of studies per dataset sources. The PSP
datasets were the most frequently used with
32 studies (39%) each, followed by OSS datasets
with 27 studies (33%) and SER datasets with
25 studies (30%). Note that some studies may
have used more than one dataset. For example,
S34 used both PSP and OSS datasets and was
counted twice.

Within these dataset sources, some empirical
studies used historical data to evaluate and/or
compare SPMP techniques with other techniques,
referred toashistorical datasets.When researchers
collect data on their own, they can make it avail-
able for future use or not. When the available data
is used by other research workers, it is referred to
as historical datasets. From the set of 82 selected
studies, 48 (which are related to HbE (MQ4)) used
historical datasets. Table 9 summarizes the histor-
ical datasets used, the number and percentage of

154 Sara Elmidaoui et al.

Table 9. Distribution of HbE empirical approaches over historical datasets

Datasets # of studies Percent # of project Source
UIMS 24 29% 1 project (39 classes) [13]
QUES 22 27% 1 project (71 classes) [13]
JEdit 6 7% 1 project (415 classes) [14]
eBay 4 5% 1 projet (1524 classes) [15]
Lucene 3 4% 1 project (385 classes) [14]
JHotdraw 3 4% 1 project (159 classes) [14]
Art of Illusion 3 4% 1 project (739 classes) [16]
jTDS 3 4% 1 project (64 classes) [17]
BIS 2 2% 1 project (28 classes) [18]
MIS 2 2% 1 project (4500 modules) [19]
JUnit 2 2% 1 project (251 classes) [20]
Ivy 2 2% 1 project (614 classes) [16]
Camel 2 2% 1 project (422 classes) [16]
Eclipse 2 2% 1 project (10 594 classes) [16]
FLM 2 2% 1 project (55 classes) [21]
EASY 2 2% 1 project (84 classes) [21]

the primary studies that used the dataset, the num-
ber of projects or classes and the source reference
of the dataset. Note that one study may involve
more than one dataset and in that case is counted
only once. As can be seen from Table 9, among the
48 HbE empirical approaches, the most frequently
used historical dataset was UIMS (24 studies)
followed by QUES (22 studies), which amounts to
56% for only two relatively small OOA datasets of
one project each. While this creates a limitation
in terms of bias in the evaluation of numerous
studies, it permits a basis for comparison across
findings using the same dataset. Datasets that
were used in two to four studies included: JEdit,
eBay, JHotdraw, jtds, Lucene, Art of Illusion,
Eclipse, MIS, FLM, BIS, Ivy, Junit, Camel, and
EASY. The remaining datasets were used in only
one study each (not included in Table 9).

Furthermore, all these datasets (4th column)
developed software projects using the object-ori-
ented paradigm (including classes, methods, at-
tributes, polymorphism, etc.), except MIS and
Aggarwal datasets which developed software
projects using the procedure-oriented paradigm
(POA) and eBay software applications using the
service-oriented paradigm.

Figure 8 is extracted from Table 9 and in-
cludes only software engineering researchers and
open source datasets from publicly available in-
dustrial or professional datasets, such as: UIMS,

QUES, JEdit, Lucene, JHotdraw (no private or
student datasets were included). For instance,
the two popular datasets published by Li and
Henry [13] (UIMS and QUES), which are fre-
quently used in predicting maintainability, are
OO commercial systems developed using the
Ada programming language. The other datasets
(JEdit, Lucene, JHotdraw, Art of Illusion, jTDS,
JUnit, Ivy, Camel, Eclipse, and eBay) are OO
systems implemented in Java. The public avail-
ability of these datasets allows researchers and
practitioners to conduct verifiable, repeatable,
comparatives studies [22], provided that they
use the same prediction context (e.g. dependent
and independent variables, datasets, accuracy
criteria, and validation method).

Figure 8. Historical datasets used for SPMP studies

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 155

Table 10. Classification of the dependent variables

Topic Sub-topic Supported studies # of
studies

Change
Changes in LOC

S2, S6, S9, S14, S19, S21, S23, S24,
S26, S29, S31, S32, S33, S35, S37,
S38, S42, S43, S44, S45, S47, S48,
S49, S52, S54, S55, S56, S57, S58,
S59, S60, S61, S62, S64, S65, S66,
S69, S70, S71, S72, S73, S74, S77

46

Change in module S10, S15
Change in class S30

Expert
opinion Expert opinion based on ordinal scale S11, S18, S20, S25, S27, S28, S36,

S41, S50, S67 10

Maintainability
index

Maintainability index S8, S16, S48, S68, S75
8Relative maintainability index S39, S76

Maintainability index satisfaction S40
Maintainability
level

Understandability level, modifiability
level, analyzability level S4, S22, S51, S53, S78, S80, S82 7

Maintainability
time

Understandability time S3, S12, S78

8
Modifiability time S3, S12, S78
Completion time of understandability S80, S82
Time to repair the design of
a structure S17

Other

Maintainability expressed in terms of
number of revised lines of code and
number of revisions

S46, S63 2

Maintainability efficiency S79 1
Maintainability effectiveness S79 1
Understandability effectiveness S81 1
Modifiability effectiveness S81 1
Understandability efficiency S81 1
Modifiability efficiency S81 1
Modifiability completeness S3 1
Modifiability correctness S3 1
Error prone modules S1 1
Detected fault S13 1
Maintainability measured using
probabilistic quality model S34 1

WbA maintainability S5 1
Perceived maintainability S7 1

3.7. Dependent and independent
variables used in SPMP studies
(MQ7)

This section identifies and discusses the dependent
variables and the measures used to express main-
tainability (predicted output). It then presents the
factors or measures used as independent variables
(predictors), the tools used to gather them and the

reported successful predictors of software product
maintainability from the 82 primary studies.

3.7.1. Dependent variables

The dependent variable (predicted output), soft-
ware maintainability, was measured differently
in the 82 selected studies. As shown in Ta-

156 Sara Elmidaoui et al.

Figure 9. Distribution of selected SPMP studies per most used dependent variable

ble 10 and Figure 9, we identified five main
research topics related to maintainability (or
its sub-characteristics). Other less used research
topics were also identified, but are not included
in Figure 9. The scope of this review included
the maintainability sub-characteristics as iden-
tified by ISO 9126 [23] or its successor ISO
25010 [24], such as: changeability, modifiabil-
ity, stability, analysability, testability, modu-
larity, and reusability, or as defined by a par-
ticular study (S4, for example, identified two
sub-characteristics of maintainability: under-
standability and modifiability).

As shown in Table 10:
– The topic most frequently referred as the de-

pendent variable is change, 46 studies (56%):
◦ Changes in LOC studies used the num-

ber of lines of code changed per class by
counting the number of lines in the code
that were changed.

◦ Changes of modules studies used the
changes made to each module due to
faults discovered during system testing
and maintenance.

◦ Changes of classes studies used the change
of an attribute, a method or a class af-
fected by decomposition of the system and
its sub-systems.

– The second topic referred to studies that pre-
dict SPM based on expert opinion: 10 stud-
ies (12%) expressed maintainability using an
ordinal scale based on expert opinion. The
maintainability was qualified as: poor, aver-
age, very good, or very high, high, medium,
low, or excellent, average, bad, etc.

– The third topic referred to studies that used
a maintainability index (MI) to determine the
maintainability of the software product (eight
studies – at 10%). Some studies used the
maintainability index calculated as a factored
formula of average Halstead volume per mod-
ule, average extended cyclomatic complexity,
average lines of code, and average percent
of lines of comments per module measures.
Some studies used relative maintainability
index calculated for each source code element
for which metrics were calculated (e.g. meth-
ods, classes) using the goodness value. Other
studies used the maintainability index sat-
isfaction expressed in terms of maintenance
time satisfaction, maintenance man-hour sat-
isfaction, and maintenance cost satisfaction.

– The fourth topic referred to studies that pre-
dict maintainability in terms of understand-
ability, modifiability and analyzability levels,
which are evaluated based on the subject’s
difficulty to: understand the system, carry out
modification tasks, and diagnose the system
(seven studies – 9%).

– The fifth topic refers to studies that predict
the maintainability in terms of understand-
ability time, and/or modifiability time spent
by subjects answering the understandability
questions or understanding source code and
carrying out modifications, or the time to re-
pair the design of structure (six studies – 7%).

– The other research maintainability topic in-
cluded less used dependent variables such
as: modifiability completeness, modifiability
correctness, number of revised lines of code

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 157

and number of revisions, maintainability ef-
ficiency, maintainability effectiveness, under-
standability effectiveness, modifiability effec-
tiveness, understandability efficiency, modifia-
bility efficiency, error prone modules, detected
fault, maintainability measured using a prob-
abilistic quality model, WbA maintainability,
and perceived maintainability.

3.7.2. Independent variables

In order to predict software product maintain-
ability, the selected primary studies used various
factors or measures as independent variables (or
predictors), i.e. different inputs to the SPMP tech-
niques. This subsection presents the independent
variables used, those most used as predictors and
the tools used to collect them. For the remainder
of this paper, the terms independent variables and
predictors will be used interchangeably. Table A7
in the Appendix provides the full list of the
predictors used, the corresponding total number
of frequencies, supported studies and percentage.

For the 82 primary studies, Chidamber and
Kemerer (C&K) measures were the most used
(50 studies – 61%), followed by
– Li and Henry (L&H) measures (33 studies –

40%),
– Class diagram measures (24 studies – 29%),

which included measures related to method,
attribute, class, or relationships (associa-
tions, aggregations, generalization and de-
pendency),

– Source code size measures using different lines
of code (LOC) measures (20 studies – 24%),

– McCabe cyclomatic complexity (17 studies –
21%), and

– Software quality attributes (such as stability,
changeability and analyzability, readability of
source code, document quality, understand-
ability of software, simplicity, accessibility,
etc.) (eight studies – 10%).
The least used predictors included measures

such as: factors, Lorenz and Kidd (L&K) mea-
sures, coding rule measures, maintainability in-
dex (MI), web-based application (WbA), se-
quence diagram measures (scenarios, messages
and conditions), Martin’s measures, QMOOD
measures, Fault, database measures, Halstead
measures, and Brito e Abreu and Carapuça
(BA&C), etc.

Figure 10 shows the number of studies for
the most frequently used predictors. Note that
one study may involve more than one type of
predictor. Figure 10 is extracted from Table A7,
while the least used predictors were discarded.

Furthermore, it was observed that object-ori-
ented measures were the most used predic-
tors. This is mainly due to the wide use of
object-oriented software applications (OOAs) in
SPMP empirical studies, i.e. 65 out of the 82 se-
lected studies (see Section 3.5, Figures 6 and 7).

As shown in Figure 11, the frequently used
OO measures were RFC (response for a class)
and LCOM (lack of cohesion in methods), fol-
lowed by WMC (weighted methods per class),
DIT (depth of inheritance tree), NOC (num-
ber of children), LOC (lines of code or size1),
MPC (message passing coupling), NOM (num-
ber of local methods), DAC (data abstraction

Figure 10. The number of the SPMP studies for the most frequently used predictors

158 Sara Elmidaoui et al.

Figure 11. The number of SPMP studies for the most frequently used OO measures

coupling), Size2 (number of properties), and
CBO (coupling between object). Such types of
measures were collected at the design or source
code levels.

Table 11 presents the list and description of
the tools used to compute these measures, as well
as the primary studies that used them. Note that
only 46 out of the 82 studies provided information
on the data collection tools used. The Classic-Ada
metrics analyzer was the most commonly used
(24 studies), followed by Chidamber and Kemerer

Java Metric (CKJM) tool (eight studies), Intellij
IDEA tool (four studies), LocMetrics tool (three
studies), Krakatau Professional tool and Under-
stand tool (two studies each), and one study each
for Columbus tool, web application reverse engi-
neering (WARE) tool, Analyst4j standalone tool,
COIN tool, ObjectAid UML Explorer, JHawk
tool, JDepend tool, Classycle tool, SourceMeter
static code analysis tool, Customized tool, and C
and C++ code counter (CCCC) tool. Four other
studies used their own private tools.

Table 11. Tools used to collect measures

Name Description ID

Classic-Ada
metrics
analyzer

Classic-Ada was implemented in LEX and YACC UNIX environ-
ments and was designed on the Mach operating system running on
a NeXTstation using a GNU C compiler. The system was ported to
an Ultrix system running on a VAX station [13].

S2, S6, S9, S14, S19,
S21, S23, S26, S29, S31,
S32, S33, S35, S37, S38,
S42, S43, S44, S45, S54,
S57, S56, S58, S69

CKJM
Chidamber and Kemerer Java Metric extraction tool is freely available.
It calculates C&K metrics by processing the bytecode of Java files
[25].

S48, S49, S55, S59, S61,
S66, S71, S72

Intellij
IDEA

Intellij IDEA is a free and open source Java IDE developed by Jet-
Brains and available as Apache 2 licensed and community edition
[26].

S48, S49, S62, S64

LocMetrics
LocMetrics1 counts total lines of code, blank lines of code, comment
lines of code, lines with both code and comments, logical source lines
of code, McCabe VG complexity, and number of comment words

S66, S71, S72

Krakatau
Professional

Krakatau Professional was developed by Power Software Inc. It is
a fully-featured software metrics tool designed for source code quality
and software measurement specialists [27].

S8, S41

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 159

Table 11 continued

Name Description ID

Understand

Understand2 is very efficient at collecting metrics about the code and
providing different ways for you to view it. There is a substantial
collection of standard metrics available as well as options for writing
custom metrics.

S73, S77

Columbus Columbus is a framework that supports project handling, data
extraction, data representation, data storage and filtering [28].

S39

WARE WARE is an integrated tool that automatically extracts information
from the application and allows more abstract representations to be
reconstructed [29].

S5

COIN Cohesion Inheritance (COIN) is a tool for evaluating cohesion,
inheritance and size metrics of class hierarchies in Java projects [30].

S68

Analyst4j
standalone
tool

Analyst4j is based on the Eclipse platform. It features search, metrics,
analyzing quality, and report generation for Java programs [31]. S28

ObjectAid
UML
Explorer

ObjectAid UML Explorer3 has been used to extract the UML diagrams
from the Java source code. S63

JHawk JHawk4 is a general-purpose metrics collection tool that calculates
a variety of metrics from OO systems.

S63

JDepend JDepend5 has been used to generate design quality metrics for each
package in the system and verify the relations between the packages.

S63

Classycle Classycle’s Analyser tool6 analyzes the static class and package
dependencies in Java applications.

S63

SourceMeter SourceMeter7 is an innovative tool built for precise static source code
analysis of C/C++, Java, C#, Python, and RPG projects. This tool
makes it possible to find the weak spots of a system under
development from the source code only, without the need to simulate
live conditions.

S76

CCCC CCCC8 is a free software tool by Tim Littlefair for measurement of
source code related metrics. S52

Customized
tools

Customized tools have been implemented to integrate and analyze
data from previous tools and to compute the new coupling, instability
and abstractness metrics for every package in the system [32].

S63

Private Tools constructed and developed for each study according to the
context to automatically collect metrics.

S4, S5, S46, S52

1http://www.locmetrics.com 5http://clarkware.com/software/JDepend.html
2http://www.scitools.com 6http://classycle.sourceforge.net/
3http://www.scitools.com 7http://www.sourcemeter.com/
4http://www.virtualmachinery.com/jhawkprod.htm 8http://cccc.sourceforge.net/

Regarding successful predictors of SPM,
25 (30%) of the 82 selected studies explicitly
reported useful measures for software product
maintainability based on empirical evaluation –
see Table 12:

– Chidamber & Kemerer and Li & Henry mea-
sures (DIT, NOC, WMC, RFC, CBO, LCOM,
MPC, DAC, NOM, SIZE1, and SIZE2) re-
ported good correlation with maintainability
in 14 studies (17%).

160 Sara Elmidaoui et al.

Table 12. Successful predictors of SPM in 25 of the SPMP studies

Successful predictors Supported by
DIT, NOC, WMC, RFC, CBO, LCOM, MPC, DAC, NOM, SIZE1,
SIZE2

S6, S8, S9, S14, S21, S32, S46, S47,
S48, S49, S52, S58, S60, S66

NA, NM, NC, NAgg, NAggH, NGen, NGenH, NAssoc, NDep,
MaxDIT S3, S12, S22, S51, S68

MI, CC, NODBC, SCCR S52, S68
TWP, TLOC, WO, SS, ClS, TL, TCC, TWPR, TWPDC S5, S68
Coding effort, RDCRatio S7
Average fan-out, data flow, average McCabe S1
ACLOC, AMLOC, AVPATHS, CDENS, COF, n, N, PPPC S8
NPAVGC, OSAVG, CSA, SWMC, POF S16
LLOC, McCabe, rule violations S39
NOA, Coh, CAMC, LCC, LSCC, SCOM, PCCC, OL2, CBO_U,
CBO_IUB, OCMEC, TCC S46, S68

B, CLOC, Command, CONS, CSA, CSO, Cyclic, Dcy, NAA, OCmax,
OSmax, SLoc, STAT, V, Query S48

B, CLOC, Command, Inner*, Dcy* S49
NclienP, NAggR, NAssoc, NservP, NwebP S53
LCOM3, LOC, Ce S60
NPM, Ca, DAM, MOA S66
MIF, AIF, DCi, Coh, DCd S68

– Class diagram measures (NA, NM, NC, NAgg,
NGenH, NAssoc, NDep, MaxDIT, NGen, and
NAggH) were found to be useful in predicting
maintainability in five studies (6%).

– The other measures were reported useful in
two or one study each.
The remaining 36 studies did not report use-

ful measures, since most were interested in com-
paring the accuracy of their proposed or evalu-
ated SPMP techniques rather than in identify-
ing successful predictors. See Table A8 in the
Appendix for the acronyms of the successful
predictors.

3.7.3. Summary

Table 13 presents the predictors (independent
variable) used by each maintainability research
topic.
– Studies focusing on predicting maintainabil-

ity in terms of change used mainly C&K and
L&H measures, and in particular, change ex-
pressed in terms of number of LOC changed
in a class. This was because the datasets used
(e.g. UIMS, QUES, FLM, EASY, and Lucene,
etc.) focused on OO software applications.

– Studies on maintainability based on expert
opinion using an ordinal scale used quality
attributes, such as readability of source code,
document quality, stability, changeability, an-
alyzability as dependent variable, or measures
related to source code size, McCabe, C&K,
class and coding rules.

– Studies on maintainability index or relative
maintainability index used C&K, source code
size, Halstead, class, Lorenz and Kidd, Brito e
Abreu and Carapuça, and McCabe measures,
while the maintainability index satisfaction
used satisfaction attributes.

– Studies on maintainability level in terms of
sub-characteristics (understandability, modifi-
ability and analysability) used class diagramas
well as sequence diagrammeasures and factors.

– Studies on maintainability time used class
diagram measures for understandability time
and modifiability time, while some used soft-
ware quality attributes.

– Most of the remaining topics used class dia-
gram, source code size, as well as factors and
McCabe measures.
Furthermore, some studies, including S6 and

S8, reported that C&K and L&Hmeasures (which

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 161

Table 13. Type of independent variable by dependent variable topic

Topic (dependent
variable)

Predictor measures (independent variables)

Change C&K, L&H, McCabe, maintainability index, database, class, Halstead, source
code size, Jensen, effort

Expert opinion based on
ordinal scale

Quality attributes, source code size, McCabe, coupling, C&K, class, coding
rules

Maintainability index C&K, source code size, Halstead, class, Lorenz and Kidd, Brito e Abreu and
Carapuça, McCabe, quality attributes

Maintainability level Class diagram, sequence diagram class
Maintainability time Class diagram, quality attributes
Modifiability correctness Class diagram, factors
Modifiability
completeness

Class diagram, factors

Maintainability efficiency factors
Maintainability
effectiveness

factors

Understandability
effectiveness

factors

Modifiability
effectiveness

factors

Understandability
efficiency

factors

Modifiability efficiency factors
Error prone modules McCabe, module level
Detected fault fault

are related to OO design attributes such as cou-
pling, cohesion and inheritance) were statistically
significant and highly correlated to maintainabil-
ity. Note also, that C&K and L&H measures
as predictors were most often used to predict
maintainability expressed in terms of change as
predicted output.

3.8. Techniques used in SPMP studies
(MQ8)

From the 82 selected primary studies we iden-
tified two major categories of techniques that
have been applied to predict software product
maintainability: machine learning (ML) and sta-
tistical techniques. Figure 12 shows that ML
techniques were the most frequently used, being
adopted by 70% (57 studies) compared to statis-
tical techniques with 51% (42 studies). Note that
we include all studies using single techniques in
the review results section. Note, too, that a study
may use techniques from the two categories (more
details in Table A6 in the Appendix).

The statistical techniques include regression
analysis (RA), probability density function (PD),
gaussian mixture model (GMM), discriminant
analysis (DA), weighted functions (WF) and
stochastic model (SM):
– RA were the most frequently used statisti-

cal techniques with 35%. This category in-
cludes: Linear Regression (LR), Multiple Lin-
ear Regression (MLR), Logistic Regression
(LgR), Backward Elimination (BE), Stepwise
Selection (SS), Multiple Adaptive Regres-
sion Splines (MARS), Projection Pursuit Re-
gression (PPR), polynomial regression (PR),
Least Median of Squares Regression (LMSR),
Pace Regression (PaceR), Isotonic Regres-
sion (IR), Regression by Discretization (Reg-
ByDisc), Additive Regression (AR), Gaus-
sian Process Regression (GPR), and Least
Absolute Shrinkage and Selection Operator
(Lasso), followed by

– PD with 4%, SM, GMM, DA and WF
with 1% each.

162 Sara Elmidaoui et al.

Figure 12. Techniques used in SPMP studies

TheML techniqueswere categorized according
to [33, 34] as follows: Artificial Neural Network
(ANN), Fuzzy & Neuro Fuzzy (FNF), Regres-
sion & Decision Trees (DT), Ensemble Methods
(EM), Case-Based Reasoning (CBR), Bayesian
Networks (BN), Evolutionary Algorithm (EA),
Support Vector Machine & Regression (SVM/R),
Inductive Rule Based (IRB), andClusteringMeth-
ods (CM).
– ANN were the most used techniques with

38%. It includesMultilayer Perceptron (MLP),
Radial Basis Function Network (RBF), Proba-
bilisticNeuralNetwork (PNN),GroupMethod
of Data Handling (GMDH), General Regres-
sion Neural Network (GRNN), Feed For-
ward Neural Network (FFNN), Back Prop-
agation Neural Network (BPNN), Kohonen
Network (KN),Ward Neural Network (WNN),
Feed Forward 3-Layer Back Propagation Net-
work (FF3LBPN), Extreme Learning Ma-
chines (ELM), Sensitivity Based Linear Learn-
ing Method (SBLLM), Neuro-Genetic Algo-

rithm (Neuro-GA), Functional Link Artifi-
cial Neural Network (FLAAN) with Genetic
Algorithm (FGA), Adaptive FLANN-Ge-
netic (AFGA), FLANN-Particle Swarm
Optimization (FPSO), Modified-FLANN
Particle Swarm Optimization (MFPSO),
FLANN-Clonal Selection Algorithm (FCSA),
ELMwith Linear (ELM-LIN), ELMwith Poly-
nomial (ELM-PLY), ELM with Radial Basis
FunctionKernels (ELM-RBF), ANNwith Lev-
enberg Marquardt Method (NLM), GRNN
with Genetic Adaptive Learning (GGAL),
Jordan Elman Recurrent Network (JERN),
ANNwithNormallyGradientDescentMethod
(NGD), ANNwithGradient DescentWithMo-
mentum (NGDM), ANN with Gradient De-
scent With Adaptive Learning Rate (NGDA)
and ANNwith Quasi-NewtonMethod (NNM).

– SVM/R with 24%, includes Support Vec-
tor Machine (SVM), Support Vector Regres-
sion (SVR), Sequential Minimal Optimiza-
tion (SMO), SVM with Radial Basis Func-

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 163

tion Kernel (SVM-RBF), SVM with Linear
Kernel (SVM-LIN), SVM with Sigmoid Ker-
nel (SVM-SIG), Least Square Support Vec-
tor Machine (LSSVM) with Linear Kernel
(LSSVM-LIN), LSSVM with Radial Basis
Function Kernel (LSSVM-RBF), SVM with
Polynomial Kernel (SVM-PLY), LSSVM with
Sigmoid Kernel (LSSVM-SIG) and LSSVM
with Polynomial Kernel (LSSVM-PLY).

– FNF with 20%, includes Fuzzy Logic (FL),
Adaptive Neuro-Fuzzy Inference Systems
(ANFIS), Fuzzy Inference Systems (FIS),
Type-2 Fuzzy Logic System (T2FLS), Mam-
dani-based Fuzzy Logic (MFL), Fuzzy En-
tropy Theory (FET), Fuzzy Subtractive Clus-
tering (FSC), Fuzzy Integral Theory (FIT),
and Neuro-Fuzzy.

– DT with 18%, includes Regression Tree (RT),
M5 For Inducing Trees of Regression Models
(M5P), Decision Stump (DS), Reduced Error
Pruned Tree (REPTree), Decision Tree Forest
(DFT), C4.5, OneR, J48, and Cubist.

– EM with 15%, includes Ensemble Selec-
tion (ES), Average-based Ensemble (AVG),
Weighted-basedEnsemble (WT),Best-in-Train-
ing-based Ensemble (BTE), Majority-Voting
Ensemble (MV), Non-Linear Ensemble (NL),
Nonlinear Ensemble Decision Tree Forest
(NDTF), Adaptive Boosting (Adaboost), Bag-
ging, Boosting, Ensemble, Random Forest
(RF), TreeNet, and LogitBoost.

– BN with 7%, includes Naive-Bayes (NB)
and Aggregating One-Dependence Estimators
(AODE).

– CBR with 6%, includes Kstar (K*), Lo-
cally Weighted Learning (LWL), k-Nearest
Neighbor (IBK or KNN), and Nearest-Neigh-
bor-Like algorithm that uses Non-Nested gen-
eralized exemplars (NNge).

– EAwith 6%, includes Genetic Expression Pro-
gramming (GEP), Genetic Algorithm (GA)
and Greedy Algorithm (GdA).

– IRB with 4%, includes Decision Table
(Dtable), Conjunctive Rule Learner (CR), and
M5 Rules (M5R).

– CM with 2%, includes K-Means Clustering
(KMC) and x-Means Clustering algorithm
(XMC).

4. Review Results

This section presents and discusses the results
of this review by providing answers to the three
research questions (RQ1-3) in Table 2. Through
these questions, the following subsections analyze
the SPMP techniques from three perspectives:
prediction accuracy, techniques reported superior
in comparative studies and accuracy compari-
son of the techniques. Note that only studies
with consistent results about accuracy have been
taken into account, thereby excluding S56.

4.1. Prediction accuracy (RQ1)

From the results of MQ7, change, expert opinion,
maintainability index, maintainability level, and
maintainability time were the most used depen-
dent variable topics (i.e. measures used to express
maintainability, the predicted output) from a set
of 74 selected SPMP studies. Table A9 in the Ap-
pendix shows the details of the SPMP techniques,
the accuracy criteria used, and the mapping to the
corresponding studies, grouped by the most ad-
dressed dependent variable topics. As can be seen,
different accuracy criteria were used such as: mean
magnitude of relative error (MMRE), percentage
relative error deviation (Pred(25) and Pred(30)),
coefficient of correlation R, Coefficient of deter-
mination (R-squared), root mean square error
(RMSE), normalized RMSE (NRMSE), mean ab-
solute error (MAE), mean absolute relative er-
ror (MARE), magnitude of relative error (MRE),
accuracy, precision, weighted average precision
(WAP), recall, F-measure, specificity, etc., where
MMRE, Pred(25) and Pred(30) were the most
dominant. MMRE measures the mean of the dif-
ference between the actual and the predicted value
based on the actual value, while Pred measures
the percentage of predicted values that have an
MRE less than or equal to 0.25 or 0.30 [3].

Note that we included studies that used
MMRE and/or Pred to evaluate prediction accu-
racy in this research question. Topics for which
there was no MMRE or Pred were discarded.
Note too, that low MMRE or high Pred(25) or
Pred(30) values indicated good prediction accu-
racy [35, 36].

164 Sara Elmidaoui et al.

Figure 13. Average performance of different change prediction techniques (16 studies)

Change: Selected studies on the change topic
(including changes of lines in the code, or changes
made to each module, or changes of an attribute,
a method or a class to predict the maintainabil-
ity of a software) used MMRE, Pred(25), and
Pred(30) in 16 out of 44 studies as accuracy
criteria. We also looked into the average perfor-
mance of the different prediction techniques. As
shown in Figure 13, FNF had the lower value in
terms of MMRE and the highest value in terms
of Pred(30), ANN had the highest value in terms
of Pred(25). Moreover, FNF provided greater ac-
curacy in terms of MMRE and Pred(30). The re-
maining studies (24 out of 44) used different accu-
racy criteria such as R-squared, R, MAE, MARE,
RMSE, NRMSE, precision, recall, F-measure,
specificity, accuracy, etc., while four studies did
not provide the accuracy criteria used (see Ta-
ble A9 in the Appendix for more details).
Maintainability index: Eight studies used the
maintainability index for prediction accuracy.
Most studies under this topic used various accu-
racy criteria such as: coefficient of correlation,
R-squared, adjusted R-squared, standard error
of the estimate and Spearman’s coefficient of cor-
relation (Rs), etc. Only study S68 used MMRE,
and Pred(30), while study S16 used MMRE as
accuracy criteria. Note that a set of 105 experi-
ments were performed in S68 and S16.

The distribution of prediction performance of
these two studies is shown in Figure 14 in terms
of MMRE and Pred(30). The MMRE ranged
from 1% to 100%, while the Pred(30) varied
from 40% to 100%.

Figure 14. Performance distribution of
maintainability index (S16 and S68)

Maintainability time: All studies (8) under
this topic predicted maintainability in terms
of understandability time, and/or modifiability
time while performing tasks related to maintain-
ability. Accuracy was evaluated using various
accuracy criteria such as: R-squared and qMRE,
etc. One study (S3) used MMRE and Pred(30)
as accuracy criteria in three experiments and the
RA (MLR) technique to predict maintainability
time.

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 165

Table 14. Prediction performance for maintainability time

ID MMRE Pred(30)

Prediction context

Dataset
type

Software
developement
project

Dependent
variable

Prediction
technique

S3 58.30 46.00 Spain data Object-oriented Understandability time RA
S3 67.60 38.50 Italy data Object-oriented Understandability time RA
S3 85.00 30.00 All data Object-oriented Understandability time RA

Table 14 shows its prediction accuracy as well
as prediction context. The average MMRE was
70% and the average Pred(30) was 38%. The
result shows that the experiment using Spain
data had the highest accuracy.

4.2. SPMP techniques reported to be
superior in comparative studies
(RQ2)

From the results of MQ3, comparative studies
about SPMP techniques presenting better perfor-
mance were identified. Table 15 shows the details
of these studies in terms of compared techniques
and the results of the comparison; that is the

techniques reported to be superior. The compar-
ative studies proposed and/or evaluated SPMP
techniques, and then compared them together or
with other published studies such as: S2, S6, S9,
S23, S26, S32, S37, and S38 (Table 15, second
column).

As can be seen from Table 15 (third column),
the MLP technique was reported superior in
six studies, SVM was reported superior in four
studies, GMDH, BN and ELM were reported to
be superior in three studies, DT, MARS, BN,
Neuro-GA, GEP, GA, and LSSVM techniques
were reported to be superior in two studies each,
and the rest of the techniques were reported only
once.

Table 15. Summary of SPMP techniques reported to be superior

ID Compared techniques Techniques reported
superior

S2 GRNN, WNN GRNN
S6 BN, RT, BE, SS BN
S9 MARS, MLR, ANN, SVR, RT MARS
S10 GMM, SVM-RBF, DT GMM
S15 AODE, SVM-LIN, NB, BN, KNN, C4.5, OneR, RBF AODE
S19 PPR, ANN, MARS PPR
S23 ANFIS, FFNN, FIS, RBF, GRNN ANFIS
S26 ELM, RT, BE, SS, BN (S6) ELM
S29 MLP, WNN, GRNN (S2) MLP

S33 GMDH, GA, PNN, BN, RT, BE, SS (S6), MARS, MLR, ANN, RT, SVR
(S9), GRNN, ANFIS (S23) GMDH, GA, PNN

S35 MLP, WNN (S2) MLP
S36 DT, LR, ANN DT
S38 MLP, SVM, RBF, M5P MLP, SVM
S41 DT, BPNN, SVM BPNN
S42 MFL, ANFIS, SVM, PNN, RBF, BN (S6), MARS (S9) MFL
S43 SBLLM, ELM, RT, BE, SS, BN (S6) SBLLM, ELM

S44
K*, FSC, PR, KNN, MLR, LMSR, PPR, IR, RegByDisc, GPR, MLP, RBF,
GRNN, GMDH, SVR, M5R, AR, ANFIS, DS, M5P, REPTree, LWL, CR,
DTable, MARS (S9)

K*, FSC

166 Sara Elmidaoui et al.

Table 15 continued

ID Compared techniques Techniques reported
superior

S45 XMC, KMC XMC
S47 GMDH, GRNN, FF3LBPN GMDH
S48 SS, BE, Oman & Hagemeister model [37] SS, BE
S49 NB, BN, LgR, MLP BN, MLP
S52 KN, MLR, BPNN, FFNN, GRNN KN

S54
MLP, RBF, SVM, M5P
MLP, RBF, SVM, DT
MLP, SVM, LgR, KMC, GEP

MLP, SVM
DT, RBF, SVM
GEP, SVM

S55 Neuro-GA, ANN, BN, RT, BE, SS (S6),MARS, MLR, ANN, RT, SVR (S9) Neuro-GA
S57 Neuro-GA, BN, RT, BE, SS (S6), MARS, MLR, ANN, RT, SVR (S9) Neuro-GA

S58
FGA, AFGA, FPSO, MFPSO, FCSA, BN, RT, BE, SS (S6),MARS, MLR,
ANN, RT, SVR (S9), FIS (S32), SVM-RBF (S37), MLP, RBF, SVM, M5P
(S38)

FGA, AFGA, FPSO,
MFPSO, FCSA

S59 GA, Dtable, RBF, BN, SMO GA
S60 GGAL, GMDH, LR, M5R, DT, SVM, K*, JERN, BPNN, KN, PNN, GRNN GGAL, GMDH
S61 SVM-SIG, SVM-RBF, SVM-LIN SVM-SIG
S62 GEP, DFT, SVM, LR, MLP, RBF GEP
S65 ELM-PLY, LR, NB, ELM-LIN, ELM-RBF, SVM-SIG, SVM-LIN, SVM-RBF ELM-PLY
S66 Cubist, LR, Lasso, Elastic Net Cubist
S68 M5P, MLR, MLP, SVR M5P

S69
Neuro Fuzzy, BN, RT, BE, SS (S6), MARS, MLR, ANN, RT, SVR (S9), FL
(S32), SVM, RBF (S37), MLP, RBF, SVM (S38), ANN, Neuro-GA (S55),
Neuro-GA (S57)

Neuro Fuzzy

S70 SVM-RBF, SVM-LIN, SVM-SIG SVM-RBF
S71 MARS, MLR, SVM MARS
S72 LSSVM-LIN, LSSVM-RBF, LSSVM-SIG LSSVM-LIN
S73 BN, MLP, LgR, NB, J48, NNge BN, MLP

S77
LSSVM-RBF, LR, PR, LgR, DT, SVM-LIN, SVM-PLY, SVM-RBF,
ELM-LIN, ELM-PLY, ELM-RBF, LSSVM-LIN, LSSVM-PLY, NGD,
NGDM, NGDA, NNM

LSSVM-RBF

Table 16 provides a description of the tech-
niques reported to be superior in more than two
studies with their strengths and weaknesses as
provided by the authors.

Some of the SPMP techniques identified in
comparative studies have been reported to be
superior in some studies and not in others. Note
that Figure 15 includes techniques that were
reported superior and not, at least one time each.
For example, we note that:
– MLP technique was reported to be superior

in six studies (S29, S35, S38, S54, S73), while
not in six (S44, S54, S58, S62, S68, S69).

– SVM technique was reported superior in four
studies (S38, S54, S61, S70) and not in eight
(S10, S15, S42, S58, S60, S62, S65, S69).

– GMDH was reported superior in three studies
(S33, S47, S60) and not in one (S44).

– MARS was reported superior in two studies
(S9, S71) and not in eight (S19, S33, S42, S44,
S55, S57, S58, S69).

– DT was reported superior in two studies (S36,
S54) and not in four (S10, S41, S60, S77).

– BN was reported superior in three studies
(S6, S49, S73) and not in eight (S15, S42,
S43, S55, S57, S58, S59, S69).

– Neuro-GA was reported superior in two stud-
ies (S55, S57) and not in one (S69).

– RBF was reported superior in one study (S54)
and not in 10 (S15, S23, S38, S42, S44, S54,
S58, S59, S62, S69).

– M5P was reported superior in one study (S68)
and not in four (S38, S44, S54, S58).

– GRNN was reported superior in one study
(S2) and not in seven (S23, S29, S33, S44,
S47, S52, S60).

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 167

Table 16. Strengths and weaknesses of the most accurate SPMP techniques

Tech-
nique Description Strength Weakness

Multi-
layer
percep-
tron
(MLP)

“MLP are feed forward networks that
consist of an input layer, one or more
hidden layers of nonlinearly activating
nodes and an output layer. Each node
in one layer connects with a certain
weight to every other node in the fol-
lowing layer” [38].

– “Minimizes the prediction error
of the output variables” (S29, S35).
– “Uses back propagation algorithm as
the standard learning algorithm for
any supervised learning” (S38, S54).

Sup-
port
vector
ma-
chine
(SVM)

“SVM are a group of supervised learn-
ing methods that can be applied to
classification or regression problems”
[39].

– “Minimizes the empirical error and
maximizes the geometric margin”
(S38, S54).

Group
method
of data
han-
dling
(GMDH)

“GMDH was introduced by Ivakhnen-
ko and Ivakhnenko & Koppa for con-
structing an extremely high order re-
gression type model and is based on
forward multi-layer neural network
structure where learning procedure
is self-organized” [40, 41].

– “Ideal for complex, unstructured sys-
tems where the investigator is only
interested in obtaining a high or-
der input-output relationship” (S33).
– “Predicts the outcome even with
smaller training sets” (S33). – “Com-
putational burden is reduced with
GMDH” (S33). – “Can automatically
filter out input properties that pro-
vide little information about location
and shape of hyper surface” (S47).

– “Heuristic in
nature and not
based on a solid
foundation as is
regression anal-
ysis” (S33).

Figure 15. Techniques reported to be superior and not per study (bars above zero line indicate that
techniques in horizontal axis are more accurate, whereas bars below zero line indicate that techniques in

horizontal axis are not accurate)

168 Sara Elmidaoui et al.

– ELM was reported superior in three studies
(S26, S43, S65) and not in one (S77).
From Figure 15, we note that no technique

is definitively better than any other. Therefore,
the choice of the best technique to predict main-
tainability is not obvious since every technique
has advantages and drawbacks. Moreover, since
the prediction context (e.g. dataset, accuracy
criteria, etc.) is different among the studies, the
literature results on the most accurate techniques
are not sufficient to generalize the results.

4.3. Accuracy comparison of SPMP
techniques reported to be superior
in comparative studies (RQ3)

For a meaningful comparison, techniques are
compared based on the same prediction context.
From our investigation, we found that most of the
comparative studies used the following prediction
context:

– UIMS and QUES datasets (see MQ6),
– L&H and C&K metrics (see MQ7),
– Change dependent variable (see MQ7),
– MMRE and/or Pred(0.25), and/or Pred(0.30)

accuracy criteria (RQ1), and
– Object-oriented software development

paradigm (see MQ5).
The purpose of this section is to compare the

techniques reported to be superior (see Table 15,
third column), and which have this prediction
context. Table 17 depicts the corresponding values
of MMRE, and/or Pred(0.25), and/or Pred(0.30)
for each technique per dataset. From comparative
studies, 12 studies (20 experiments) were selected
for UIMS and QUES datasets, and two studies
(four experiments) for both datasets (i.e. the two
datasets were merged). Note that one study may
include more than one experiment.

Using MMRE and Pred as accuracy criteria
for comparison, it is important to note that “to
have a prediction model to be considered accurate,
either MMRE < 0.25 and/or either Pred(0.25) >

Table 17. Prediction accuracy for UIMS, QUES, and BOTH datasets

ID Technique MMRE Pred
(0.25)

Pred
(0.30) Dataset ID Technique MMRE Pred

(0.25)
Pred
(0.30) Dataset

S6 BN 0.97 0.44 0.46 UIMS S6 BN 0.45 0.39 0.43 QUES
S9 MARS 1.86 0.28 0.28 UIMS S9 MARS 0.32 0.48 0.59 QUES
S26 ELM 0.96 0.39 0.45 UIMS S38 MLP 0.71 – 0.40 QUES
S38 MLP 1.39 – 0.23 UIMS S38 SVM 0.44 – 0.51 QUES
S38 SVM 1.67 – 0.23 UIMS S26 ELM 0.35 0.36 0.38 QUES
S42 MFL 0.53 0.30 0.35 UIMS S42 MFL 0.27 0.52 0.62 QUES
S43 SBLLM 1.96 0.17 0.25 UIMS S43 ELM 0.35 0.36 0.38 QUES
S43 ELM 0.96 0.17 0.25 UIMS S43 SBLLM 0.34 0.50 0.56 QUES
S44 FSC 0.65 0.33 0.41 UIMS S44 FSC 0.37 0.54 0.61 QUES
S44 K* 0.56 0.36 0.41 UIMS S44 K* 0.27 0.56 0.66 QUES
S54 MLP 1.39 – 0.23 UIMS S54 MLP 0.71 – 0.40 QUES
S54 SVM 1.64 – 0.23 UIMS S54 SVM 0.44 – 0.56 QUES
S55 Neuro-GA 0.53 – – UIMS S55 Neuro-GA 0.41 – – QUES
S57 Neuro-GA 0.31 – – UIMS S57 Neuro-GA 0.37 – – QUES
S58 FGA 0.24 – – UIMS S58 FGA 0.32 – – QUES
S58 AFGA 0.25 – – UIMS S58 AFGA 0.32 – – QUES
S58 FPSO 0.27 – – UIMS S58 FPSO 0.29 – – QUES
S58 MFPSO 0.25 – – UIMS S58 MFPSO 0.32 – – QUES
S58 FCSA 0.27 – – UIMS S58 FCSA 0.37 – – QUES

S69 Neuro-
Fuzzy 0.28 – – UIMS S69 Neuro-

Fuzzy 0.33 – – QUES

S33 GMDH 0.21 0.69 0.72 BOTH S33 PNN 0.23 0.68 0.75 BOTH
S33 GA 0.22 0.66 0.72 BOTH S42 MFL 0.45 0.34 0.40 BOTH

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 169

0.75 or Pred(0.30) > 0.70, needed to be achieved”
[35, 36]. That is, a low MMRE value or a high
Pred(25) or Pred(30) value indicates good predic-
tion accuracy. Table 17 shows that:
– For UIMS dataset, FGA, AFGA, and MFPSO

achieved a significantly better prediction accu-
racy than the other techniques. They are near
in terms of MMRE (MMRE = 0.24 for FGA,
MMRE = 0.25 for AFGA and MFPSO). Be-
sides, BN and ELM provide better accuracy
than the other techniques in terms of Pred
(Pred(0.25) = 0.44 and Pred(0.30) = 0.46
for BN followed by Pred(0.25) = 0.39 and
Pred(0.30) = 0.45 for ELM).

– For QUES dataset, MFL and K* achieved the
same MMRE value of 0.27. Moreover, they are
near equal in terms of Pred: (Pred(0.25) =
0.52 and Pred(0.30) = 0.62 for MFL, while
Pred(0.25) = 0.56 and Pred(0.30) = 0.66 for
K*). Thus, the MFL and K* techniques pro-
vide better accuracy prediction compared to
the remaining techniques.

– The GMDH, GA, and PNN techniques outper-
formed the MFL in both datasets (UIMS and
QUES) with MMRE values of 0.21, 0.22 and
0.23, respectively, Pred(0.25) values of 0.69,
0.66 and 0.68, respectively, and Pred(0.30) val-
ues of 0.72, 0.72 and 0.75, respectively. There-
fore, the GMDH was more accurate compared
to the other techniques.
Here also, as stated in the previous section, no

conclusion can be drawn about the most suitable
technique for software product maintainability.
Indeed, a technique can be more accurate in one
study and less accurate in another. In addition,
the accuracy of SPMP techniques is highly de-
pendent on the prediction context (e.g. datasets
used, accuracy criteria, etc.). Therefore, further
studies are needed to reach a consensus on the
most accurate technique for predicting maintain-
ability of a software product.

5. Threats to validity

Three kinds of threats [10, 12] to the validity of
this study are discussed as follows:

Construct validity: Construct threats to va-
lidity are related to the exhaustiveness and rele-
vance of the primary studies. As previously noted,
although maintainability and maintenance are
different, they are often confounded and some
studies do not make a clear distinction between
them. Therefore, the search query was tailored
to extract all available studies related to SPMP.
Even though 82 primary studies were identified
based on our search terms using keywords re-
lated to SPMP techniques, such a list may not
be complete and a suitable study may have been
left out. To ensure selection of the maximum
number of studies, the search process was per-
formed automatically on nine digital libraries
and then manually by examining the reference
section of the set of candidate studies to identify
further studies. To identify additional studies,
we established a set of inclusion and exclusion
criteria.
Internal validity: Internal validity deals with
data extraction and analysis. This threat is re-
lated to the reliability of the extracted data for
the review, which can also be problematic. To
accomplish this, two authors carried out the data
extraction independently, keeping in mind the
mapping and research questions, and their results
compared. A third author reviewed the final re-
sults. When a disagreement arose, a discussion
took place until an agreement was reached. If
both authors extracted the same information
for a specific paper, the extracted information
was adopted. If the extracted information by the
two authors was different for a specific paper,
a meeting was held in which the full text of the
paper was investigated.
External validity: External validity, which is
very important for generalization of the results, is
related to the context and conclusions drawnbased
on the data extracted. The results of this review
were based only on the SPMP studies included in
this paper. From each SPMP study, we extracted
the dataset(s) used, and the dependent and in-
dependent variables validated empirically using
experiments, surveys or case studies. Since we
refrained from deriving or adjusting any data, the
comparison between SPMP studies was impartial.

170 Sara Elmidaoui et al.

6. Conclusion and future guidelines

Industry and practitioners continue to search for
effective ways to increase the maintainability of
software products and reduce costs. In this paper,
we reported on a follow-up systematic mapping
and review to provide and summarize evidence on
published empirical SPMP studies. After a thor-
ough search of nine digital libraries and anal-
ysis of the relevance and quality of candidate
studies, 82 primary studies were selected from
2000 to 2018. This study classified the SPMP
studies according to publication year, publica-
tion source, research type, empirical approach,
software application type, datasets, independent
variables, dependent variables, and techniques
used. The SPMP techniques were investigated
from the following perspectives: prediction ac-
curacy, techniques reported to be superior in
comparative studies, and accuracy comparison.
The main findings (Sections 3 and 4), how they
differ from previous studies and new findings
from this systematic mapping and review are
summarized as follows:
– What are the research types used in SPMP

studies? Empirical studies were broadly cat-
egorized into two categories: evaluation re-
search and solution proposal. The most fre-
quent SPMP studies were solution proposals,
followed by evaluation research.

– What empirical approaches were used? The
most frequently used empirical approach was
history-based evaluation, followed by experi-
ment and case study.

– What datasets were used? Historical datasets
freely available to the public, such as those
provided by software engineering researchers
(SER) and private datasets, such as those
used in academic or industrial (PSP) contexts
were frequently used, followed by Software
engineering researcher (SER) datasets.

– What types of software applications were
used? Many types of software applications
were used in these empirical studies, those
used most frequently were object-oriented
software applications.

– What dependent and independent variables
were used?

◦ Maintainability in terms of the depen-
dent variable to be predicted was most
frequently expressed in terms of the num-
ber of changes made to the source code,
followed by expert opinion based on an or-
dinal scale. This finding confirms, to some
extent, the result of [4], but in reverse or-
der, where it was reported that the most
common dependent variable employed an
ordinal scale based on expert judgment,
followed by change measurements.

◦ For the independent variables (predic-
tors), the most frequent predictors of soft-
ware maintainability were those provided
by Chidamber and Kemerer (C&K), Li
and Henry (L&H), class diagram, source
code size measures and McCabe complex-
ity, which were gathered at the design
and source code levels. This finding con-
firms, in reverse order, the result of [4].
Moreover, C&K and L&H measures, as
predictors, were most often used to predict
the maintainability expressed in terms of
changes as a predicted output.

◦ The researchers used very few of the same
data collection tools, thereby potentially
leading to unknown error of measurement
results since the measuring tools used
have not been compared on similar bench-
marks.

– What techniques were used in SPMP? The
machine learning techniques were the most
widely used in the literature. This finding is
inconsistent with the results of [4] where the
authors found that the commonly used main-
tainability prediction models were based on
statistical techniques. This can be explained
by the switch to machine learning techniques
that have gained the interest of researchers
since 2008.

– What is the overall prediction accuracy of
SPMP techniques? Several accuracy crite-
ria were used to evaluate SPMP techniques.
MMRE and Pred accuracy criteria were the
most frequently used in the selected primary
studies. Based on these criteria, FNF was
the most accurate technique for predicting
maintainability expressed in terms of changes

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 171

based on MMRE and Pred(30), while ANN
was the most accurate technique based on
Pred(25).

– Which SPMP techniques were reported supe-
rior in comparative studies? We found that
MLP, SVM, GMDH, and ELM were the most
accurate techniques among selected compar-
ative studies. Even if these techniques had
better accuracy prediction in some studies,
this was not the case in other studies. There-
fore, no technique was definitively better than
any other.

– Which of the SPMP techniques reported to
be superior in comparative studies also pro-
vided greater accuracy? Accuracy comparison
of techniques reported superior from compar-
ative studies was carried out based on the
same prediction context, in other words, the
same datasets (UIMS or QUES or BOTH),
the same metrics (L&H and C&K), the same
dependent variable (Change), the same ac-
curacy criteria (MMRE and/or Pred(0.25)
and/or Pred(0.30), and the same software de-
velopment paradigm (object-oriented). The
results show that:
◦ FGA, AFGA, and MFPSO achieved a sig-

nificantly better prediction accuracy in
terms of MMRE for the UIMS dataset,

◦ MFL and K* were the most accurate for
the QUES dataset, and

◦ GMDH was the most accurate for both
datasets.

From this analysis we cannot conclude which
is the most suitable technique for all cases as it
is highly dependent on the prediction context
(e.g. datasets used, accuracy criteria, etc.).
These findings may be useful to industry for

comparing available SPMP models to improve
the maintainability of software projects, and to
researchers conducting further research into new
SPMP techniques more performant than exist-
ing ones. Moreover, practitioners can choose the
techniques used for predicting maintainability
based on their prediction contexts as a solution
in their practice.

In addition to the above findings, the follow-
ing research gaps were identified:

– More free datasets should be made avail-
able to conduct empirical studies. In con-
trast to private datasets, public ones allow
researchers to compare results in order to
obtain generalizable results. Additional pub-
licly available datasets can be used, such
as the International Software Benchmarking
Standard Group (ISBSG1 repository of 8,261
completed software projects with more than
100 data fields, and PROMISE repository
which is a collection of publicly available
datasets grouped into one repository (http:
//promise.site.uottawa.ca/SERepository/).

– Most of the studies dealt with small datasets,
such as UIMS and QUES with a single
project each and related to projects developed
using the Ada programming language. Large
datasets based on the most frequently used
programming languages in the industry are
needed. This represents a serious challenge for
the study of SPMP techniques. For instance,
within the ISBSG, themost used programming
languages include Java, COBOL, Oracle and
.Net which represent 30%, 23%, 22% and 20%,
respectively. It would be beneficial to SPMP
research community to address this limitation.

– Moreover, dataset properties, such as type
of data (categorical or numerical), missing
values, outliers, etc., were not addressed by
the research community.

– The majority of studies used data from OO
software projects. As a result, there is a need
for studies that examine maintainability for
other types of applications such as web, mo-
bile, model-driven, and cloud computing ap-
plications.

– SPMP studies are needed that focus on main-
tainability before delivery of the software
product in order to detect problems and qual-
ity failures early, while the source code is not
available. Such studies should be based on the
‘requirements’ and accordingly researchers
must determine what ‘independent variables’
or ‘predictors’ can be collected based on the
requirements.

– Few studies address maintainability from the
process level. More studies are needed to in-

1ISBSG, Development and Enhancement repository, February 2018, (http://www.isbsg.org).

172 Sara Elmidaoui et al.

vestigate how software development factors
as well as software process management fac-
tors (such as project planning, requirement
analysis, architectural design, development
team, etc.) affect software maintainability.

– Few studies use ensemble techniques. More
studies are needed using ensemble techniques
since they use various single techniques to
obtain a more accurate result.
Researchers interested in carrying out future

research on SPMP, including empirical studies
and benchmarking studies, would do well to inves-
tigate these research gaps and suggested research
avenues.

References

[1] P. Bourque and R.E. Fairley, Guide to
the software engineering body of knowledge
(SWEBOK (R)): Version 3.0. IEEE Com-
puter Society Press, 2014.

[2] P. Oman and J. Hagemeister, “Construc-
tion and testing of polynomials predicting
software maintainability,” Journal of Sys-
tems and Software, Vol. 24, No. 3, 1994,
pp. 251–266.

[3] A. Kaur and K. Kaur, “Statistical com-
parison of modelling methods for soft-
ware maintainability prediction,” Interna-
tional Journal of Software Engineering and
Knowledge Engineering, Vol. 23, No. 6,
2013, pp. 743–774.

[4] M. Riaz, E. Mendes, and E. Tempero,
“A systematic review of software maintain-
ability prediction and metrics,” in Proceed-
ings of the 3rd International Symposium on
Empirical Software Engineering and Mea-
surement. IEEE Computer Society, 2009,
pp. 367–377.

[5] M. Riaz, “Maintainability prediction of
relational database-driven applications:
A systematic review,” in 16th Interna-
tional Conference on Evaluation & Assess-
ment in Software Engineering. IET, 2012,
pp. 263–272.

[6] B.A. Orenyi, S. Basri, and L.T. Jung, “Ob-
ject-oriented software maintainability mea-

surement in the past decade,” in Inter-
national Conference on Advanced Com-
puter Science Applications and Technolo-
gies (ACSAT). IEEE, 2012, pp. 257–262.

[7] S.K. Dubey, A. Sharma, and A. Rana,
“Analysis of maintainability models for ob-
ject oriented system,” International Jour-
nal on Computer Science and Engineering,
Vol. 3, No. 12, 2011, p. 3837.

[8] A.M. Fernández-Sáez, M. Genero, and
M.R. Chaudron, “Empirical studies con-
cerning the maintenance of UML diagrams
and their use in the maintenance of code:
A systematic mapping study,” Information
and Software Technology, Vol. 55, No. 7,
2013, pp. 1119–1142.

[9] A.M. Fernández-Sáez, D. Caivano, M. Gen-
ero, and M.R. Chaudron, “On the use
of UML documentation in software main-
tenance: Results from a survey in in-
dustry,” in 18th International Conference
on Model Driven Engineering Languages
and Systems (MODELS). IEEE, 2015,
pp. 292–301.

[10] K. Petersen, S. Vakkalanka, and L. Kuz-
niarz, “Guidelines for conducting system-
atic mapping studies in software engineer-
ing: An update,” Information and Software
Technology, Vol. 64, 2015, pp. 1–18.

[11] B.A. Kitchenham, D. Budgen, and O.P. Br-
ereton, “Using mapping studies as the ba-
sis for further research – A participant-ob-
server case study,” Information and Soft-
ware Technology, Vol. 53, No. 6, 2011,
pp. 638–651.

[12] A. Idri, F.A. Amazal, and A. Abran, “Anal-
ogy-based software development effort es-
timation: A systematic mapping and re-
view,” Information and Software Technol-
ogy, Vol. 58, 2015, pp. 206–230.

[13] W. Li and H. Sallie, “Object oriented met-
rics that predict maintainability,” Journal
of Systems and Software, Vol. 23, No. 2,
1993, pp. 111–122.

[14] A. Kaur, K. Kaur, and K. Pathak, “Soft-
ware maintainability prediction by data
mining of software code metrics,” in Inter-
national Conference on Data Mining and

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 173

Intelligent Computing (ICDMIC). IEEE,
2014, pp. 1–6.

[15] P. Omidyar, eBay web services. [On-
line]. http://developer.ebay.com [Accessed:
2018-10-26].

[16] B.R. Reddy and O. Aparajita, “Perfor-
mance of maintainability index prediction
models: A feature selection based study,”
Evolving Systems, 2017.

[17] A. Jain, S. Tarwani, and A. Chug, “An
empirical investigation of evolutionary al-
gorithm for software maintainability pre-
diction,” in Students’ Conference on Elec-
trical, Electronics and Computer Science
(SCEECS), 2016, pp. 1–6.

[18] M. Genero, J.A. Olivas, M. Piattini, and
F.P. Romero, “A controlled experiment for
corroborating the usefulness of class dia-
gram metrics at the early phases of OO
developments,” in ADIS, 2001.

[19] X. Jin, Y. Liu, J. Ren, A. Xu, and R. Bie,
“Locality preserving projection on source
code metrics for improved software main-
tainability,” in Australasian Joint Confer-
ence on Artificial Intelligence. Springer,
2006, pp. 877–886.

[20] K. Beck and E. Gamma, JUnit. [Online].
https://junit.org [Accessed: 2018-10-26].

[21] R. Malhotra and A. Chug, “Application
of group method of data handling model
for software maintainability prediction us-
ing object oriented systems,” International
Journal of System Assurance Engineer-
ing and Management, Vol. 5, No. 2, 2014,
pp. 165–173.

[22] S.J. Sayyad and T. Menzies, The
PROMISE Repository of Software En-
gineering Databases, School of Informa-
tion Technology and Engineering, Univer-
sity of Ottawa, Canada. [Online]. http://
promise.site.uottawa.ca/SERepository Ac-
cessed: 2017-09-11.

[23] Software Engineering – Product Quality –
Part 2: External Metrics, Part 3: Internal
Metrics, Part 4: Quality in Use Metrics,
ISO/IEC Std. TR 9126-2-3-4, 2003, 2004.

[24] Systems and software engineering – Sys-
tems and software Quality Requirements
and Evaluation (SQuaRE) – System and

software quality models, Geneva, ISO Std.
25 010, 2010.

[25] D. Spinellis, Chidamber and Kemerer
Java Metrics (CKJM). [Online]. http:
//www.spinellis.gr/sw/ckjm/ [Accessed:
2017-11-21].

[26] Jetbrains Homepage. [Online]. http://www.
jetbrains.com/idea/ [Accessed: 2017-11-19].

[27] Krakatau Professional Homepage. [Online].
http://www.powersoftware.com/kp/ [Ac-
cessed: 2017-11-19].

[28] R. Ferenc, A. Beszedes, M. Tarkiainen, and
T. Gyimothy, “Columbus – reverse engi-
neering tool and schema for C++,” in Pro-
ceedings of the International Conference on
Software Maintenance (ICSM ’02). Wash-
ington, DC, USA: IEEE Computer Society,
2002, pp. 172–181.

[29] G.A. Di Lucca, A.R. Fasolino, F. Pace,
P. Tramontana, and U. De Carlini,
“WARE: A tool for the reverse engineer-
ing of web applications,” in Proceedings
of the Sixth European Conference on Soft-
ware Maintenance and Reengineering, 2002,
pp. 241–250.

[30] B.R. Reddy, S. Khurana, and A. Ojha,
“Software maintainability estimation made
easy: A comprehensive tool coin,” in Pro-
ceedings of the Sixth International Con-
ference on Computer and Communication
Technology 2015. New York: ACM, 2015,
pp. 68–72.

[31] Analyst4j standard tool. [Online]. https:
//codeswat.com/ [Accessed: 2018-01-01].

[32] S. Almugrin, W. Albattah, and A. Melton,
“Using indirect coupling metrics to predict
package maintainability and testability,”
Journal of System and Software, Vol. 121,
No. C, 2016, pp. 298–310.

[33] R. Malhotra, “A systematic review of
machine learning techniques for software
fault prediction,” Applied Soft Computing,
Vol. 27, 2015, pp. 504–518.

[34] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang,
“Systematic literature review of machine
learning based software development ef-
fort estimation models,” Information and
Software Technology, Vol. 54, No. 1, 2012,
pp. 41–59.

174 Sara Elmidaoui et al.

[35] S.D. Conte, H.E. Dunsmore, and Y. Shen,
Software engineering metrics and models.
Benjamin-Cummings Publishing Co., Inc.,
1986.

[36] A.R. Gray and S.G. MacDonell, “A com-
parison of techniques for developing pre-
dictive models of software metrics,” Infor-
mation and software technology, Vol. 39,
No. 6, 1997, pp. 425–437.

[37] P. Oman and J. Hagemeister, “Construc-
tion and testing of polynomials predicting
software maintainability,” Journal of Sys-
tems and Software, Vol. 24, No. 3, 1994,
pp. 251–266.

[38] S. Haykin, Neural networks: a comprehen-
sive foundation. Prentice Hall PTR, 1994.

[39] V. Vapnik, The nature of statistical learn-
ing theory. New York: Springer-Verlag,
1995.

[40] A.G. Ivakhnenko, “The group method of
data of handling; A rival of the method
of stochastic approximation,” Soviet Auto-
matic Control, Vol. 13, 1968, pp. 43–55.

[41] A.G. Ivakhnenko and Y. Koppa, “Reg-
ularization of decision functions in the
group method of data handling,” Soviet
Automatic Control, Vol. 15, No. 2, 1970,
pp. 28–37.

[42] P. Brereton, B.A. Kitchenham, D. Budgen,
M. Turner, and M. Khalil, “Lessons from
applying the systematic literature review
process within the software engineering do-
main,” Journal of Systems and Software,
Vol. 80, No. 4, 2007, pp. 571–583.

[43] J. Magne and M. Shepperd, “A system-
atic review of software development cost
estimation studies,” IEEE Transactions on
Software Engineering, Vol. 33, No. 1, 2007,
pp. 33–53.

[44] S. Muthanna, K. Kontogiannis, K. Pon-
nambalam, and B. Stacey, “A maintainabil-
ity model for industrial software systems
using design level metrics,” in Proceedings
Seventh Working Conference on Reverse
Engineering. IEEE, 2000, pp. 248–256.

[45] M. Thwin and T. Quah, “Application of
neural networks for estimating software

maintainability using object-oriented met-
rics,” in International Conference on Soft-
ware Engineering and Knowledge Engineer-
ing, 2003, pp. 69–73.

[46] M. Genero, M. Piattini, E. Manso, and
G. Cantone, “Building UML class diagram
maintainability prediction models based on
early metrics,” in 5th International Work-
shop on Enterprise Networking and Com-
puting in Healthcare Industry. IEEE, 2003,
pp. 263–275.

[47] M. Kiewkanya, N. Jindasawat, and
P. Muenchaisri, “A methodology for con-
structing maintainability model of ob-
ject-oriented design,” in Fourth Interna-
tional Conference on Quality Software.
IEEE, 2004, pp. 206–213.

[48] A.R. Di Lucca, Giuseppe A and Fasolino,
P. Tramontana, and C.A. Visaggio, “To-
wards the definition of a maintainability
model for web applications,” in Eighth
European Conference on Software Main-
tenance and Reengineering. IEEE, 2004,
pp. 279–287.

[49] C. Van Koten and A. Gray, “An appli-
cation of Bayesian network for predict-
ing object-oriented software maintainabil-
ity,” Information and Software Technology,
Vol. 48, No. 1, 2006, pp. 59–67.

[50] J.H. Hayes and L. Zhao, “Maintain-
ability prediction: A regression analy-
sis of measures of evolving systems,” in
21st International Conference on Software
Maintenance (ICSM ’05). IEEE, 2005,
pp. 601–604.

[51] S.C. Misra, “Modeling design/coding fac-
tors that drive maintainability of soft-
ware systems,” Software Quality Journal,
Vol. 13, No. 3, 2005, pp. 297–320.

[52] Y. Zhou and H. Leung, “Predicting
object-oriented software maintainability
using multivariate adaptive regression
splines,” Journal of Systems and Software,
Vol. 80, No. 8, 2007, pp. 1349–1361.

[53] S.S. Dahiya, J.K. Chhabra, and S. Ku-
mar, “Use of genetic algorithm for software
maintainability metrics’ conditioning,” in

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 175

15th International Conference on Advanced
Computing and Communications. IEEE,
2007, pp. 87–92.

[54] M. Genero, E. Manso, A. Visaggio, G. Can-
fora, and M. Piattini, “Building mea-
sure-based prediction models for UML
class diagram maintainability,” Empirical
Software Engineering, Vol. 12, No. 5, 2007,
pp. 517–549.

[55] K. Shibata, K. Rinsaka, T. Dohi, and
H. Okamura, “Quantifying software main-
tainability based on a fault-detection/cor-
rection model,” in 13th Pacific Rim Inter-
national Symposium on Dependable Com-
puting. IEEE, 2007, pp. 35–42.

[56] K. Aggarwal, Y. Singh, A. Kaur, and
R. Malhotra, “Application of artificial neu-
ral network for predicting maintainabil-
ity using object-oriented metrics,” World
Academy of Science, Engineering and Tech-
nology, International Journal of Computer,
Electrical, Automation, Control and Infor-
mation Engineering, Vol. 2, No. 10, 2008,
pp. 3552–3556.

[57] Y. Tian, C. Chen, and C. Zhang, “AODE
for source code metrics for improved soft-
ware maintainability,” in Fourth Interna-
tional Conference on Semantics, Knowl-
edge and Grid. IEEE, 2008, pp. 330–335.

[58] Y. Zhou and B. Xu, “Predicting the main-
tainability of open source software using
design metrics,”Wuhan University Journal
of Natural Sciences, Vol. 13, No. 1, 2008,
pp. 14–20.

[59] H. Yu, G. Peng, and W. Liu, “An ap-
plication of case based reasoning to pre-
dict structure maintainability,” in Interna-
tional Conference on Computational Intel-
ligence and Software Engineering. IEEE,
2009, pp. 1–5.

[60] A. Sharma, P. Grover, and R. Ku-
mar, “Predicting maintainability of com-
ponent-based systems by using fuzzy
logic,” in International Conference on
Contemporary Computing. Springer, 2009,
pp. 581–591.

[61] L. Wang, X. Hu, Z. Ning, and W. Ke, “Pre-
dicting object-oriented software maintain-

ability using projection pursuit regression,”
in First International Conference on In-
formation Science and Engineering. IEEE,
2009, pp. 3827–3830.

[62] H. Mittal and P. Bhatia, “Software main-
tainability assessment based on fuzzy logic
technique,” ACM SIGSOFT Software En-
gineering Notes, Vol. 34, No. 3, 2009,
pp. 1–5.

[63] M.O. Elish and K.O. Elish, “Application
of treenet in predicting object-oriented
software maintainability: A comparative
study,” in 13th European Conference on
Software Maintenance and Reengineering.
IEEE, 2009, pp. 69–78.

[64] S. Rizvi and R.A. Khan, “Maintainability
estimation model for object-oriented soft-
ware in design phase (MEMOOD),” arXiv
preprint arXiv:1004.4447, 2010.

[65] A. Kaur, K. Kaur, and R. Malhotra, “Soft
computing approaches for prediction of
software maintenance effort,” International
Journal of Computer Applications, Vol. 1,
No. 16, 2010, pp. 69–75.

[66] C. Jin and J.A. Liu, “Applications of
support vector mathine and unsupervised
learning for predicting maintainability us-
ing object-oriented metrics,” in Second
International Conference on Multimedia
and Information Technology, Vol. 1. IEEE,
2010, pp. 24–27.

[67] L. Cai, Z. Liu, J. Zhang, W. Tong, and
G. Yang, “Evaluating software maintain-
ability using fuzzy entropy theory,” in
9th International Conference on Computer
and Information Science. IEEE, 2010,
pp. 737–742.

[68] S.O. Olatunji, Z. Rasheed, K. Sat-
tar, A. Al-Mana, M. Alshayeb, and
E. El-Sebakhy, “Extreme learning machine
as maintainability prediction model for ob-
ject-oriented software systems,” Journal of
Computing, Vol. 2, No. 8, 2010, pp. 49–56.

[69] P. Dhankhar, H. Mittal, and A. Mittal,
“Maintainability prediction for object ori-
ented software,” International Journal of
Advances in Engineering Sciences, Vol. 1,
No. 1, 2011, pp. 8–11.

176 Sara Elmidaoui et al.

[70] S.K. Dubey and A. Rana, “A fuzzy ap-
proach for evaluation of maintainability of
object oriented software system,” Interna-
tional Journal of Computer Applications,
Vol. 49, No. 21, 2012.

[71] S.K. Dubey, A. Rana, and Y. Dash, “Main-
tainability prediction of objec oriented
software system by multilayer perceptron
model,” ACM SIGSOFT Software Engi-
neering Notes, Vol. 37, No. 5, 2012, pp. 1–4.

[72] N. Tagoug, “Maintainability assessment in
object-oriented system design,” in Interna-
tional Conference on Information Technol-
ogy and e-Services. IEEE, 2012, pp. 1–5.

[73] S. Sharawat, “Software maintainability pre-
diction using neural networks,” environ-
ment, Vol. 3, No. 5, 2012, pp. 750–755.

[74] M. Al-Jamimi, Hamdi A and Ahmed, “Pre-
diction of software maintainability using
fuzzy logic,” in International Conference
on Computer Science and Automation En-
gineering. IEEE, 2012, pp. 702–705.

[75] R. Malhotra and A. Chug, “Software main-
tainability prediction using machine learn-
ing algorithms,” Software Engineering: An
International Journal, Vol. 2, No. 2, 2012.

[76] T. Bakota, P. Hegedűs, G. Ladányi,
P. Körtvélyesi, R. Ferenc, and T. Gyimóthy,
“A cost model based on software maintain-
ability,” in 28th International Conference
on Software Maintenance (ICSM). IEEE,
2012, pp. 316–325.

[77] Y. Dash, S.K. Dubey, and A. Rana, “Main-
tainability prediction of object oriented
software system by using artificial neu-
ral network approach,” International Jour-
nal of Soft Computing and Engineering
(IJSCE), Vol. 2, No. 2, 2012, pp. 420–423.

[78] P. Hegedűs, G. Ladányi, I. Siket, and
R. Ferenc, “Towards building method level
maintainability models based on expert
evaluations,” in Computer Applications for
Software Engineering, Disaster Recovery,
and Business Continuity. Springer, 2012,
pp. 146–154.

[79] D. Chandra, “Support vector approach by
using radial kernel function for prediction

of software maintenance effort on the basis
of multivariate approach,” International
Journal of Computer Applications, Vol. 51,
No. 4, 2012.

[80] H. Aljamaan, M.O. Elish, and I. Ahmad,
“An ensemble of computational intelligence
models for software maintenance effort pre-
diction,” in International Work-Conference
on Artificial Neural Networks. Springer,
2013, pp. 592–603.

[81] P. Hegedűs, T. Bakota, G. Ladányi,
C. Faragó, and R. Ferenc, “A drill-down
approach for measuring maintainability at
source code element level,” Electronic Com-
munications of the EASST, Vol. 60, 2013.

[82] X.L. Hao, X.D. Zhu, and L. Liu, “Re-
search on software maintainability evalua-
tion based on fuzzy integral,” in Interna-
tional Conference on Quality, Reliability,
Risk, Maintenance, and Safety Engineering
(QR2MSE). IEEE, 2013, pp. 1279–1282.

[83] F. Ye, X. Zhu, and Y. Wang, “A new
software maintainability evaluation model
based on multiple classifiers combina-
tion,” in International Conference on
Quality, Reliability, Risk, Maintenance,
and Safety Engineering (QR2MSE). IEEE,
2013, pp. 1588–1591.

[84] H.A. Ahmed, Moataz A and Al-Jamimi,
“Machine learning approaches for predict-
ing software maintainability: A fuzzy-based
transparent model,” IET software, Vol. 7,
No. 6, 2013, pp. 317–326.

[85] S.O. Olatunji and A. Ajasin, “Sensitiv-
ity-based linear learning method and ex-
treme learning machines compared for
software maintainability prediction of ob-
ject-oriented software systems,” ICTACT
Journal On Soft Computing, Vol. 3, No. 03,
2013.

[86] A. Mehra and S.K. Dubey, “Maintainabil-
ity evaluation of object-oriented software
system using clustering techniques,” Inter-
nationa Journal of Computers and Tech-
nology, Vol. 5, No. 02, 2013, pp. 136–143.

[87] J. Al Dallal, “Object-oriented class main-
tainability prediction using internal qual-

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 177

ity attributes,” Information and Soft-
ware Technology, Vol. 55, No. 11, 2013,
pp. 2028–2048.

[88] A. Kaur, K. Kaur, and K. Pathak, “A pro-
posed new model for maintainability index
of open source software,” in Proceedings
of 3rd International Conference on Relia-
bility, Infocom Technologies and Optimiza-
tion. IEEE, 2014, pp. 1–6.

[89] A. Pratap, R. Chaudhary, and K. Yadav,
“Estimation of software maintainability us-
ing fuzzy logic technique,” in International
Conference on Issues and Challenges in In-
telligent Computing Techniques (ICICT).
IEEE, 2014, pp. 486–492.

[90] L. Geeta, A. Kavita, and B. Rizwan, “Main-
tainability measurement model for object
oriented design,” International Journal of
Advanced Research in Computer Science
and Software Engineering, Vol. 4, No. 11,
2014, pp. 945–956.

[91] R. Malhotra and A. Chug, “A metric
suite for predicting software maintain-
ability in data intensive applications,” in
Transactions on Engineering Technologies.
Springer Netherlands, 2014, pp. 161–175.

[92] S. Misra and F. Egoeze, “Framework for
maintainability measurement of web appli-
cation for efficient knowledge-sharing on
campus intranet,” in Computational Sci-
ence and Its Applications – ICCSA 2014.
Cham: Springer International Publishing,
2014, pp. 649–662.

[93] M.O. Elish, H. Aljamaan, and I. Ahmad,
“Three empirical studies on predicting soft-
ware maintainability using ensemble meth-
ods,” Soft Computing, Vol. 19, No. 9, 2015,
pp. 2511–2524.

[94] L. Kumar and S.K. Rath, “Neuro-genetic
approach for predicting maintainability us-
ing Chidamber and Kemerer software met-
rics suite,” in Recent Advances in Informa-
tion and Communication Technology 2015.
Cham: Springer International Publishing,
2015, pp. 31–40.

[95] S.O. Olatunji and A. Selamat, “Type-2
fuzzy logic based prediction model of ob-
ject oriented software maintainability,” in

Intelligent Software Methodologies, Tools
and Techniques. Cham: Springer Interna-
tional Publishing, 2015, pp. 329–342.

[96] L. Kumar, D.K. Naik, and S.K. Rath,
“Validating the effectiveness of object-ori-
ented metrics for predicting maintainabil-
ity,” Procedia Computer Science, Vol. 57,
2015, pp. 798–806.

[97] L. Kumar and S.K. Rath, “Hybrid func-
tional link artificial neural network ap-
proach for predicting maintainability of
object-oriented software,” Journal of Sys-
tems and Software, Vol. 121, No. C, 2016,
pp. 170–190.

[98] A. Chug and R. Malhotra, “Benchmarking
framework for maintainability prediction of
open source software using object oriented
metrics,” International Journal of Innova-
tive Computing, Information and Control,
Vol. 12, No. 2, 2016, pp. 615–634.

[99] L. Kumar, K. Mukesh, and K.R. Santanu,
“Maintainability prediction of web service
using support vector machine with various
kernel methods,” International Journal of
System Assurance Engineering and Man-
agement, Vol. 8, No. 2, 2017, pp. 205–6222.

[100] S. Tarwani and A. Chug, “Predicting main-
tainability of open source software using
gene expression programming and bad
smells,” in 5th International Conference on
Reliability, Infocom Technologies and Op-
timization (Trends and Future Directions)
(ICRITO), 2016, pp. 452–459.

[101] S. Tarwani and A. Chug, “Sequencing of
refactoring techniques by greedy algorithm
for maximizing maintainability,” in Inter-
national Conference on Advances in Com-
puting, Communications and Informatics
(ICACCI), 2016, pp. 1397–1403.

[102] L. Kumar, S.K. Rath, and A. Sureka, “Em-
pirical analysis on effectiveness of source
code metrics for predicting change-prone-
ness,” in Proceedings of the 10th Innova-
tions in Software Engineering Conference,
ISEC ’17. New York, NY, USA: ACM,
2017, pp. 4–14.

[103] G. Kanika and C. Anuradha, “Evaluation
of instance-based feature subset selection

178 Sara Elmidaoui et al.

algorithm for maintainability prediction,”
in International Conference on Advances
in Computing, Communications and Infor-
matics (ICACCI), 2017, pp. 1482–1487.

[104] K. Shivani and T. Kirti, “Maintainabil-
ity assessment for software by using a hy-
brid fuzzy multi-criteria analysis approach,”
Management Science Letters, Vol. 7, 2017,
pp. 255–274.

[105] K. Lov and K.R. Santanu, “Software main-
tainability prediction using hybrid neural
network and fuzzy logic approach with
parallel computing concept,” International
Journal of System Assurance Engineering
and Management, Vol. 8, No. S2, 2017,
pp. 1487–1502.

[106] L. Kumar, A. Krishna, and S.K. Rath,
“The impact of feature selection on main-
tainability prediction of service-oriented
applications,” Service Oriented Comput-
ing and Applications, Vol. 11, No. 2, 2017,
pp. 137–161.

[107] L. Kumar, S.K. Rath, and A. Sureka,
“Using source code metrics and multivari-
ate adaptive regression splines to predict
maintainability of service oriented soft-
ware,” in 18th International Symposium
on High Assurance Systems Engineering
(HASE), 2017, pp. 88–95.

[108] L. Kumar, S.K. Rath, and A. Sureka,
“Using source code metrics to predict
change-prone web services: A case-study
on ebay services,” in IEEE Workshop on
Machine Learning Techniques for Software
Quality Evaluation – MaLTeSQuE. IEEE,
2017, pp. 1–7.

[109] R. Malhotra and R. Jangra, “Prediction
and assessment of change prone classes us-
ing statistical and machine learning tech-
niques,” Journal of Information Processing
Systems, Vol. 13, No. 4, 2017, pp. 778–804.

[110] G. Szőke, G. Antal, C. Nagy, R. Ferenc,
and T. Gyimóthy, “Empirical study on
refactoring large-scale industrial systems
and its effects on maintainability,” Journal
of Systems and Software, Vol. 129, 2017,
pp. 107–126.

[111] Y. Gokul and M. Gopal, “An authorita-
tive method using fuzzy logic to evaluate

maintainability index and utilizability of
software,” Advances in Modelling and Anal-
ysis B, Vol. 60, No. 3, 2017, pp. 566–580.

[112] P. Hegedűs, I. Kádár, R. Ferenc, and
T. Gyimóthy, “Empirical evaluation of soft-
ware maintainability based on a manually
validated refactoring dataset,” Information
and Software Technology, Vol. 95, No. 1,
2018, pp. 313–327.

[113] L. Kumar and S. Ashish, “A comparative
study of different source code metrics and
machine learning algorithms for predicting
change proneness of object oriented sys-
tems,” arXiv preprint arXiv:1712.07944,
2018.

[114] G. Scanniello, C. Gravino, M. Genero,
J.A. Cruz-Lemus, and G. Tortora, “On
the impact of UML analysis models on
source-code comprehensibility and modifia-
bility,” ACM Trans. Softw. Eng. Methodol.,
Vol. 23, No. 2, 2014, pp. 13:1–13:26.

[115] A.M. Fernández-Sáez, M.R.V. Chaudron,
M. Genero, and I. Ramos, “Are forward
designed or reverse-engineered UML dia-
grams more helpful for code maintenance?:
A controlled experiment,” in Proceedings of
the 17th International Conference on Eval-
uation and Assessment in Software Engi-
neering. New York, NY, USA: ACM, 2013,
pp. 60–71.

[116] G. Scanniello, C. Gravino, G. Tortora,
M. Genero, M. Risi, J.A. Cruz-Lemus,
and G. Dodero, “Studying the effect of
UML-based models on source-code com-
prehensibility: Results from a long-term in-
vestigation,” in Proceedings of the 16th In-
ternational Conference on Product-Focused
Software Process Improvement, Vol. 9459,
New York, 2015, pp. 311–327.

[117] A.M. Fernández-Sáez, M. Genero,
D. Caivano, and M.R. Chaudron, “Does
the level of detail of UML diagrams
affect the maintainability of source code?:
A family of experiments,” Empirical
Software Engineering, Vol. 21, No. 1, 2016,
pp. 212–259.

[118] G. Scanniello, C. Gravino, M. Genero,
J.A. Cruz-Lemus, G. Tortora, M. Risi, and
G. Dodero, “Do software models based

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 179

on the UML aid in source-code compre-
hensibility? Aggregating evidence from 12
controlled experiments,” Empirical Soft-

ware Engineering, Vol. 23, No. 5, 2018,
pp. 2695–2733.

Appendix A

Table A1. Research approaches

Research
approaches What is it [42]

ER Empirical studies that evaluate and/or compare existing SPMP techniques.
SP Empirical studies in which an SPMP technique is proposed, either as a new technique or as

a significant adaptation of an existing one, or propose a solution to a defined problem.

Table A2. Empirical types

Empirical
types What is it [43]

HbE Studies evaluating SPMP techniques of previously completed software projects.
Ex An empirical method applied under controlled conditions to evaluate an SPMP technique.
CS An empirical study that investigates an SPMP technique in a real-life context, e.g. in-depth

study of the prediction processes of one, or a very small number, of software projects.

Table A3. QA score of selected primary studies

ID Author QA1 QA2 QA3 QA4 QA5 QA6 QA7 Score
S1 S. Muthanna et al. 1 1 1 1 1 0 1 6
S2 M.M.T Thwin et al. 1 1 1 1 0.5 1 1 6.6
S3 M. Genero et al. 1 1 1 1 0.5 1 1 6.6
S4 M. Kiewkayna et al. 1 1 0.5 1 0.5 0 1 5
S5 G.A.D. Lucca et al. 1 1 0.5 1 0.5 0.5 1 5.5
S6 C.V. Koten et al. 1 1 1 1 1 1 1 7
S7 J.H. Hayes et al. 1 0.5 1 1 0.5 0.5 1 5.5
S8 S.C. Misra 1 1 1 1 0.5 1 1 6.6
S9 Y. Zhou et al. 1 1 1 1 1 1 1 7
S10 X. Jin et al. 1 1 1 1 1 1 1 7
S11 S.S. Dahiya et al. 1 0.5 0.5 1 0.5 0.5 1 5
S12 M. Genero et al. 1 1 0.5 1 1 0.5 1 6
S13 K. Shibata et al. 1 0.5 0.5 1 0.5 0.5 1 5
S14 K.K.Aggarwal et al. 0.5 1 0.5 0.5 0.5 1 0.5 4.5
S15 Y. Thian et al. 1 1 1 1 1 1 1 7
S16 Y. Zhou et al. 1 1 1 1 1 1 1 7
S17 H. Yu et al. 1 1 1 1 1 0 1 6
S18 A. Sharma et al. 1 1 1 1 0.5 0.5 1 6
S19 W. Li-jin et al. 1 1 1 1 1 1 1 7
S20 H. Mittal et al. 1 1 0.5 1 0.5 1 1 6

180 Sara Elmidaoui et al.

Table A3 continued

ID Author QA1 QA2 QA3 QA4 QA5 QA6 QA7 Score
S21 M. O. Elish et al. 1 1 1 1 1 1 1 7
S22 S. Rizvi et al. 1 1 1 1 0.5 1 1 6.6
S23 A.Kaur et al. 1 1 1 1 1 1 1 7
S24 C. Jin et al. 1 1 1 0.5 1 1 1 6.6
S25 L. CAI et al. 1 0.5 0.5 1 0.5 0.5 1 5
S26 S. O. Olatunji et al. 1 1 1 1 1 1 1 7
S27 P. Dhankhar et al. 1 1 0.5 1 0.5 0.5 1 5.5
S28 S.K. Dubey et al. 1 1 0.5 1 0.5 0.5 1 5.5
S29 S. K. Dubey et al. 1 1 1 1 1 1 1 7
S30 N. Tagoug et al. 1 0.5 1 1 1 0.5 1 5.5
S31 S. Sharawat et al. 1 1 1 1 0.5 0.5 1 6
S32 H.A. Al-Jamimi et al. 1 1 1 1 1 1 1 7
S33 R. Malhotra et al. 1 1 1 1 1 1 1 7
S34 T. Bakota et al. 1 1 1 1 1 1 1 7
S35 Y. Dash et al. 1 1 1 1 1 1 1 7
S36 P. Hegedűs et al. 1 1 1 1 1 1 1 7
S37 D. Chandra 1 1 1 1 1 1 1 7
S38 H. Aljamaan et al. 1 1 1 1 1 1 1 7
S39 P. Hegedűs et al. 1 1 0.5 1 1 1 1 6.6
S40 X.L. Hao et al. 1 1 1 1 1 0 1 6
S41 F. Ye et al. 1 1 1 1 0.5 1 1 6.6
S42 M.A. Ahmed et al. 1 1 1 1 1 1 1 7
S43 S.O. Olatunji et al. 1 1 1 1 1 1 1 7
S44 A. Kaur et al. 1 1 1 1 1 1 1 7
S45 A. Mehra et al. 1 1 1 1 0.5 1 1 6.6
S46 J. Al Dallal. 1 1 1 1 1 1 1 7
S47 R. Malhotra et al. 1 1 1 1 1 1 1 7
S48 A. Kaur et al. 1 1 1 1 1 1 1 7
S49 A. Kaur et al. 1 1 1 1 1 1 1 7
S50 A. Pratap et al. 1 1 0.5 1 1 0.5 0.5 5.5
S51 R. Kumar et al. 1 1 1 1 0.5 1 1 6.6
S52 R. Malhotra et al. 1 1 1 1 1 1 1 7
S53 S. Misra et al. 1 1 0.5 1 0.5 0.5 0.5 5
S54 M.O. Elish et al. 1 1 1 1 1 1 1 7
S55 L. Kumar et al. 1 1 1 1 1 1 1 7
S56 S.O. Olatunji et al. 1 1 1 1 1 1 1 7
S57 A.K. Soni et al. 1 1 1 1 1 1 1 7
S58 L. Kumar et al. 1 1 1 1 1 1 1 7
S59 A. Jain et al. 1 1 1 1 1 1 1 7
S60 A. Chug et al. 1 1 1 1 1 1 1 7
S61 L. Kumar et al. 1 1 1 1 1 1 1 7
S62 S. Tarwani et al. 1 1 1 1 1 1 1 7
S63 S. Almugrin et al. 1 1 1 1 1 0.5 1 6.5
S64 S. Tarwani et al. 1 1 1 1 0.5 0.5 1 6
S65 L. Kumar et al. 1 1 1 1 1 1 1 7
S66 K. Gupta et al. 1 1 1 1 1 1 1 7
S67 S. Kundu et al. 1 1 0.5 1 1 0 1 5.5
S68 B.R. Reddy et al. 1 1 1 1 1 1 1 7
S69 L. Kumar et al. 1 1 1 1 1 1 1 7
S70 L. Kumar et al. 1 1 1 1 1 1 1 7
S71 L. Kumar et al. 1 1 1 1 1 1 1 7

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 181

Table A3 continued

ID Author QA1 QA2 QA3 QA4 QA5 QA6 QA7 Score
S72 L. Kumar et al. 1 1 1 1 1 1 1 7
S73 R. Malhotra et al. 1 1 1 1 1 1 1 7
S74 G. Szoke et al. 1 1 1 1 0.5 0 1 5.5
S75 Y. Gokul et al. 1 1 0.5 1 0.5 0 1 5
S76 P. Hegedűs et al. 1 1 1 1 1 0 1 6
S77 L. Kumar et al. 1 1 1 1 1 1 1 7
S78 G. Scanniello et al. 1 1 1 0.5 0.5 0 1 5
S79 A.M. Fernández-Sáez et al. 1 1 1 0.5 0.5 0 1 5
S80 G. Scanniello et al. 1 1 1 0.5 0.5 0 1 5
S81 A.M. Fernández-Sáez et al. 1 1 1 0.5 0.5 0 1 5
S82 G. Scanniello et al. 1 1 1 0.5 0.5 0 1 5

Table A4. Search results for each of the nine databases

Database name # of search
results

of duplicate
studies

of candidate
studies

of relevant
studies

IEEE Explore 1678 15 100 28
Science Direct 5938 20 30 9
Springer Link 8715 45 71 18
Ebsco 1601 16 6 1
ACM Digital Library 530 14 10 5
Google Scholar 22090 30 77 10
dblp 120 80 20 2
Scopus 270 17 23 0
Jstore 399 26 4 2
Total 41341 263 341 75

Table A5. List of the 82 selected studies

ID Author Ref. Title
S1 S. Muthanna

et al.
[44] S. Muthanna, K. Kontogiannis, K. Ponnambalam, and B. Stacey, “A main-

tainability model for industrial software systems using design level met-
rics,” in Proceedings Seventh Working Conference on Reverse Engineering.
IEEE, 2000, pp. 248–256

S2 M.M.T Thwin
et al.

[45] M. Thwin and T. Quah, “Application of neural networks for estimating
software maintainability using object-oriented metrics,” in International
Conference on Software Engineering and Knowledge Engineering, 2003,
pp. 69–73

S3 M. Genero et al. [46] M. Genero, M. Piattini, E. Manso, and G. Cantone, “Building UML class
diagram maintainability prediction models based on early metrics,” in
5th International Workshop on Enterprise Networking and Computing in
Healthcare Industry. IEEE, 2003, pp. 263–275

S4 M. Kiewkayna
et al.

[47] M. Kiewkanya, N. Jindasawat, and P. Muenchaisri, “A methodology for
constructing maintainability model of object-oriented design,” in Fourth
International Conference on Quality Software. IEEE, 2004, pp. 206–213

182 Sara Elmidaoui et al.

Table A5 continued

ID Author Ref. Title
S5 G.A.D. Lucca

et al.
[48] A.R. Di Lucca, Giuseppe A and Fasolino, P. Tramontana, and C.A. Vis-

aggio, “Towards the definition of a maintainability model for web appli-
cations,” in Eighth European Conference on Software Maintenance and
Reengineering. IEEE, 2004, pp. 279–287

S6 C.V. Koten
et al.

[49] C. Van Koten and A. Gray, “An application of Bayesian network for
predicting object-oriented software maintainability,” Information and
Software Technology, Vol. 48, No. 1, 2006, pp. 59–67

S7 J.H. Hayes et al. [50] J.H. Hayes and L. Zhao, “Maintainability prediction: A regression analysis
of measures of evolving systems,” in 21st International Conference on
Software Maintenance (ICSM ’05). IEEE, 2005, pp. 601–604

S8 S.C. Misra [51] S.C. Misra, “Modeling design/coding factors that drive maintainability
of software systems,” Software Quality Journal, Vol. 13, No. 3, 2005,
pp. 297–320

S9 Y. Zhou et al. [52] Y. Zhou and H. Leung, “Predicting object-oriented software maintainabil-
ity using multivariate adaptive regression splines,” Journal of Systems
and Software, Vol. 80, No. 8, 2007, pp. 1349–1361

S10 X. Jin et al. [19] X. Jin, Y. Liu, J. Ren, A. Xu, and R. Bie, “Locality preserving projec-
tion on source code metrics for improved software maintainability,” in
Australasian Joint Conference on Artificial Intelligence. Springer, 2006,
pp. 877–886

S11 S.S. Dahiya
et al.

[53] S.S. Dahiya, J.K. Chhabra, and S. Kumar, “Use of genetic algorithm
for software maintainability metrics’ conditioning,” in 15th International
Conference on Advanced Computing and Communications. IEEE, 2007,
pp. 87–92

S12 M. Genero et al. [54] M. Genero, E. Manso, A. Visaggio, G. Canfora, and M. Piattini, “Building
measure-based prediction models for UML class diagram maintainability,”
Empirical Software Engineering, Vol. 12, No. 5, 2007, pp. 517–549

S13 K. Shibata et al. [55] K. Shibata, K. Rinsaka, T. Dohi, and H. Okamura, “Quantifying software
maintainability based on a fault-detection/correction model,” in 13th
Pacific Rim International Symposium on Dependable Computing. IEEE,
2007, pp. 35–42

S14 K.K.Aggarwal
et al.

[56] K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Application of
artificial neural network for predicting maintainability using object-ori-
ented metrics,” World Academy of Science, Engineering and Technology,
International Journal of Computer, Electrical, Automation, Control and
Information Engineering, Vol. 2, No. 10, 2008, pp. 3552–3556

S15 Y. Thian et al. [57] Y. Tian, C. Chen, and C. Zhang, “AODE for source code metrics for
improved software maintainability,” in Fourth International Conference
on Semantics, Knowledge and Grid. IEEE, 2008, pp. 330–335

S16 Y. Zhou et al. [58] Y. Zhou and B. Xu, “Predicting the maintainability of open source
software using design metrics,” Wuhan University Journal of Natural
Sciences, Vol. 13, No. 1, 2008, pp. 14–20

S17 H. Yu et al. [59] H. Yu, G. Peng, and W. Liu, “An application of case based reasoning
to predict structure maintainability,” in International Conference on
Computational Intelligence and Software Engineering. IEEE, 2009, pp. 1–5

S18 A. Sharma et al. [60] A. Sharma, P. Grover, and R. Kumar, “Predicting maintainability of com-
ponent-based systems by using fuzzy logic,” in International Conference
on Contemporary Computing. Springer, 2009, pp. 581–591

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 183

Table A5 continued

ID Author Ref. Title
S19 W. Li-jin et al. [61] L. Wang, X. Hu, Z. Ning, and W. Ke, “Predicting object-oriented software

maintainability using projection pursuit regression,” in First Interna-
tional Conference on Information Science and Engineering. IEEE, 2009,
pp. 3827–3830

S20 H. Mittal et al. [62] H. Mittal and P. Bhatia, “Software maintainability assessment based
on fuzzy logic technique,” ACM SIGSOFT Software Engineering Notes,
Vol. 34, No. 3, 2009, pp. 1–5

S21 M.O. Elish et al. [63] M.O. Elish and K.O. Elish, “Application of treenet in predicting ob-
ject-oriented software maintainability: A comparative study,” in 13th
European Conference on Software Maintenance and Reengineering. IEEE,
2009, pp. 69–78

S22 S. Rizvi et al. [64] S. Rizvi and R.A. Khan, “Maintainability estimation model for ob-
ject-oriented software in design phase (MEMOOD),” arXiv preprint
arXiv:1004.4447, 2010

S23 A.Kaur et al. [65] A. Kaur, K. Kaur, and R. Malhotra, “Soft computing approaches for
prediction of software maintenance effort,” International Journal of Com-
puter Applications, Vol. 1, No. 16, 2010, pp. 69–75

S24 C. Jin et al. [66] C. Jin and J.A. Liu, “Applications of support vector mathine and un-
supervised learning for predicting maintainability using object-oriented
metrics,” in Second International Conference on Multimedia and Infor-
mation Technology, Vol. 1. IEEE, 2010, pp. 24–27

S25 L. CAI et al. [67] L. Cai, Z. Liu, J. Zhang, W. Tong, and G. Yang, “Evaluating software
maintainability using fuzzy entropy theory,” in 9th International Confer-
ence on Computer and Information Science. IEEE, 2010, pp. 737–742

S26 S.O. Olatunji
et al.

[68] S.O. Olatunji, Z. Rasheed, K. Sattar, A. Al-Mana, M. Alshayeb, and
E. El-Sebakhy, “Extreme learning machine as maintainability prediction
model for object-oriented software systems,” Journal of Computing, Vol. 2,
No. 8, 2010, pp. 49–56

S27 P. Dhankhar
et al.

[69] P. Dhankhar, H. Mittal, and A. Mittal, “Maintainability prediction for ob-
ject oriented software,” International Journal of Advances in Engineering
Sciences, Vol. 1, No. 1, 2011, pp. 8–11

S28 S.K. Dubey
et al.

[70] S.K. Dubey and A. Rana, “A fuzzy approach for evaluation of main-
tainability of object oriented software system,” International Journal of
Computer Applications, Vol. 49, No. 21, 2012

S29 S.K. Dubey
et al.

[71] S.K. Dubey, A. Rana, and Y. Dash, “Maintainability prediction of ob-
jec oriented software system by multilayer perceptron model,” ACM
SIGSOFT Software Engineering Notes, Vol. 37, No. 5, 2012, pp. 1–4

S30 N. Tagoug et al. [72] N. Tagoug, “Maintainability assessment in object-oriented system design,”
in International Conference on Information Technology and e-Services.
IEEE, 2012, pp. 1–5

S31 S. Sharawat
et al.

[73] S. Sharawat, “Software maintainability prediction using neural networks,”
environment, Vol. 3, No. 5, 2012, pp. 750–755

S32 H.A. Al-Jamimi
et al.

[74] M. Al-Jamimi, Hamdi A and Ahmed, “Prediction of software maintainabil-
ity using fuzzy logic,” in International Conference on Computer Science
and Automation Engineering. IEEE, 2012, pp. 702–705

S33 R. Malhotra
et al.

[75] R. Malhotra and A. Chug, “Software maintainability prediction using
machine learning algorithms,” Software Engineering: An International
Journal, Vol. 2, No. 2, 2012

184 Sara Elmidaoui et al.

Table A5 continued

ID Author Ref. Title
S34 T. Bakota et al. [76] T. Bakota, P. Hegedűs, G. Ladányi, P. Körtvélyesi, R. Ferenc, and T. Gy-

imóthy, “A cost model based on software maintainability,” in 28th In-
ternational Conference on Software Maintenance (ICSM). IEEE, 2012,
pp. 316–325

S35 Y. Dash et al. [77] Y. Dash, S.K. Dubey, and A. Rana, “Maintainability prediction of object
oriented software system by using artificial neural network approach,”
International Journal of Soft Computing and Engineering (IJSCE), Vol. 2,
No. 2, 2012, pp. 420–423

S36 P. Hegedűs
et al.

[78] P. Hegedűs, G. Ladányi, I. Siket, and R. Ferenc, “Towards building
method level maintainability models based on expert evaluations,” in
Computer Applications for Software Engineering, Disaster Recovery, and
Business Continuity. Springer, 2012, pp. 146–154

S37 D. Chandra [79] D. Chandra, “Support vector approach by using radial kernel function
for prediction of software maintenance effort on the basis of multivariate
approach,” International Journal of Computer Applications, Vol. 51, No. 4,
2012

S38 H. Aljamaan
et al.

[80] H. Aljamaan, M.O. Elish, and I. Ahmad, “An ensemble of computational
intelligence models for software maintenance effort prediction,” in Inter-
national Work-Conference on Artificial Neural Networks. Springer, 2013,
pp. 592–603

S39 P. Hegedűs
et al.

[81] P. Hegedűs, T. Bakota, G. Ladányi, C. Faragó, and R. Ferenc, “A drill-
-down approach for measuring maintainability at source code element
level,” Electronic Communications of the EASST, Vol. 60, 2013

S40 X.L. Hao et al. [82] X.L. Hao, X.D. Zhu, and L. Liu, “Research on software maintainability
evaluation based on fuzzy integral,” in International Conference on Qual-
ity, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE).
IEEE, 2013, pp. 1279–1282

S41 F. Ye et al. [83] F. Ye, X. Zhu, and Y. Wang, “A new software maintainability evaluation
model based on multiple classifiers combination,” in International Confer-
ence on Quality, Reliability, Risk, Maintenance, and Safety Engineering
(QR2MSE). IEEE, 2013, pp. 1588–1591

S42 M.A. Ahmed
et al.

[84] H.A. Ahmed, Moataz A and Al-Jamimi, “Machine learning approaches
for predicting software maintainability: A fuzzy-based transparent model,”
IET software, Vol. 7, No. 6, 2013, pp. 317–326

S43 S.O. Olatunji
et al.

[85] S.O. Olatunji and A. Ajasin, “Sensitivity-based linear learning method
and extreme learning machines compared for software maintainability
prediction of object-oriented software systems,” ICTACT Journal On
Soft Computing, Vol. 3, No. 03, 2013

S44 A. Kaur et al. [3] A. Kaur and K. Kaur, “Statistical comparison of modelling methods for
software maintainability prediction,” International Journal of Software
Engineering and Knowledge Engineering, Vol. 23, No. 6, 2013, pp. 743–774

S45 A. Mehra et al. [86] A. Mehra and S.K. Dubey, “Maintainability evaluation of object-oriented
software system using clustering techniques,” Internationa Journal of
Computers and Technology, Vol. 5, No. 02, 2013, pp. 136–143

S46 J. Al Dallal. [87] J. Al Dallal, “Object-oriented class maintainability prediction using in-
ternal quality attributes,” Information and Software Technology, Vol. 55,
No. 11, 2013, pp. 2028–2048

S47 R. Malhotra
et al.

[21] R. Malhotra and A. Chug, “Application of group method of data han-
dling model for software maintainability prediction using object oriented
systems,” International Journal of System Assurance Engineering and
Management, Vol. 5, No. 2, 2014, pp. 165–173

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 185

Table A5 continued

ID Author Ref. Title
S48 A. Kaur et al. [88] A. Kaur, K. Kaur, and K. Pathak, “A proposed new model for maintain-

ability index of open source software,” in Proceedings of 3rd International
Conference on Reliability, Infocom Technologies and Optimization. IEEE,
2014, pp. 1–6

S49 A. Kaur et al. [14] A. Kaur, K. Kaur, and K. Pathak, “Software maintainability prediction
by data mining of software code metrics,” in International Conference on
Data Mining and Intelligent Computing (ICDMIC). IEEE, 2014, pp. 1–6

S50 A. Pratap et al. [89] A. Pratap, R. Chaudhary, and K. Yadav, “Estimation of software main-
tainability using fuzzy logic technique,” in International Conference on
Issues and Challenges in Intelligent Computing Techniques (ICICT).
IEEE, 2014, pp. 486–492

S51 G. Laxmi et al. [90] L. Geeta, A. Kavita, and B. Rizwan, “Maintainability measurement model
for object oriented design,” International Journal of Advanced Research
in Computer Science and Software Engineering, Vol. 4, No. 11, 2014,
pp. 945–956

S52 R. Malhotra
et al.

[91] R. Malhotra and A. Chug, “A metric suite for predicting software main-
tainability in data intensive applications,” in Transactions on Engineering
Technologies. Springer Netherlands, 2014, pp. 161–175

S53 S. Misra et al. [92] S. Misra and F. Egoeze, “Framework for maintainability measurement
of web application for efficient knowledge-sharing on campus intranet,”
in Computational Science and Its Applications – ICCSA 2014. Cham:
Springer International Publishing, 2014, pp. 649–662

S54 M.O. Elish et al. [93] M.O. Elish, H. Aljamaan, and I. Ahmad, “Three empirical studies on
predicting software maintainability using ensemble methods,” Soft Com-
puting, Vol. 19, No. 9, 2015, pp. 2511–2524

S55 L. Kumar et al. [94] L. Kumar and S.K. Rath, “Neuro-genetic approach for predicting main-
tainability using Chidamber and Kemerer software metrics suite,” in
Recent Advances in Information and Communication Technology 2015.
Cham: Springer International Publishing, 2015, pp. 31–40

S56 S.O. Olatunji
et al.

[95] S.O. Olatunji and A. Selamat, “Type-2 fuzzy logic based prediction
model of object oriented software maintainability,” in Intelligent Soft-
ware Methodologies, Tools and Techniques. Cham: Springer International
Publishing, 2015, pp. 329–342

S57 L. Kumar et al. [96] L. Kumar, D.K. Naik, and S.K. Rath, “Validating the effectiveness of
object-oriented metrics for predicting maintainability,” Procedia Computer
Science, Vol. 57, 2015, pp. 798–806

S58 L. Kumar et al. [97] L. Kumar and S.K. Rath, “Hybrid functional link artificial neural net-
work approach for predicting maintainability of object-oriented software,”
Journal of Systems and Software, Vol. 121, No. C, 2016, pp. 170–190

S59 A. Jain et al. [17] A. Jain, S. Tarwani, and A. Chug, “An empirical investigation of evolu-
tionary algorithm for software maintainability prediction,” in Students’
Conference on Electrical, Electronics and Computer Science (SCEECS),
2016, pp. 1–6

S60 A. Chug et al. [98] A. Chug and R. Malhotra, “Benchmarking framework for maintainability
prediction of open source software using object oriented metrics,” In-
ternational Journal of Innovative Computing, Information and Control,
Vol. 12, No. 2, 2016, pp. 615–634

S61 L. Kumar et al. [99] L. Kumar, K. Mukesh, and K.R. Santanu, “Maintainability prediction of
web service using support vector machine with various kernel methods,”
International Journal of System Assurance Engineering and Management,
Vol. 8, No. 2, 2017, pp. 205–6222

186 Sara Elmidaoui et al.

Table A5 continued

ID Author Ref. Title
S62 S. Tarwani et al. [100] S. Tarwani and A. Chug, “Predicting maintainability of open source

software using gene expression programming and bad smells,” in 5th
International Conference on Reliability, Infocom Technologies and Opti-
mization (Trends and Future Directions) (ICRITO), 2016, pp. 452–459

S63 S. Almugrin
et al.

[32] S. Almugrin, W. Albattah, and A. Melton, “Using indirect coupling
metrics to predict package maintainability and testability,” Journal of
System and Software, Vol. 121, No. C, 2016, pp. 298–310

S64 S. Tarwani et al. [101] S. Tarwani and A. Chug, “Sequencing of refactoring techniques by greedy
algorithm for maximizing maintainability,” in International Conference
on Advances in Computing, Communications and Informatics (ICACCI),
2016, pp. 1397–1403

S65 L. Kumar et al. [102] L. Kumar, S.K. Rath, and A. Sureka, “Empirical analysis on effectiveness
of source code metrics for predicting change-proneness,” in Proceedings
of the 10th Innovations in Software Engineering Conference, ISEC ’17.
New York, NY, USA: ACM, 2017, pp. 4–14

S66 K. Gupta et al. [103] G. Kanika and C. Anuradha, “Evaluation of instance-based feature sub-
set selection algorithm for maintainability prediction,” in International
Conference on Advances in Computing, Communications and Informatics
(ICACCI), 2017, pp. 1482–1487

S67 S. Kundu et al. [104] K. Shivani and T. Kirti, “Maintainability assessment for software by using
a hybrid fuzzy multi-criteria analysis approach,” Management Science
Letters, Vol. 7, 2017, pp. 255–274

S68 B.R. Reddy
et al.

[16] B.R. Reddy and O. Aparajita, “Performance of maintainability index
prediction models: A feature selection based study,” Evolving Systems,
2017

S69 L. Kumar et al. [105] K. Lov and K.R. Santanu, “Software maintainability prediction using
hybrid neural network and fuzzy logic approach with parallel computing
concept,” International Journal of System Assurance Engineering and
Management, Vol. 8, No. S2, 2017, pp. 1487–1502

S70 L. Kumar et al. [106] L. Kumar, A. Krishna, and S.K. Rath, “The impact of feature selection
on maintainability prediction of service-oriented applications,” Service
Oriented Computing and Applications, Vol. 11, No. 2, 2017, pp. 137–161

S71 L. Kumar et al. [107] L. Kumar, S.K. Rath, and A. Sureka, “Using source code metrics and
multivariate adaptive regression splines to predict maintainability of
service oriented software,” in 18th International Symposium on High
Assurance Systems Engineering (HASE), 2017, pp. 88–95

S72 L. Kumar et al. [108] L. Kumar, S.K. Rath, and A. Sureka, “Using source code metrics to
predict change-prone web services: A case-study on ebay services,” in
IEEE Workshop on Machine Learning Techniques for Software Quality
Evaluation – MaLTeSQuE. IEEE, 2017, pp. 1–7

S73 R. Malhotra
et al.

[109] R. Malhotra and R. Jangra, “Prediction and assessment of change prone
classes using statistical and machine learning techniques,” Journal of
Information Processing Systems, Vol. 13, No. 4, 2017, pp. 778–804

S74 G. Szoke et al. [110] G. Szőke, G. Antal, C. Nagy, R. Ferenc, and T. Gyimóthy, “Empiri-
cal study on refactoring large-scale industrial systems and its effects
on maintainability,” Journal of Systems and Software, Vol. 129, 2017,
pp. 107–126

S75 Y. Gokul et al. [111] Y. Gokul and M. Gopal, “An authoritative method using fuzzy logic to
evaluate maintainability index and utilizability of software,” Advances in
Modelling and Analysis B, Vol. 60, No. 3, 2017, pp. 566–580

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 187

Table A5 continued

ID Author Ref. Title
S76 P. Hegedűs

et al.
[112] P. Hegedűs, I. Kádár, R. Ferenc, and T. Gyimóthy, “Empirical evaluation

of software maintainability based on a manually validated refactoring
dataset,” Information and Software Technology, Vol. 95, No. 1, 2018,
pp. 313–327

S77 L. Kumar et al. [113] L. Kumar and S. Ashish, “A comparative study of different source code
metrics and machine learning algorithms for predicting change proneness
of object oriented systems,” arXiv preprint arXiv:1712.07944, 2018

S78 G. Scanniello
et al.

[114] G. Scanniello, C. Gravino, M. Genero, J.A. Cruz-Lemus, and G. Tortora,
“On the impact of UML analysis models on source-code comprehensibility
and modifiability,” ACM Trans. Softw. Eng. Methodol., Vol. 23, No. 2,
2014, pp. 13:1–13:26

S79 A.M.
Fernández-Sáez
et al.

[115] A.M. Fernández-Sáez, M.R.V. Chaudron, M. Genero, and I. Ramos,
“Are forward designed or reverse-engineered UML diagrams more helpful
for code maintenance?: A controlled experiment,” in Proceedings of the
17th International Conference on Evaluation and Assessment in Software
Engineering. New York, NY, USA: ACM, 2013, pp. 60–71

S80 G. Scanniello
et al.

[116] G. Scanniello, C. Gravino, G. Tortora, M. Genero, M. Risi,
J.A. Cruz-Lemus, and G. Dodero, “Studying the effect of UML-based
models on source-code comprehensibility: Results from a long-term in-
vestigation,” in Proceedings of the 16th International Conference on
Product-Focused Software Process Improvement, Vol. 9459, New York,
2015, pp. 311–327

S81 A.M.
Fernández-Sáez
et al.

[117] A.M. Fernández-Sáez, M. Genero, D. Caivano, and M.R. Chaudron, “Does
the level of detail of UML diagrams affect the maintainability of source
code?: A family of experiments,” Empirical Software Engineering, Vol. 21,
No. 1, 2016, pp. 212–259

S82 G. Scanniello
et al.

[118] G. Scanniello, C. Gravino, M. Genero, J.A. Cruz-Lemus, G. Tortora,
M. Risi, and G. Dodero, “Do software models based on the UML aid
in source-code comprehensibility? Aggregating evidence from 12 con-
trolled experiments,” Empirical Software Engineering, Vol. 23, No. 5,
2018, pp. 2695–2733

188 Sara Elmidaoui et al.
Ta

bl
e
A
6.

R
es
ul
ts

of
da

ta
ex
tr
ac
tio

n
fro

m
ni
ne

da
ta
ba

se
s

ID
R
ef
.

M
Q
1

M
Q
2

M
Q
3

M
Q
4

M
Q
5

M
Q
6

M
Q
8

Pu
bl
ic
at
io
n

ye
ar

Pu
bl
ic
at
io
n

so
ur
ce

Pu
bl
ic
at
io
n

ch
an

ne
l

R
es
ea
rc
h

ty
pe

Em
pi
ric

al
ap

pr
oa
ch

So
ftw

ar
e

ap
pl
ic
at
io
n

ty
pe

D
at
as
et

Te
ch
ni
qu

e

S1
[4
4]

20
00

C
R
E

C
on

fe
re
nc

e
SP

Ex
PO

A
A
N
SI

C
pr
og
ra
m
s

PR
S2

[4
5]

20
03

SE
K
E

C
on

fe
re
nc

e
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
G
R
N
N
,W

N
N

S3
[4
6]

20
03

M
ET

R
IC

S
Sy

m
po

siu
m

SP
Ex

O
O
A

D
iff
er
en
t
O
O

ap
pl
ic
at
io
n

do
m
ai
ns

M
LR

S4
[4
7]

20
04

Q
SI
C

C
on

fe
re
nc

e
SP

Ex
O
O
A

D
iff
er
en
t
O
O

ap
pl
ic
at
io
n

do
m
ai
ns

D
A

S5
[4
8]

20
04

C
SM

R
C
on

fe
re
nc

e
SP

C
S

W
bA

D
iff
er
en
t
W
A

Fr
ee
wa

re
ap

pl
ic
at
io
ns

W
F

S6
[4
9]

20
05

IS
T

Jo
ur
na

l
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
BN

,R
T
,B

E,
SS

S7
[5
0]

20
05

IC
SM

C
on

fe
re
nc

e
SP

Ex
O
O
A

D
iff
er
en
t
so
ftw

ar
e

st
ud

en
t
pr
oj
ec
ts

M
LR

S8
[5
1]

20
05

SQ
J

Jo
ur
na

l
SP

Ex
O
O
A

C
+
+

op
en

so
ur
ce

so
ftw

ar
e

M
LR

S9
[5
2]

20
06

JS
S

Jo
ur
na

l
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
M
A
R
S,

M
LR

,A
N
N
,R

T
,

SV
R

S1
0

[1
9]

20
06

A
JC

A
I

C
on

fe
re
nc

e
SP

H
bE

PO
A

M
ed

ic
al

Im
ag
in
g
Sy

st
em

G
M
M
,S

V
M
-R

BF
,D

T
S1

1
[5
3]

20
07

IC
A
C
C

C
on

fe
re
nc

e
SP

Ex
N
I

D
iff
er
en
t
so
ftw

ar
e
da

ta
FL

S1
2

[5
4]

20
07

ES
E

Jo
ur
na

l
SP

Ex
O
O
A

D
iff
er
en
t
O
O

ap
pl
ic
at
io
n

do
m
ai
ns

M
LR

S1
3

[5
5]

20
07

IS
PR

D
C

Sy
m
po

siu
m

SP
C
S

N
I

D
iff
er
en
t
so
ftw

ar
e

pr
oj
ec
ts

SM

S1
4

[5
6]

20
08

IJ
C
EA

C
IE

Jo
ur
na

l
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
A
N
N

S1
5

[5
7]

20
08

IC
SK

G
C
on

fe
re
nc

e
SP

H
bE

PO
A

M
ed

ic
al

im
ag
in
g
Sy

st
em

A
O
D
E,

SV
M
-L
IN

,N
B,

BN
,R

F,
K
N
N
,C

4.
5,

O
ne

R
,R

BF
S1

6
[5
8]

20
08

W
U
JN

S
Jo

ur
na

l
SP

Ex
O
O
A

Ja
va

op
en

so
ur
ce

so
ftw

ar
e

M
LR

S1
7

[5
9]

20
09

C
IS
E

C
on

fe
re
nc

e
SP

C
S

N
I

D
at
a
fro

m
so
ftw

ar
e

de
sig

n
C
BR

S1
8

[6
0]

20
09

IC
C
C

C
on

fe
re
nc

e
SP

C
S

C
bA

Bi
lli
ng

sy
st
em

FL
S1

9
[6
1]

20
09

IC
IS
E

C
on

fe
re
nc

e
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
PP

R
,A

N
N
,M

A
R
S

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 189
Ta

bl
e
A
6
co
nt
in
ue
d

ID
R
ef
.

M
Q
1

M
Q
2

M
Q
3

M
Q
4

M
Q
5

M
Q
6

M
Q
8

Pu
bl
ic
at
io
n

ye
ar

Pu
bl
ic
at
io
n

so
ur
ce

Pu
bl
ic
at
io
n

ch
an

ne
l

R
es
ea
rc
h

ty
pe

Em
pi
ric

al
ap

pr
oa
ch

So
ftw

ar
e

ap
pl
ic
at
io
n

ty
pe

D
at
as
et

Te
ch
ni
qu

e

S2
0

[6
2]

20
09

SI
G
SO

FT
C
on

fe
re
nc

e
SP

H
bE

PO
A

A
gg
ar
wa

l
FL

S2
1

[6
3]

20
09

C
SM

R
C
on

fe
re
nc

e
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
Tr

ee
N
et

S2
2

[6
4]

20
10

JC
Jo

ur
na

l
SP

H
bE

O
O
A

BI
S

M
LR

S2
3

[6
5]

20
10

IJ
C
A

Jo
ur
na

l
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
FF

N
N
,F

IS
,A

N
FI

S,
G
R
N
N
,R

BF
S2

4
[6
6]

20
10

IC
M
IT

C
on

fe
re
nc

e
ER

Ex
O
O
A

So
ftw

ar
e
de

ve
lo
pe

d
by

st
ud

en
ts

SV
M

S2
5

[6
7]

20
10

IC
C
IS

C
on

fe
re
nc
e

SP
C
S

N
I

D
iff
er
en
t
so
ftw

ar
e

pr
od

uc
ts

FE
T

S2
6

[6
8]

20
10

JC
Jo

ur
na

l
SP

H
bE

O
O
A

Q
U
ES

,U
IM

S
EL

M
S2

7
[6
9]

20
11

IJ
A
ES

Jo
ur
na

l
SP

C
S

O
O
A

AT
M

Sy
st
em

FL
S2

8
[7
0]

20
12

IJ
C
A

Jo
ur
na

l
SP

Ex
O
O
A

O
O

so
ftw

ar
e
sy
st
em

s
FL

S2
9

[7
1]

20
12

SI
G
SO

FT
C
on

fe
re
nc

e
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
M
LP

S3
0

[7
2]

20
12

IC
IT

eS
C
on

fe
re
nc

e
SP

C
S

O
O
A

R
ea
lB

IS
LR

S3
1

[7
3]

20
12

IJ
ER

A
Jo

ur
na

l
ER

H
bE

O
O
A

U
IM

S
A
N
N

S3
2

[7
4]

20
12

IC
SE

SS
C
on

fe
re
nc

e
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
M
FL

S3
3

[7
5]

20
12

SE
IJ

Jo
ur
na

l
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
G
M
D
H
,G

A
,P

N
N

S3
4

[7
6]

20
12

IC
SM

C
on

fe
re
nc

e
SP

C
S

O
O
A

Je
di
t,
Lo

g4
jJ

av
a

pr
oj
ec
ts

PD

S3
5

[7
7]

20
12

IJ
SC

E
Jo

ur
na

l
ER

H
bE

O
O
A

U
IM

S
M
LP

S3
6

[7
8]

20
12

A
SE

A
-D

R
BC

C
on

fe
re
nc

e
SP

Ex
O
O
A

Je
di
t,

In
du

st
ria

ls
of
tw

ar
e

pr
od

uc
t

LR
,A

N
N
,D

T

S3
7

[7
9]

20
12

IJ
C
A

Jo
ur
na

l
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
SV

M
-R

BF
S3

8
[8
0]

20
13

IW
C
A
N
N

C
on

fe
re
nc

e
SP

H
bE

O
O
A

Q
U
ES

,U
IM

S
M
LP

,R
BF

,S
V
M
,M

5P
,

En
se
m
bl
e

S3
9

[8
1]

20
13

IW
SQ

M
W
or
ks
ho

p
SP

H
bE

O
O
A

Je
di
t

PD
S4

0
[8
2]

20
13

Q
R
2M

SE
C
on

fe
re
nc

e
SP

Ex
N
I

V
irt

ua
lm

ai
nt
en

an
ce

sy
st
em

FI
T

S4
1

[8
3]

20
13

Q
R
2M

SE
C
on

fe
re
nc

e
SP

Ex
O
O
A

C+
+

op
en

so
ur
ce

sy
st
em

D
T
,B

PN
N
,S

V
M
,

Ba
gg
in
g

S4
2

[8
4]

20
13

ES
SE

Jo
ur
na

l
SP

H
bE

O
O
A

Q
U
ES

,U
IM

S
M
FL

,A
N
FI

S,
PN

N
,

R
BF

,S
V
M

190 Sara Elmidaoui et al.
Ta

bl
e
A
6
co
nt
in
ue

d

ID
R
ef
.

M
Q
1

M
Q
2

M
Q
3

M
Q
4

M
Q
5

M
Q
6

M
Q
8

Pu
bl
ic
at
io
n

ye
ar

Pu
bl
ic
at
io
n

so
ur
ce

Pu
bl
ic
at
io
n

ch
an

ne
l

R
es
ea
rc
h

ty
pe

Em
pi
ric

al
ap

pr
oa
ch

So
ftw

ar
e

ap
pl
ic
at
io
n

ty
pe

D
at
as
et

Te
ch
ni
qu

e

S4
3

[8
5]

20
13

IC
TA

C
T

Jo
ur
na

l
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
SB

LL
M
,E

LM
S4

4
[3
]

20
13

IJ
SE

K
E

Jo
ur
na

l
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
M
LR

,L
M
SR

,P
ac
eR

,
PP

R
,I
R
,R

eg
By

D
isc

,
G
PR

,M
LP

,R
BF

,A
R
,

G
R
N
N
,G

M
D
H
,S

V
R
,

FS
C
,D

S,
A
N
FI

S,
K
*,

M
5P

,L
W

L,
Ba

gg
in
g,

K
N
N
,R

EP
Tr

ee
,R

F,
ES

,
C
R
,D

Ta
bl
e,

M
5R

S4
5

[8
6]

20
13

IJ
C
T

Jo
ur
na

l
ER

H
bE

O
O
A

Q
U
ES

K
M
C
,X

M
C

S4
6

[8
7]

20
13

IS
T

Jo
ur
na

l
SP

Ex
O
O
A

D
iff
er
en
t
O
O

ap
pl
ic
at
io
n

do
m
ai
ns

Lg
R

S4
7

[2
1]

20
14

IJ
SA

E
Jo

ur
na

l
ER

H
bE

O
O
A

FL
M
,E

A
SY

G
M
D
H
,F

F3
LB

PN
,

G
R
N
N

S4
8

[8
8]

20
14

IC
R
IT

O
C
on

fe
re
nc

e
SP

H
bE

O
O
A

Lu
ce
nc

e
SS

,B
E

S4
9

[1
4]

20
14

IC
D
M
IC

C
on

fe
re
nc

e
ER

H
bE

O
O
A

Lu
ce
nc

e,
JH

ot
dr
aw

,
JE

di
t,
JT

re
ev
ie
w

N
B,

BN
,L

gR
,M

LP
,R

F

S5
0

[8
9]

20
14

IC
IC

T
C
on

fe
re
nc

e
SP

Ex
O
O
A

Pr
iv
at
e
so
ftw

ar
e
sy
st
em

FL
S5

1
[9
0]

20
14

IJ
A
RC

SS
E

Jo
ur
na

l
SP

H
bE

O
O
A

BI
S

M
L

S5
2

[9
1]

20
14

–
C
ha

pt
er

SP
H
bE

O
O
A

FL
M
,E

A
SY

,A
BP

,S
M
S,

IM
S

M
LR

,B
PN

N
,K

N
,

FF
N
N
,G

R
N
N

S5
3

[9
2]

20
14

IC
C
SA

C
on

fe
re
nc

e
SP

Ex
W

bA
D
iff
er
en
t
W
A

do
m
ai
ns

LR
S5

4
[9
3]

20
15

JS
C

Jo
ur
na

l
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S,
Vs

sp
lu
gi
n,

Pe
er
Si
m

M
LP

,R
BF

,S
V
M
,M

5P
,

D
T
,L

gR
,K

M
C
,G

EP
,

M
V
,N

L,
Bo

os
tin

g,
Ba

gg
in
g,

AV
G
,W

T
,

BT
E

S5
5

[9
4]

20
15

IC
2I
T

C
on

fe
re
nc

e
SP

H
bE

O
O
A

Q
U
ES

,U
IM

S
A
N
N
,N

eu
ro
-G

A
S5

6
[9
5]

20
15

IC
IS
M
T
T

C
on

fe
re
nc

e
SP

H
bE

O
O
A

U
IM

S
T
2F

LS
S5

7
[9
6]

20
15

PC
S

Jo
ur
na

l
ER

H
bE

O
O
A

Q
U
ES

,U
IM

S
N
eu
ro
-G

A
S5

8
[9
7]

20
16

JS
S

Jo
ur
na

l
SP

H
bE

O
O
A

Q
U
ES

,U
IM

S
FG

A
,A

FG
A
,F

PS
O
,

M
FP

SO
,F

C
SA

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 191
Ta

bl
e
A
6
co
nt
in
ue
d

ID
R
ef
.

M
Q
1

M
Q
2

M
Q
3

M
Q
4

M
Q
5

M
Q
6

M
Q
8

Pu
bl
ic
at
io
n

ye
ar

Pu
bl
ic
at
io
n

so
ur
ce

Pu
bl
ic
at
io
n

ch
an

ne
l

R
es
ea
rc
h

ty
pe

Em
pi
ric

al
ap

pr
oa
ch

So
ftw

ar
e

ap
pl
ic
at
io
n

ty
pe

D
at
as
et

Te
ch
ni
qu

e

S5
9

[1
7]

20
16

SC
EE

C
S

C
on

fe
re
nc

e
ER

H
bE

O
O
A

jT
D
S,

jW
eb

U
ni
t
,j
X
LS

,
So

un
dH

el
ix

G
A
,D

Ta
bl
e,

R
BF

,B
N
,

SM
O

S6
0

[9
8]

20
16

IJ
IC

IC
Jo

ur
na

l
ER

H
bE

O
O
A

D
ru
m
ki
t,
O
pe

nC
V
,

A
bd

er
a,

Iv
y,

Lo
g4
j,

JE
di
t
,J

U
ni
t

LR
,M

5R
,D

T,
SV

M
,K

*,
Ba

gg
in
g,

JE
R
N
,B

PN
N
,

K
N
,P

N
N
,G

M
D
H
,

G
R
N
N
,G

G
A
L

S6
1

[9
9]

20
16

IJ
SA

EM
Jo

ur
na

l
ER

H
bE

SO
A

5
ve
rs
io
ns

of
eB

ay
we

b
se
rv
ic
e
sy
st
em

SV
M
-L
IN

,S
V
M
-S
IG

,
SV

M
-R

BF
S6

2
[1
00
]

20
16

IC
R
IT

O
C
on

fe
re
nc

e
ER

H
bE

O
O
A

jT
D
S,

Jc
he

ss
,

A
rt
O
fIl
lu
sio

n,
O
rD

ru
m
bo

x

G
EP

,D
FT

,S
V
M
,L

R
,

M
LP

,R
BF

S6
3

[3
2]

20
16

JS
S

Jo
ur
na

l
ER

H
bE

O
O
A

C
am

el
,J

Ed
it,

To
m
ca
t,

JH
ot
D
ra
w

M
LR

S6
4

[1
01
]

20
16

IC
A
C
C
I

C
on

fe
re
nc

e
SP

H
bE

O
O
A

jtd
s

G
dA

S6
5

[1
02
]

20
17

H
A
SE

Sy
m
po

siu
m

ER
H
bE

O
O
A

Ec
lip

se
so
ftw

ar
e

ap
pl
ic
at
io
n

LR
,N

B,
EL

M
-L
IN

,
EL

M
-P

LY
,B

T
E,

M
V
,

SV
M
-S
IG

,E
LM

-R
BF

,
SV

M
-L
IN

,S
V
M
-R

BF
S6

6
[1
03
]

20
17

IC
A
C
C
I

C
on

fe
re
nc

e
ER

Ex
O
O
A

A
pa

ch
e
Ja

ck
ra
bb

it,
Li
gh

t
W
ei
gh

t
Ja
va

G
am

e
Li
br
ar
y

LR
,C

ub
ist

,L
as
so
,

El
as
tic

N
et
,R

F

S6
7

[1
04
]

20
17

M
SL

Jo
ur
na

l
SP

Ex
N
I

3
so
ftw

ar
e
pr
od

uc
ts

FL

192 Sara Elmidaoui et al.
Ta

bl
e
A
6
co
nt
in
ue

d

ID
R
ef
.

M
Q
1

M
Q
2

M
Q
3

M
Q
4

M
Q
5

M
Q
6

M
Q
8

Pu
bl
ic
at
io
n

ye
ar

Pu
bl
ic
at
io
n

so
ur
ce

Pu
bl
ic
at
io
n

ch
an

ne
l

R
es
ea
rc
h

ty
pe

Em
pi
ric

al
ap

pr
oa
ch

So
ftw

ar
e

ap
pl
ic
at
io
n

ty
pe

D
at
as
et

Te
ch
ni
qu

e

S6
8

[1
6]

20
17

ES
Jo

ur
na

l
ER

H
bE

O
O
A

A
rt

of
ill
us
io
n,

C
am

el
,

Ec
lip

se
,F

re
e
m
in
d,

G
am

es
,G

an
tt
,

G
eo
xy

ge
ne

,I
vy
,J

ab
re
f,

Ja
ju
k,

Ja
sp
er

re
po

rt
s,

Ja
va
m
l,
Jf
re
e
an

t,
Jf
re
e

ch
ar
t,
Jg

ap
,J

m
t,

Jn
et
pc

ap
,L

uc
en

e,
M
al
le
t,
Pa

nd
or
a,

PO
I,

Sg
lj,

Tr
ee

vi
ew

,U
ja
c,

W
or
kz
en

,X
al
an

M
LR

,M
LP

,S
V
R
,M

5P

S6
9

[1
05
]

20
17

IJ
SA

EM
Jo

ur
na

l
SP

H
bE

O
O
A

U
IM

S,
Q
U
ES

N
eu
ro

Fu
zz
y

S7
0

[1
06
]

20
17

SO
C
A

Jo
ur
na

l
ER

H
bE

SO
A

5
ve
rs
io
ns

of
eB

ay
we

b
se
rv
ic
e

SV
M
-L
IN

,S
V
M
-S
IG

,
SV

M
-R

BF
S7

1
[1
07
]

20
17

H
A
SE

Sy
m
po

siu
m

ER
H
bE

SO
A

5
ve
rs
io
ns

of
eB

ay
we

b
se
rv
ic
es

M
A
R
S,

M
LR

,S
V
M

S7
2

[1
08
]

20
17

M
aL

Te
SQ

uE
W
or
ks
ho

p
SP

H
bE

SO
A

5
ve
rs
io
ns

of
eB

ay
we

b
se
rv
ic
es

LS
SV

M
-L
IN

,
LS

SV
M
-R

BF
,

LS
SV

M
-S
IG

S7
3

[1
09
]

20
17

JI
PS

Jo
ur
na

l
ER

H
bE

O
O
A

A
rt
-o
f-I
llu

sio
n,

Sw
ee
t-
H
om

e-
3D

Lg
R
,R

F,
Ba

gg
in
g,

A
da

Bo
os
t,
M
LP

,B
N
,

N
B,

Lo
gi
tB

oo
st
,J

48
,

N
N
ge

S7
4

[1
10
]

20
17

JS
S

Jo
ur
na

l
ER

Ex
O
O
A

In
du

st
ria

ls
ys
te
m
s

PD
S7

5
[1
11
]

20
17

A
M
SE

/I
IE

TA
Jo

ur
na

l
SP

Ex
O
O
A

Pr
iv
at
e
da

ta
so
ur
ce
s

M
FL

S7
6

[1
12
]

20
18

IS
T

Jo
ur
na

l
SP

Ex
O
O
A

an
tlr

4,
ju
ni
t,
m
ap

db
,

m
cM

M
O
,m

ct
,o

ry
x,

tit
an

St
at
ist

ic
al

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 193
Ta

bl
e
A
6
co
nt
in
ue
d

ID
R
ef
.

M
Q
1

M
Q
2

M
Q
3

M
Q
4

M
Q
5

M
Q
6

M
Q
8

Pu
bl
ic
at
io
n

ye
ar

Pu
bl
ic
at
io
n

so
ur
ce

Pu
bl
ic
at
io
n

ch
an

ne
l

R
es
ea
rc
h

ty
pe

Em
pi
ric

al
ap

pr
oa
ch

So
ftw

ar
e

ap
pl
ic
at
io
n

ty
pe

D
at
as
et

Te
ch
ni
qu

e

S7
7

[1
13
]

20
18

ar
X
iv

Jo
ur
na

l
ER

H
bE

O
O
A

C
om

pa
re
,w

eb
da

v,
de

bu
g,

up
da

te
,c

or
e,

sw
t,

te
am

,p
de

,u
i,
jd
t

LR
,P

R
,L

gR
,D

T
,

SV
M
-L
IN

,S
V
M
-P

LY
,

SV
M
-R

BF
,E

LM
-L
IN

,
EL

M
-P

LY
,E

LM
-R

BF
,

LS
SV

M
-L
IN

,
LS

SV
M
-P

LY
,

LS
SV

M
-R

BF
,N

G
D
,

N
G
D
M
,B

T
E,

N
G
D
A
,

N
N
M
,M

V
E,

N
D
T
F,

N
LM

S7
8

[1
14
]

20
14

T
O
SE

M
Jo

ur
na

l
SP

Ex
O
O
A

2
pr
iv
at
e
sy
st
em

s
(t
he

se
lli
ng

of
C
D
s/
D
V
D
s
in

a
m
us
ic

sh
op

an
d
th
e

bo
ok

in
g
of

th
ea
te
r

tic
ke
ts
)

St
at
ist

ic
al

S7
9

[1
15
]

20
15

IS
T

Jo
ur
na

l
SP

Ex
O
O
A

O
O

ap
pl
ic
at
io
n
do

m
ai
n

(S
po

rt
s
ce
nt
er

ap
pl
ic
at
io
n
w
hi
ch

wa
s

cr
ea
te
d
as

pa
rt

of
th
e

M
as
te
r’s

T
he

sis
of

a
st
ud

en
t
fro

m
th
e

U
ni
ve
rs
ity

of
C
as
til
la
-L
a

M
an

ch
a)

St
at
ist

ic
al

S8
0

[1
16
]

20
15

PR
O
FE

S
C
on

fe
re
nc

e
SP

Ex
O
O
A

A
ch
un

k
of

a
sy
st
em

m
us
ic

sh
op

so
ftw

ar
e
an

d
a
ch
un

k
of

a
th
ea
te
r

tic
ke
t
re
se
rv
at
io
n
sy
st
em

im
pl
em

en
te
d
in

Ja
va
,

JH
ot
D
ra
w

St
at
ist

ic
al

194 Sara Elmidaoui et al.
Ta

bl
e
A
6
co
nt
in
ue

d

ID
R
ef
.

M
Q
1

M
Q
2

M
Q
3

M
Q
4

M
Q
5

M
Q
6

M
Q
8

Pu
bl
ic
at
io
n

ye
ar

Pu
bl
ic
at
io
n

so
ur
ce

Pu
bl
ic
at
io
n

ch
an

ne
l

R
es
ea
rc
h

ty
pe

Em
pi
ric

al
ap

pr
oa
ch

So
ftw

ar
e

ap
pl
ic
at
io
n

ty
pe

D
at
as
et

Te
ch
ni
qu

e

S8
1

[1
17
]

20
16

ES
E

Jo
ur
na

l
SP

Ex
O
O
A

2
sy
st
em

s
(a

lib
ra
ry

ap
pl
ic
at
io
n
fro

m
w
hi
ch

a
us
er

ca
n
bo

rr
ow

bo
ok

s
an

d
a
sp
or
t
ce
nt
er

ap
pl
ic
at
io
n
fro

m
w
hi
ch

us
er
s
ca
n
re
nt

se
rv
ic
es
)

St
at
ist

ic
al

S8
2

[1
18
]

20
18

ES
E

Jo
ur
na

l
SP

Ex
O
O
A

O
O

ap
pl
ic
at
io
n
do

m
ai
ns

(m
us
ic

sh
op

an
d
th
ea
te
r

tic
ke
t
re
se
rv
at
io
n

ap
pl
ic
at
io
ns
)

St
at
ist

ic
al

A
cr
on

ym
s
us
ed

in
Ta

bl
e:

•R
es
ea
rc
h
ty
pe

ac
ro
ny

m
s:
So

lu
tio

n
Pr

op
os
al

(S
P)

,E
va
lu
at
io
n
R
es
ea
rc
h
(E

R
)

•
E
m
pi
ri
ca
l

ap
pr
oa
ch

ac
ro
ny

m
s:

H
is-

to
ry
-b
as
ed

Ev
al
ua

tio
n
(H

bE
),

Ex
pe

rim
en
t
(E

x)
,

C
as
e
st
ud

y
(C

S)
•
So

ft
w
ar
e
ap

pl
ic
at
io
n
ty
pe

ac
ro
ny

m
s:

O
b-

je
ct

O
rie

nt
ed

A
pp

lic
at
io
ns

(O
O
A
),

Pr
oc
ed

ur
al

O
rie

nt
ed

A
pp

lic
at
io
ns

(P
O
A
),

W
eb

-b
as
ed

A
pp

li-
ca
tio

ns
(W

bA
),

C
om

po
ne

nt
-b
as
ed

A
pp

lic
at
io
n

(C
bA

),
Se

rv
ice

O
rie

nt
ed

A
pp

lic
at
io
ns

(S
O
A
),
N
ot

Id
en
tifi

ed
(N

I)
.

•
P
ub

lic
at
io
n
so
ur
ce

ac
ro
ny

m
s:

C
on

fe
re
nc

e
on

R
ev
er
se

En
gi
ne

er
in
g

(C
R
E)

,
In
te
rn
at
io
na

l
C
on

fe
re
nc

e
on

So
ftw

ar
e
En

gi
ne

er
in
g
&

K
no

w
l-

ed
ge

En
gi
ne

er
in
g

(S
EK

E)
,
In
te
rn
at
io
na

l
So

ft-
wa

re
M
et
ric

s
Sy

m
po

siu
m

(M
ET

R
IC

S)
,I
nt
er
na

-
tio

na
lC

on
fe
re
nc

e
on

Q
ua

lit
y
So

ftw
ar
e
(Q

SI
C
),

Eu
ro
pe

an
C
on

fe
re
nc

e
on

So
ftw

ar
e
M
ai
nt
en

an
ce

an
d

R
ee
ng

in
ee
rin

g
(C

SM
R
),

In
fo
rm

at
io
n

an
d

So
ftw

ar
e
Te

ch
no

lo
gy

(I
ST

),
In
te
rn
at
io
na

lC
on

-
fe
re
nc

e
on

So
ftw

ar
e
M
ai
nt
en

an
ce

(I
C
SM

),
So

ft-
wa

re
Q
ua

lit
y
Jo

ur
na

l(
SQ

J)
,T

he
Jo

ur
na

lo
fS

ys
-

te
m
s
&

So
ftw

ar
e
(J
SS

),
In
te
rn
at
io
na

l
C
on

fe
r-

en
ce

on
A
dv

an
ce
d

C
om

pu
tin

g
an

d
C
om

m
un

i-
ca
tio

ns
(I
C
A
C
C
),
Em

pi
ric

al
So

ftw
ar
e
En

gi
ne

er
-

in
g
(E

SE
),

IE
EE

In
te
rn
at
io
na

lS
ym

po
siu

m
on

Pa
ci
fic

R
im

D
ep

en
da

bl
e
C
om

pu
tin

g
(I
SP

R
D
C
),

In
te
rn
at
io
na

l
Jo

ur
na

l
of

C
om

pu
te
r,

El
ec
tr
ic
al
,

A
ut
om

at
io
n,

C
on

tr
ol

an
d
In
fo
rm

at
io
n
En

gi
ne

er
-

in
g
(I
JC

EA
C
IE

),I
nt
er
na

tio
na

lC
on

fe
re
nc
e
on

Se
-

m
an

tic
s,

K
no

w
le
dg

e
an

d
G
rid

(I
C
SK

G
),

W
uh

an
U
ni
ve
rs
ity

Jo
ur
na

lo
fN

at
ur
al

Sc
ien

ce
s(

W
U
JN

S)
,

In
te
rn
at
io
na

lC
on

fe
re
nc
eo

n
Co

m
pu

ta
tio

na
lI
nt
el-

lig
en

ce
an

d
So

ftw
ar
e
En

gi
ne

er
in
g
(C

IS
E)

,C
om

-
pu

tin
g
In
te
rn
at
io
na

lC
on

fe
re
nc

e
on

In
fo
rm

at
io
n

Sc
ien

ce
an

d
En

gi
ne

er
in
g
(I
CI

SE
),
SI
G
SO

FT
So

ft-
wa

re
En

gi
ne

er
in
g
N
ot
es

(S
IG

SO
FT

),
Jo

ur
na

lo
f

C
om

pu
tin

g
(J
C
),

In
te
rn
at
io
na

lJ
ou

rn
al

of
C
om

-
pu

te
r
A
pp

lic
at
io
ns

(I
JC

A
),

In
te
rn
at
io
na

lC
on

-

fe
re
nc

e
on

M
ul
ti-
M
ed

ia
an

d
In
fo
rm

at
io
n
Te

ch
-

no
lo
gy

(I
C
M
IT

),
In
te
rn
at
io
na

l
C
on

fe
re
nc

e
on

C
om

pu
te
r
an

d
In
fo
rm

at
io
n
Sc
ie
nc

e
(I
C
C
IS
),
In
-

te
rn
at
io
na

lJ
ou

rn
al

of
A
dv

an
ce
s
in

En
gi
ne

er
in
g

Sc
ie
nc

es
(I
JA

ES
),

In
te
rn
at
io
na

lC
on

fe
re
nc

e
on

In
fo
rm

at
io
n
Te

ch
no

lo
gy

an
d
e-
Se

rv
ice

s
(I
CI

Te
S)
,

In
te
rn
at
io
na

lJ
ou

rn
al

of
En

gi
ne

er
in
g
R
es
ea
rc
h

an
d
A
pp

lic
at
io
ns

(I
JE

R
A
),

In
te
rn
at
io
na

lC
on

fe
r-

en
ce

on
So

ftw
ar
e
En

gi
ne

er
in
g
an

d
Se

rv
ic
e
Sc

i-
en

ce
(I
C
SE

SS
),

So
ftw

ar
e
en

gi
ne

er
in
g:

an
in
te
r-

na
tio

na
lJ

ou
rn
al

(S
EI

J)
,I

nt
er
na

tio
na

lJ
ou

rn
al

of
So

ft
C
om

pu
tin

g
an

d
En

gi
ne
er
in
g
(I
JS

C
E)

,I
n-

te
rn
at
io
na

lW
or
ks
ho

p
on

So
ftw

ar
e
Q
ua

lit
y
an

d
M
ai
nt
ai
na

bi
lit
y
(I
W

SQ
M
),

In
te
rn
at
io
na

lC
on

fe
r-

en
ce

on
Q
ua

lit
y,

R
el
ia
bi
lit
y,

R
isk

,M
ai
nt
en

an
ce
,

an
d
Sa

fe
ty

En
gi
ne

er
in
g
(Q

R
2M

SE
),
Sp

ec
ia
lI
ss
ue

on
Em

pi
ric

al
St
ud

ie
s
in

So
ftw

ar
e
En

gi
ne

er
in
g

(E
SS

E)
,
IC

TA
C
T

Jo
ur
na

l
on

So
ft

C
om

pu
tin

g
(I
CT

AC
T)

,I
nt
er
na

tio
na

lJ
ou

rn
al

of
So

ftw
ar
e
En

-
gi
ne

er
in
g
an

d
K
no

wl
ed

ge
En

gi
ne
er
in
g
(I
JS

EK
E)

,

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 195
In
te
rn
at
io
na

lJ
ou

rn
al

of
C
om

pu
te
rs

&
Te

ch
no

l-
og

y
(I
JC

T
),

In
te
rn
at
io
na

lJ
ou

rn
al

of
Sy

st
em

A
s-

su
ra
nc

eE
ng

in
ee
rin

g
an

d
M
an

ag
em

en
t(

IJ
SA

EM
),

In
te
rn
at
io
na

lC
on

fe
re
nc

e
on

R
el
ia
bi
lit
y,

In
fo
co
m

Te
ch
no

lo
gi
es

an
d

O
pt
im

iz
at
io
n

(I
C
R
IT

O
),

In
-

te
rn
at
io
na

lC
on

fe
re
nc

e
on

D
at
a
M
in
in
g
an

d
In
-

te
lli
ge
nt

C
om

pu
tin

g
(I
C
D
M
IC

),
In
te
rn
at
io
na

l
C
on

fe
re
nc

e
on

Is
su
es

an
d

C
ha

lle
ng

es
in

In
te
l-

lig
en
t
C
om

pu
tin

g
Te

ch
ni
qu

es
(I
C
IC

T
),
In
te
rn
a-

tio
na

l
Jo

ur
na

l
of

A
dv

an
ce
d

R
es
ea
rc
h

in
C
om

-
pu

te
rS

cie
nc

e
an

d
So

ftw
ar
e
En

gi
ne
er
in
g
(I
JA

RC
-

SS
E)

,
In
te
rn
at
io
na

l
C
on

fe
re
nc

e
on

C
om

pu
ta
-

tio
na

lS
cie

nc
ea

nd
It
sA

pp
lic

at
io
ns

(I
CC

SA
),
Th

e
Jo

ur
na

lo
fS

of
t
C
om

pu
tin

g
(J
SC

),
In
te
rn
at
io
na

l
C
on

fe
re
nc

e
on

In
te
lli
ge
nt

So
ftw

ar
e
M
et
ho

do
lo
-

gi
es
,
To

ol
s,

an
d

Te
ch
ni
qu

es
(I
C
IS
M
T
T
),

Pr
o-

ce
di
a

C
om

pu
te
r
Sc

ie
nc

e
(P

C
S)
,
In
te
rn
at
io
na

l
W
or
k-
C
on

fe
re
nc

e
on

A
rt
ifi
ci
al

N
eu

ra
lN

et
wo

rk
s

(I
W

C
A
N
N
),

C
om

pu
te
r
A
pp

lic
at
io
ns

fo
r
So

ft-
wa

re
En

gi
ne

er
in
g,

D
isa

st
er

R
ec
ov
er
y,

an
d
B
us
i-

ne
ss

C
on

tin
ui
ty

(A
SE

A
-D

R
B
C
),

A
us
tr
al
as
ia
n

Jo
in
t
C
on

fe
re
nc

e
on

A
rt
ifi
ci
al

In
te
lli
ge
nc

e
(A

J-
C
A
I)
,
In
te
rn
at
io
na

l
C
on

fe
re
nc

e
on

C
on

te
m
po

-
ra
ry

C
om

pu
tin

g
(I
C
C
C
),

In
te
rn
at
io
na

lC
on

fe
r-

en
ce

on
C
om

pu
tin

g
an

d
In
fo
rm

at
io
n

Te
ch
no

l-
og
y

(I
C
2I
T
),

IE
EE

St
ud

en
ts
’
C
on

fe
re
nc

e
on

El
ec
tr
ic
al
,
El
ec
tr
on

ic
s
an

d
C
om

pu
te
r
Sc

ie
nc

e
(S
C
EE

C
S)
,I
nt
er
na

tio
na

lJ
ou

rn
al

of
In
no

va
tiv

e
C
om

pu
tin

g,
In
fo
rm

at
io
n
an

d
C
on

tr
ol

(I
JI
C
IC

),
In
te
rn
at
io
na

lC
on

fe
re
nc

e
on

R
el
ia
bi
lit
y
In
fo
co
m

Te
ch
no

lo
gi
es

an
d

O
pt
im

iz
at
io
n

(I
C
R
IT

O
),

In
-

te
rn
at
io
na

lC
on

fe
re
nc

e
on

A
dv

an
ce
s
in

C
om

pu
t-

in
g,

Co
m
m
un

ica
tio

ns
an

d
In
fo
rm

at
ics

(I
CA

CC
I)
,

In
te
rn
at
io
na

l
Sy

m
po

siu
m

on
H
ig
h

A
ss
ur
an

ce
Sy

st
em

s
En

gi
ne

er
in
g
(H

A
SE

),
M
an

ag
em

en
t
Sc

i-
en

ce
Le

tt
er
s
(M

SL
),
Ev

ol
vi
ng

Sy
st
em

:A
n
In
te
r-

di
sc
ip
lin

ar
y
Jo

ur
na

lf
or

A
dv

an
ce
d
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

(E
S)
,S

er
vi
ce

O
rie

nt
ed

C
om

pu
tin

g
an

d
A
pp

lic
at
io
ns

(S
O
C
A
),

W
or
ks
ho

p
on

M
a-

ch
in
e
Le

ar
ni
ng

Te
ch
ni
qu

es
fo
r
So

ftw
ar
e
Q
ua

lit
y

Ev
al
ua

tio
n
(M

aL
Te

SQ
uE

),
Jo

ur
na

lo
fI

nf
or
m
a-

tio
n
Pr

oc
es
sin

g
Sy

st
em

s
(J
IP

S)
,a

rX
iv

R
ep

os
i-

to
ry

of
el
ec
tr
on

ic
pr
ep

rin
ts

(a
rX

iv
),

A
C
M

Tr
an

s-
ac
tio

ns
on

So
ftw

ar
e
En

gi
ne

er
in
g
an

d
M
et
ho

d-
ol
og
y

(T
O
SE

M
),

In
te
rn
at
io
na

l
C
on

fe
re
nc

e
on

Pr
od

uc
t-
Fo

cu
se
d
So

ftw
ar
e
Pr

oc
es
s
Im

pr
ov
em

en
t

(P
RO

FE
S)
,A

ss
oc
ia
tio

n
fo
r
th
e
A
dv

an
ce
m
en
t
of

M
od

el
lin

g
an

d
Si
m
ul
at
io
n
Te

ch
ni
qu

es
in

En
te
r-

pr
ise

s/
In
te
rn
at
io
na

lI
nf
or
m
at
io
n
an

d
En

gi
ne

er
in
g

Te
ch
no

lo
gy

A
ss
oc
ia
tio

n
(A

M
SE

/I
IE

TA
).

•
Te

ch
ni
qu

e
ac
ro
ny

m
s:

Li
ne

ar
R
eg
re
ss
io
n

(L
R
),

M
ul
tip

le
Li
ne

ar
R
eg
re
ss
io
n

(M
LR

),
Lo

-
gi
st
ic

R
eg
re
ss
io
n
(L

gR
),
B
ac
kw

ar
d
El
im

in
at
io
n

(B
E)

,
St
ep
w
ise

Se
le
ct
io
n
(S
S)
,
M
ul
tip

le
A
da

p-
tiv

e
R
eg
re
ss
io
n

Sp
lin

es
(M

A
R
S)
,
Pr

oj
ec
tio

n
Pu

rs
ui
t
R
eg
re
ss
io
n
(P

PR
),

Po
ly
no

m
ia
lR

eg
re
s-

sio
n

(P
R
),

Le
as
t
M
ed

ia
n

of
Sq

ua
re
s
R
eg
re
s-

sio
n
(L

M
SR

),
Pa

ce
R
eg
re
ss
io
n
(P

ac
eR

),
Is
ot
on

ic
R
eg
re
ss
io
n
(I
R
),

R
eg
re
ss
io
n
B
y
D
isc

re
tiz

at
io
n

(R
eg
B
yD

isc
),

A
dd

iti
ve

R
eg
re
ss
io
n
(A

R
),

G
au

s-
sia

n
Pr

oc
es
s
R
eg
re
ss
io
n
(G

PR
),
Le

as
t
A
bs
ol
ut
e

Sh
rin

ka
ge

an
d
Se

le
ct
io
n
O
pe

ra
to
r
(L

as
so
),

Pr
ob

-
ab

ili
ty

D
en

sit
y

fu
nc
tio

n
(P

D
),

G
au

ss
ia
n

M
ix
-

tu
re

M
od

el
(G

M
M
),
D
isc

rim
in
an

tA
na

ly
sis

(D
A
),

W
ei
gh

te
d

Fu
nc
tio

ns
(W

F)
,
St
oc
ha

st
ic

M
od

el
(S
M
),

A
rt
ifi
ci
al

N
eu

ra
l
ne

tw
or
k

(A
N
N
),

M
ul
-

til
ay
er

Pe
rc
ep

tr
on

(M
LP

),
R
ad

ia
l
B
as
is

Fu
nc

-
tio

n
N
et
w
or
k
(R

B
F)

,P
ro
ba

bi
lis
tic

N
eu

ra
lN

et
-

w
or
k
(P

N
N
),

G
ro
up

M
et
ho

d
of

D
at
a
H
an

dl
in
g

(G
M
D
H
),

G
en

er
al

R
eg
re
ss
io
n
N
eu

ra
l
N
et
wo

rk
(G

R
N
N
),
Fe

ed
Fo

rw
ar
d
N
eu

ra
lN

et
wo

rk
(F

FN
N
),

Ba
ck

Pr
op

ag
at
io
n
N
eu

ra
lN

et
wo

rk
(B

PN
N
),

K
o-

ho
ne

n
N
et
w
or
k

(K
N
),

W
ar
d

N
eu

ra
l
N
et
w
or
k

(W
N
N
),

Fe
ed

Fo
rw

ar
d

3-
La

ye
r

B
ac
k

Pr
op

a-
ga
tio

n
N
et
w
or
k

(F
F3

LB
PN

),
Ex

tr
em

e
Le

ar
n-

in
g
M
ac
hi
ne

s
(E

LM
),

Se
ns
iti
vi
ty

B
as
ed

Li
ne
ar

Le
ar
ni
ng

M
et
ho

d
(S
B
LL

M
),

N
eu

ro
-G

en
et
ic

al
-

go
rit

hm
(N

eu
ro
-G

A
),

Fu
nc

tio
na

l
Li
nk

A
rt
ifi
-

ci
al

N
eu

ra
l
N
et
wo

rk
(F

LA
A
N
)
w
ith

G
en

et
ic

A
lg
or
ith

m
(F

G
A
),

A
da

pt
iv
e

FL
A
N
N
-G

en
et
ic

(A
FG

A
),

FL
A
N
N
-P
ar
tic

le
Sw

ar
m

O
pt
im

iz
at
io
n

(F
PS

O
),
M
od

ifi
ed

-F
LA

N
N

Pa
rt
ic
le

Sw
ar
m

O
p-

tim
iz
at
io
n
(M

FP
SO

),
FL

A
N
N
-C

lo
na

lS
el
ec
tio

n
A
lg
or
ith

m
(F

CS
A
),
EL

M
wi

th
lin

ea
r(

EL
M
-L
IN

),
EL

M
w
ith

po
ly
no

m
ia
l(

EL
M
-P

LY
),

EL
M

w
ith

R
ad

ia
lB

as
is
Fu

nc
tio

n
ke
rn
els

(E
LM

-R
BF

),
A
N
N

w
ith

Le
ve
nb

er
g

M
ar
qu

ar
dt

m
et
ho

d
(N

LM
),

G
R
N
N

wi
th

G
en

et
ic
Ad

ap
tiv

eL
ea
rn
in
g
(G

G
A
L)

,
Jo

rd
an

El
m
an

R
ec
ur
re
nt

N
et
wo

rk
(J
ER

N
),
A
N
N

w
ith

no
rm

al
ly

G
ra
di
en
t
de

sc
en
t
m
et
ho

d
(N

G
D
),

A
N
N

w
ith

G
ra
di
en
t
de

sc
en
t
w
ith

m
om

en
tu
m

(N
G
D
M
),
A
N
N
fw

ith
G
ra
di
en
td

es
ce
nt

wi
th

ad
ap

-
tiv

e
le
ar
ni
ng

ra
te

(N
G
D
A
)
m
et
ho

d,
A
N
N

w
ith

Q
ua

si-
N
ew

to
n
m
et
ho

d
(N

N
M
),
K
st
ar

(K
*)
,L

o-
ca
lly

W
eig

ht
ed

Le
ar
ni
ng

(L
W

L)
,k

-N
ea
re
st

N
eig

h-
bo

r
(I
B
K

or
K
N
N
),
N
ea
re
st
-N

ei
gh

bo
r-
lik

e
al
go

-
rit

hm
th
at

us
es

no
n-
ne

st
ed

ge
ne

ra
liz

ed
ex
em

-
pl
ar
s
(N

N
ge
),

B
ay
es
ia
n

N
et
w
or
ks

(B
N
),

D
ec
i-

sio
n
Tr

ee
(D

T
),

R
eg
re
ss
io
n
tr
ee

(R
T
),

M
5
fo
r

in
du

ci
ng

tr
ee
s
of

re
gr
es
sio

n
m
od

el
s
(M

5P
),

R
an

-
do

m
Fo

re
st

(R
F)

,
D
ec
isi
on

St
um

p
(D

S)
,
R
e-

du
ce
d
Er

ro
r
Pr

un
ed

Tr
ee

(R
EP

Tr
ee
),

D
ec
isi
on

Tr
ee

Fo
re
st

(D
FT

),
G
en
et
ic

Ex
pr
es
sio

n
pr
og

ra
m
-

m
in
g
(G

EP
),

C
as
e-
Ba

se
d
R
ea
so
ni
ng

(C
BR

),
G
e-

ne
tic

A
lg
or
ith

m
(G

A
),

G
re
ed

y
al
go

rit
hm

(G
dA

),
N
ai
ve
-B

ay
es

(N
B)

,A
gg

re
ga

tin
g
O
ne

-D
ep

en
de

nc
e

Es
tim

at
or
s
(A

O
D
E)

,
Su

pp
or
t
Ve

ct
or

M
ac
hi
ne

(S
V
M
),

Su
pp

or
t
Ve

ct
or

R
eg
re
ss
io
n
(S
V
R
),

Se
-

qu
en
tia

l
M
in
im

al
O
pt
im

iz
at
io
n

(S
M
O
),

SV
M

w
ith

ra
di
al

ba
sis

fu
nc

tio
n
ke
rn
el

(S
V
M
-R

B
F)

,
SV

M
w
ith

lin
ea
r
ke
rn
el

(S
V
M
-L
IN

),
SV

M
w
ith

sig
m
oi
d
ke
rn
el

(S
V
M
-S
IG

),
Le

as
t
Sq

ua
re

Su
p-

po
rt

Ve
ct
or

M
ac
hi
ne

(L
SS

V
M
)w

ith
lin

ea
rk

er
ne
l

(L
SS

V
M
-L
IN

),
LS

SV
M

wi
th

ra
di
al

ba
sis

fu
nc

tio
n

ke
rn
el

(L
SS

V
M
-R

B
F)

,
SV

M
w
ith

Po
ly
no

m
ia
l

K
er
ne

l(
SV

M
-P

LY
),

LS
SV

M
w
ith

sig
m
oi
d
ke
r-

ne
l(
LS

SV
M
-S
IG

),
LS

SV
M

wi
th

Po
ly
no

m
ia
lK

er
-

196 Sara Elmidaoui et al.
ne

l(
LS

SV
M
-P

LY
),

Fu
zz
y
Lo

gi
c
(F

L)
,A

da
pt
iv
e

N
eu

ro
-F
uz

zy
In
fe
re
nc

e
Sy

st
em

s
(A

N
FI

S)
,F

uz
zy

In
fe
re
nc

e
Sy

st
em

s
(F

IS
),

Ty
pe

-2
fu
zz
y

lo
gi
c

sy
st
em

(T
2F

LS
),

M
am

da
ni
-B

as
ed

Fu
zz
y
Lo

gi
c

(M
FL

),
Fu

zz
y
En

tr
op

y
Th

eo
ry

(F
ET

),
Fu

zz
y
Su

b-
tr
ac
tiv

e
C
lu
st
er
in
g
(F

SC
),

Fu
zz
y
In
te
gr
al

th
e-

or
y
(F

IT
),
D
ec
isi
on

Ta
bl
e
(D

Ta
bl
e)
,C

on
ju
nc

tiv
e

R
ul
e
Le

ar
ne

r
(C

R
),
M
5
R
ul
es

(M
5R

),
K
-M

ea
ns

C
lu
st
er
in
g
al
go

rit
hm

(K
M
C
),

X
-M

ea
ns

C
lu
st
er
-

in
g
al
go
rit

hm
(X

M
C
),
En

se
m
bl
e
Se
le
ct
io
n
(E

S)
,

Av
er
ag

e-
ba

se
d
en

se
m
bl
e
(A

V
G
),

W
ei
gh

te
d-
ba

se
d

en
se
m
bl
e
(W

T
),

B
es
t-
in
-t
ra
in
in
g-
ba

se
d
en

se
m
-

bl
e

(B
T
E)

,
M
aj
or
ity

-v
ot
in
g

en
se
m
bl
e

(M
V
),

N
on

-li
ne

ar
en

se
m
bl
e
(N

L)
,N

on
lin

ea
r
En

se
m
bl
e

D
ec
isi
on

Tr
ee

Fo
re
st

(N
D
TF

),
Ad

ap
tiv

eB
oo

st
in
g

(A
da

Bo
os
t)
.

•
D
at
as
et

ac
ro
ny

m
s :

U
IM

S
(U

se
r
In
te
rf
ac
e

M
an

ag
em

en
t
Sy

st
em

),
Q
U
ES

(Q
ua

lit
y
Ev

al
ua

-

tio
n
Sy

st
em

),
V
SS

PL
U
G
IN

(V
isu

al
So

ur
ce

Sa
fe

PL
U
G
IN

),
Pe

er
Si
m

(P
ee
r-
to
-P
ee
r
Si
m
ul
at
or
),

M
IS

(M
ed

ic
al

im
ag

in
g
sy
st
em

),
FL

M
(F

ile
Le

t-
te
r
M
on

ito
rin

g
Sy

st
em

),
EA

SY
(E

A
SY

C
la
ss
es

O
nl
in
e
Se

rv
ic
es

co
lle

ct
io
n)
,S

M
S
(S
tu
de

nt
M
an

-
ag

em
en
t
Sy

st
em

),
IM

S
(I
nv

en
to
ry

M
an

ag
em

en
t

Sy
st
em

)
an

d
A
PB

(A
ng

el
bi
ll
pr
in
tin

g)
,B

an
k

In
fo
rm

at
io
n
Sy

st
em

(B
IS
).

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 197

Table A7. Distribution of predictors used as independent variables

Predictors Supported studies
of
studies
(percent)

Chidamber and Kemerer (C&K) measures, such as: cou-
pling between object (CBO), depth of inheritance tree (DIT),
number of children (NOC), weighted methods per Class (WMC),
response for a class (RFC), lack of cohesion in methods (LCOM)

S2, S6, S8, S9, S14, S16,
S19, S21, S23, S24, S26, S28,
S29, S31, S32, S34, S33, S35,
S37, S38, S41, S42, S43, S44,
S45, S46, S47, S48, S49, S52,
S54, S55, S56, S57, S58, S59,
S60, S61, S62, S64, S65, S66,
S68, S69, S70, S71, S72, S73,
S75, S77

50 (61%)

Li and Henry (L&H) measures, such as: message passing
coupling (MPC), data abstraction coupling (DAC), number of
local methods (NOM), SIZE1 (LOC calculated by counting the
number of semicolons in a class), SIZE2 (Number of properties
including the attributes and methods defined in a class)

S2, S6, S9, S14, S19, S21,
S23, S24, S26, S29, S31, S32,
S33, S35, S37, S38, S42, S43,
S44, S45, S46, S47, S48, S49,
S54, S56, S57, S58, S61, S65,
S69, S70, S71

33 (40%)

Class diagram measures, such as measures related to:
– method level such as: number of methods, average number of
methods per class, number of foreign methods accessed, number
of local methods accessed, number of constructors, etc. – at-
tribute level such as: number of attributes, average number of
attributes per class, number of attributes added, etc. – class
level such as: number of classes, classes changed, classes added,
etc. – relationships such as: number of generalisations, number of
associations, number of aggregations, number of dependencies.

S3, S4, S7, S8, S12, S16,
S22, S27, S36, S39, S41, S46,
S48, S49, S51, S59, S62, S65,
S66, S68, S72, S73, S74, S77

24 (29%)

Source code size measures, different lines of code (LOC)
measures, such as: source lines of code, logical lines of code, total
lines of code, etc.

S7, S8, S10, S15, S20, S34,
S36, S39, S41, S46, S48, S49,
S62, S65, S66, S68, S73, S74,
S76, S77

20 (24%)

McCabe complexity measure (McCabe) S1, S20, S27, S34, S36, S39,
S48, S49, S50, S52, S61, S70,
S71, S72, S73, S74, S76

17 (21%)

Software quality attributes, such as: understandability, doc-
umentation quality, readability of source code, testability, etc.

S11, S17, S18, S25, S40, S50,
S63, S67

8 (10%)

Martin’s measures, such as: abstractness (A), the distance
from the main sequence (D), and the normalized distance from
the main sequence (Dn), etc.

S48, S49, S59, S60, S63, S66 6 (7%)

Halstead measures, such as: number of distinct operators,
number of distinct operands, total number of occurrences of
operators, total number of occurrences of operands, length (N)
of a program, program volume (V), etc.

S8, S10, S15, S48, S49 5 (6%)

Brito e Abreu and Carapuça (BA&C) measures, such as:
method hiding factor, polymorphism factor, etc.

S8, S16, S62, S64, S68 5 (6%)

198 Sara Elmidaoui et al.

Table A7 continued

Predictors Supported studies
of
studies
(percent)

Factors such as: origin of UML diagrams, level of detail of UML
diagrams, method (analysis models and source code, and source
code alone), models (software models plus source code without
comment), ability, and source code without comments.

S78, S79, S80, S81, S82 5 (6%)

Coding rule measures, such as: number of serious coding rule
violations, number of suspicious coding rule violations, number
of coding style issues, etc.

S34, S36, S74 3 (4%)

QMOOD measures, such as: data access metric (DAM), mea-
sure of aggression (MOA), method of functional abstraction
(MFA), etc.

S59, S60, S66 3 (4%)

Maintainability index (MI) measure S7, S52 2 (2%)
Web-based application (WbA) measures, such as: total
web page, server script, web page control structure, client page,
web control coupling, server page, etc. class diagram measures

S5, S53 2(2%)

Jensen measures S10, S15 2 (2%)
Effort measures, such as: coding effort, design effort, require-
ment effort, effort integration, ratio of requirement effort and
design effort to coding effort (RDCRatio), etc.

S7, S30 2 (2%)

Module level measures, such as: percentage of modules
changed, module level information flow, etc.

S1, S7 2 (2%)

Sequence diagram measures, such as measures related to:
scenarios (number of scenarios), – messages (average number of
return messages, weighted messages between objects, average
number of the directly dispatched messages, etc. – conditions
(average number of condition messages)

S4 1 (1%)

Lorenz and Kidd (L&K) measures, such as: average method
size and coupling factor, etc.

S8 1 (1%)

Fault measures, such as: number of detected faults and number
of corrected faults, etc.

S13 1 (1%)

Database measures, such as: number of data base connections
and the schema complexity to comment ratio, etc.

S52 1 (1%)

Table A8. Acronyms of successful predictors

Acronym Description Acronym Description
ACLOC Average class lines of code NAssoc Number of associations
AIF Attribute inheritance factor NC Number of classes
AMLOC Average method lines of code NClienP Number of client pages
AVPATHS Average depth of paths NHD Normalized Hamming distance
B Number of bugs (Halstead) NEWLCOM3 New lack of cohesion in methods 3
Ca Afferent coupling NPM Number of Public methods
CAMC Cohesion among methods in a class NDep Number of dependencies

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 199

Table A8 continued

Acronym Description Acronym Description
CBO_IUB Coupling between object (CBO) – Is

used by attributes or methods of
class

NGen Number of generalisation

CBO_U CBO – Using by the methods of
class

NGenH Number of generalisation hierarchies

CC Cyclomatic complexity NM Number of methods
CDENS Control DENSity NOC Number of children
Ce Efferent coupling NODBC Number of data base connections
CLOC Comments lines of code NOM Number of local methods
ClS Client scripts NPAVGC Average number of parameters per

method
COF Coupling factor NServP Number of server pages
Coh Cohesion NWebP Number of web pages
Command Number of commands OCmax Maximum operation complexity
CONS Number of constructors OCMEC Other class method export coupling
CSA Average number of attributes per

class
OL2 The average strength of the

attribute
CSO Average number of methods per

class
OSAVG Average complexity per method

Cyclic Number of cyclic dependencies OSmax Maximum operation size
DAC Data abstraction coupling PCCC Path connectivity class cohesion
DAM Data access metric POF Polymorphism factor
DCd Degree of cohesion-direct PPPC Percentage public/protected

members
DCi Degree of cohesion-indirect Query Number of query
Dcy Number of dependencies RFC Response for a class
Dcy* Number of transitive dependencies RDCRatio Ratio of Requirement Effort and

Design Effort to Coding Effort
DIT Depth of inheritance tree SCCR Schema complexity to comment

Ratio
Inner* Number of inner classes SCOM Class cohesion metric
LCC Loose class cohesion SIZE1/LOC Line of code
LCOM Lack of cohesion in methods SIZE2 Number of Properties
LLOC Logical lines of code SLoc Source lines of code
LSCC Low-level design similarity-based

class cohesion
SS Server scripts

MaxDIT Maximum depth of inheritance tree STAT Number of STATements
MI Maintainability index SWMC Average weighted methods per class
MIF Method inheritance factor TCC Total cyclomatic complexity
MOA Measure of aggregation TCC Tight class cohesion
MPC Message passing coupling TL Total languages
n Vocabulary size (Halstead) TLOC Total LOC
N Program length (Halstead) TWP Total web page
NA/NOA Number of attributes TWPDC Total web page data coupling
NAA Number of attributes added TWPR Total web page relationships
NAgg Number of aggregations V Program volume (Halstead)
NAggH Number of aggregations hierarchies WMC Weighted methods per Class
NAggR Number of aggregation relationships WO WebObject

200 Sara Elmidaoui et al.

Table A9. Prediction techniques and accuracy criteria per dependent variable topics

Topic ID Prediction technique
per category Accuracy criteria

Change

S2 ANN R-squared, R, MSE, MAE,
MinAE, MaxAE

S6 BN, DT, RA
MaxMRE, MMRE, Pred(25),
Pred(30), sum Ab. Res,
med. Ab. Res, Std. Ab. Res

S9 RA, ANN, DR, SVM/R
MaxMRE, MMRE, Pred(25),
Pred(30), sum ARE, Med. ARE,
Std. ARE

S10 GMM, SVM/R, DT WAP, recall
S14 ANN MARE, R, MRE
S15 ANN, SVM/R, DT, BN, CBR WAP, WARec
S19 ANN, RA RMSE
S23 ANN, FNF MARE, MRE, R
S24 SVM/R MARE, MRE, R

S26 ANN
MaxMRE, MMRE, Pred(25),
Pred(30), Sum Ab. Res,
Med. Ab. Res, Std. Ab. Res

S29 ANN R-squared, R, MAE, minAE,
maxAE

S30 RA –
S31 ANN –
S32 FNF RMSE, NRMSE, MMRE

S33 ANN, EA MaxMRE, MMRE, MARE,
Pred(25), Pred(30), Pred(75)

S35 ANN R, MAE
S37 SVM/R MARE, MRE, R
S38 ANN, SVM/R, DT, EM MMRE, Std. MRE, Pred(30)

S42 FNF, ANN, SVM/R NRMSE, MMRE, Pred(25),
Pred(30).

S43 ANN
MaxMRE, MMRE, Pred(25),
Pred(30), Sum Ab. Res.,
Med. Ab. Res., Std. Ab. Res.

S44 RA, ANN,SVM/R, DT, FNF,
CBR, IRB

MaxMRE, MMRE, Pred(25),
Pred(30), Sum ARE, Med. ARE,
Std. ARE, RMSE

S45 CM Qout, Nit, cut-off

S47 ANN MMRE, Pred(25), Pred(30),
% under, % over

S48 RA R-squared, R
S49 RA, ANN, BN Recall, Precision, ROC area
S52 RA, ANN MaxMRE, MMRE, Pred(25)

S54 RA, ANN, SVM/R, DT, EA, CM MMRE, Std. MRE, Pred(30),
CCR, AUC

S55 ANN MMRE, MARE, MAE, RMSE,
SEM

S57 ANN MAE, MARE, RMSE, SEM,
MMRE, e, é

S58 ANN MAE, R, MMRE, e, é
S59 ANN, SVM/R, BN, EA, IRB MAE, RMSE

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 201

Table A9 continued

Topic ID Prediction technique
per category Accuracy criteria

Change

S60 RA, ANN, SVM/R, DT, FNF,
CBR, IRB MAE, RMSE, Pred(25), Pred(75)

S61 SVM/R Precision, Recall, F-measure,
Specificity, Accuracy, AUC

S62 RA, ANN, SVM/R, DT, EA MAE, RMSE
S64 EA –
S65 RA, ANN, SVM/R, EM, BN Accuracy, AUC
S66 RA MAE, RMSE, Accuracy
S69 FNF Performance index
S70 SVM/R F-measure, Accuracy
S71 RA, SVM/R Accuracy, Recall, Precision
S72 SVM/R F-measure, Accuracy

S73 RA, ANN, DT, BN, CBR Sensitivity, Specificity, ROC,
cutoff

S74 PD –
S77 RA, ANN, SVM/R, DT Accuracy, F-measure

Expert opinion

S11, S18, S20,
S25, S27, S28,
S50, S67

FNF –

S36 RA, ANN, DT MAE

S41 ANN, DT, SVM/R TPR, FPR, Precision, Recall,
F1 score, AUC

Maintainability
index

S8 RA R-squared, R, adjusted
R-squared, Std. EE

S16 RA R-squared, MARE, MMRE
S39 PF R
S40 FNF –
S48 RA R-squared, R
S68 RA, ANN, DT, SVM/R AOC, StdMRE, MMRE, Pred(30)
S75 FNF –
S76 Statistical Rs

Maintainability
level

S4 DA Accuracy

S22 RA R-squared, R, adjusted
R-squared, Std.EE,

S51, S53 RA Rs
S78, S80, S82 Statistical –

Maintainability
time

S3 RA MMRE, qMRE, Pred(30)
S5 WF, DA –
S7 RA R-squared
S12 RA –
S17 CBR –
S78, S80, S82 Statistical –

Accuracy criteria acronyms: Magnitude of Relative Error (MRE), Mean MRE (MMRE), quartiles of
MRE distribution (qMRE), Standard Deviation of MRE (Std.MRE), Coefficient of correlation R, Coefficient
of determination (R-squared), Percentage Relative Error Deviation (Pred(0.25), Pred(0.30), Pred(0.75)),
Mean Absolute Error (MAE), Minimum AE (MinAE), Maximum AE (MaxAE), Coefficient of correlation (R),
Root Mean Square Error (RMSE), Normalized RMSE (NRMSE), Standard Error of the Estimate (Std.EE),

202 Sara Elmidaoui et al.

Weighted Average Precision (WAP), Area Under Curve (AUC), True Positive Rate (TPR), False Positive
Rate (FPR), Weighted Average Recall (WARec), Spearman’s coefficient of correlation (Rs), Cut-off factors
(cut-off), Mean Square Error (MSE), Mean Absolute Relative Error (MARE), Roc Area (ROC), Sum of
Absolute Residual (Sum Ab. Res), Standard Deviation of Absolute Residual (Std. Ab. Res), Median of
Absolute Residual (Med. Ab. Res), Standard Error of the Mean (SEM). Area Over Curve (AOC).

e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 203–226, DOI 10.5277/e-Inf190106

Measuring Goal-Oriented Requirements Language
Actor Stability

Jameleddine Hassine∗, Mohammad Alshayeb∗
∗Information and Computer Science Department, King Fahd University of Petroleum and Minerals

jhassine@kfupm.edu.sa, Alshayeb@kfupm.edu.sa

Abstract
Background: Goal models describe interests, preferences, intentions, desired goals and strategies
of intervening stakeholders during the early requirements engineering stage. When capturing the
requirements of real-world systems such as socio-technical systems, the produced goal models evolve
quickly to become large and complex. Hence, gaining a sufficient level of understanding of such
goal models, to perform maintenance tasks, becomes more challenging. Metric-based approaches
have shown good potential in improving software designs and making them more understandable
and easier to maintain.
Aim: In this paper, we propose a novel metric to measure GRL (Goal-oriented Requirements
Language) “actor stability” that provides a quantitative indicator of the actor maintainability.
Method: We first, validate the proposed metric theoretically then empirically using a case study
of a GRL model describing the fostering of the relationship between the university and its alumni.
Results: The proposed actor stability metric is found to have significant negative correlation with
the maintenance effort of GRL models.
Conclusions:Our results show that the proposed metric is a good indicator of GRL actors’ stability.

Keywords: Goal models, Goal-oriented Requirements Language (GRL), stability, metrics,
maintenance

1. Introduction

Software systems must evolve to meet customer
needs, business environment, technologies and
regulations. Several studies have shown that re-
quirements evolution can significantly affect over-
all project costs and schedule [1, 2]. Require-
ments evolution management has emerged as
one important topic in requirements engineer-
ing research [3]. ISO/IEC 25010 [4] specified
eight characteristics for software product exter-
nal quality, one of which is maintainability which
contains modifiability is a sub-characteristic.
Modifiability is a combination of changeabil-
ity and stability. Stability is the ability of the
software to remain stable when modified. Main-
tainable software tends to have a better estima-
tion of the change cost and better prediction of
the resulting quality [1].

Goal models are used in order to make
sure that stakeholders’ interests and priorities
are met in the early requirements engineer-
ing stages. Goal modeling is an effective ap-
proach to represent and reason about stake-
holders’ goals using models. Over the past two
decades, numerous goal-oriented modeling lan-
guages and approaches have been introduced
(e.g. i* [5], NFR Framework [6], Keep All Ob-
jects Satisfied (KAOS) [7], TROPOS [8] and the
Goal-oriented Requirements Language (GRL) [9]
part of the ITU-T standard User Requirements
Notation (URN)). In addition, there were few
attempts to propose domain-specific languages,
such as DSML/GoalML [10], DSL/KAOS [11]
and ARMOR/KAOS [12].

As goal models grow in size and complex-
ity (e.g. large socio-technical systems having
many interdependent stakeholders), they be-

Submitted: 11 November 2018; Revised: 26 September 2019; Accepted: 26 September 2019; Available online: 30 October 2019

204 Jameleddine Hassine, Mohammad Alshayeb

come difficult to maintain. To address this chal-
lenge, numerous goal-oriented metrics-based tech-
niques [13–18] have been proposed. These tech-
niques vary in their targeted notation, their aim,
their selected analysis (e.g. quantitative, qualita-
tive, hybrid) and their targeted scope (e.g. global
(targeting the entire goal model), local (focusing
on one specific actor or path)).

Goals are known to be much more stable than
requirements [19, 20]. More specifically, the higher
level the goal is, the more stable it is [19]. However,
in a fast-changing world, goal models are deemed
to evolve to meet constant changes of business
needs and stakeholders’ intentions. A goal model
requires maintenance when there is a shift in
stakeholder’s motivations, e.g. adoption of new
goals or ceasing to support existing goals. Goals
may become undesirable or infeasible to realize,
e.g. goals might become too costly to realize or
non-compliant with new regulations [21]. Hence,
an outdated representation of stakeholders’ inten-
tions can easily lead to systems that do not fulfill
their purpose. According to a recent survey by
Horkoff et al. [22], interest in adaptation/variabili-
ty/evolution of goal models has increased recently
compared to other goal-oriented requirements
engineering (GORE) topics. Although, there is
a variety of empirical evaluations in the area of
modeling languages in general (assessing different
qualities, e.g. syntactic, semantic, pragmatic, com-
pleteness, comprehensibility, complexity, etc.),
the majority of the studies in GORE [23] focus on
providing empirical evidence of the applicability
of goal-oriented notations for specific domains [24],
such as collaborative systems [25], socio-technical
systems [26] and knowledge transfer [27].

Most of the existing work that addresses
the evolution of goal models, focuses mainly on
handling inconsistencies (such as tolerating, di-
agnosing and tracking inconsistencies) [28–31]
and modeling and analysis of evolution over
time [32, 33]. However, both approaches intro-
duced in [32] and [33] consider only the evolu-
tion of goals’ satisfactions values (qualitative and
quantitative) and do not discuss the evolution of
the goal model structure.

Measuring stability provides better estima-
tion of the cost and effort and better prediction of

the software quality [34]. Instable software tends
to increase maintenance cost; in some cases, the
maintenance cost may reach up to 75% of the
software total cost [1, 2]. Stable software, on the
other hand, reduces maintenance cost. We believe
that the design of a GRL actor stability metric
would provide information about GRL actors and
their evolution; which will provide control over
actor-specific change amplification. Furthermore,
measuring GRL actor stability gives an indicator
of the GRL actor and model maintainability since
stability is directly related to maintainability [4].

The main motivation of this paper is to pro-
pose a metric to support the maintainability of
goal models during the requirements modeling
and analysis phase. In particular, we focus on
measuring quantitatively the stability of actors
across many versions of the goal model. This
paper provides the following contributions:
– Propose a novel metric to measure GRL actor

stability. To the best of our knowledge, no
goal-based stability metrics were introduced
in the literature.

– Validate theoretically and empirically the pro-
posed GRL-based actor stability metric.

– Provide a foundation for systematic assess-
ment of GRL actor stability with respect to
the many changes undergone by GRL models
during the development life cycle, e.g. model
refinement, validation, and maintenance.
The remainder of this paper is organized as

follows. In Section 2, we review the current state
of the art. Section 3 introduces briefly the GRL
language. Our proposed actor stability metric is
presented in Section 4. In Section 5, we provide
theoretical and empirical validation of the pro-
posed metric and we discuss the possible threats
to validity. Section 6 discusses the interpretation
and benefits of the proposed metrics. Finally,
conclusions and future work are presented in
Section 7.

2. Related work

In this section, we review software stability met-
rics, goal models and requirements stability mea-
surements.

Measuring Goal-Oriented Requirements Language Actor Stability 205

2.1. Software stability

Researchers proposed stability metrics at sys-
tem [35–39], model [40], architecture [41–44] and
class levels [38, 45–47]. Classes in object-oriented
(OO) systems form the basic building blocks and
thus they are the most related stability metrics to
the metric proposed in this paper as we propose
a stability metric at actor level, which is also the
basic building block for GRL models, hence, we
discuss these metrics in details.

Li et al. [38] proposed the “Class Implementa-
tion Instability”(CII) metric to measure the evo-
lutionary change in the implementation of a class.
The authors in [38] measure class instability by
measuring the lines of code added, deleted, or
modified between two versions. CII metric is not
normalized; therefore, its value has no upper or
lower limit. Grosser et al. [45] proposed a met-
ric to measure the class stability based on the
method interface; the class is considered stable
if the method interfaces are unchanged between
versions. Hence, the metric measures the number
of methods whose interface (signature) has not
been changed between two versions regardless
of the changes occurred to the method bodies.
According to Grosser et al. [45], the class is fully
stable when all method signatures available in
one version are available in the other version.
On the other hand, the class is considered fully
instable, when none of the method signatures re-
main unchanged between the two versions. This
metric is normalized and yields a value between
0 and 1. Ratiu et al. [46] proposed a class sta-
bility metric that uses the number of methods
in a class between two versions. According to
Ratiu et al. [46] the class can be either stable
or instable, i.e. the value of the metric can be
either 0 for instable or 1 for stable classes. A class
is stable when the number of methods between
two versions remain is unchanged; the class is
instable when there is a change in the number
of methods between two versions. Alshayeb et
al. [47] proposed a Class Stability Metric (CSM)
to measure Object-Oriented (OO) class stability.
The authors [47] analyzed the OO class proper-
ties and identified eight class properties that af-
fect class stability. These properties are: method

access-level, method code, method signature,
class variable access-level, class variable, class
access-level, class interface name and inherited
class name. For each property, the authors [47]
measure the extent of change between two ver-
sions by measuring the unchanged properties.
The class stability is measured by aggregating
the individual stability values for all the prop-
erties. CSM is normalized and hence the value
of the metric can be between 0 (fully instable)
and 1 (fully stable).

There are three approaches to defining soft-
ware systems’ stability for model or code levels.
The first approach is that the software system
is stable if no changes are made to the software
artifact being measured. Thus, the software is
fully stable when the original and the subse-
quent version are identical [48]. The second ap-
proach considers the software system as stable
if it avoids addition of new artifacts or modifica-
tion of existing ones, thus deletion is considered
as modification [34]. The third approach allows
additions to the existing software system. Thus,
the software is considered fully stable when there
are no changes to the existing artifacts regard-
less of the additions that might be made to the
system [49]. In this paper, we adopt the third
stability definition when defining the proposed
metric.

2.2. Goal models measurement

There is a growing body of literature on goal-ori-
ented metrics [5, 7, 13–16, 18, 50–52]. Kaiya et
al. [17] proposed quality metrics (introduced as
part of the AGORA (Attributed Goal-oriented
Requirements Analysis) approach) to measure
correctness, unambiguity, consistency, verifiabil-
ity, modifiability, traceability, and completeness
of AND-OR goal graphs according to a stake-
holder preference matrix. The proposed metrics
are global and do not consider dependencies be-
tween intervening actors (used to describe stake-
holders and systems in goal models). Franch and
Maiden [13] introduced metrics to quantify i*
Strategic Dependencies (SD) [5] models, that can
be used to help choosing the most appropriate
Commercial Off-The-Shelf (COTS) components.

206 Jameleddine Hassine, Mohammad Alshayeb

These quantitative metrics are based on a catego-
rization of the different types of strategic depen-
dencies into duplicated and non-duplicated, hid-
den and non-hidden, resource and non-resource,
etc. The resulting metrics are then applied to
measure six system properties, namely, Diversity,
Vulnerability, Packaging, Self-Containment, Uni-
formity, and Connectivity. In Franch et al. [14],
i* SD actors and dependencies are categorized
into sorts, e.g. human/computer, goal/task, etc.
The proposed framework [14] implements three
structural metrics, aiming to assess system prop-
erties, such as privacy, accuracy and efficiency.
The proposed framework supports both global
and local metrics and takes into account actor
and dependency weights (i.e. importance val-
ues). Later, the approaches introduced in [13]
and [14], have been applied by Grau et al. [16, 18]
to assess the effectiveness of alternative archi-
tectures. In order to evaluate an architectural
property, the authors proposed a coupling met-
ric over i* SD models. Coupling is measured
by the number of incoming and outgoing de-
pendencies (multiplied by a weight factor rela-
tive to each actor) an actor is associated with.
To measure model predictability, Franch [15]
has proposed a framework that considers both
i* SD and SR (Strategic Rationale) models.
The predictability metric, expressed in Object
Constraint Language (OCL), can be local or
global and may require expert judgment. More
recently, Franch [51] has proposed a method
based on system domain analysis for defining
metrics in i* using the iMDF framework. Es-
pada et al. [52] proposed quantitative metrics
for evaluating the complexity and the complete-
ness of KAOS [7] goal models. The authors used
the Goal-Question-Metric (GQM) approach [50].
However, their approach does not consider de-
pendencies between KAOS agents. Gralha et
al. [53] proposed a set of metrics to measure
and analyze complexity and completeness of
goal models. In the GRL [9] context, Hassine
and Alshayeb [54], proposed a structural metric
to measure actor external dependencies (AED).
Furthermore, jUCMNav [55] tool (GRL mod-
eling and analysis framework) captures many
simple structural GRL metrics (e.g. number of

actors, goals, tasks, intentional elements, inten-
tional links, etc.) and allows for the definition
of additional metrics using OCL.

In this paper, we extend the set of existing
GRL metrics [54, 55] by introducing a novel
metric to measure GRL actor stability. Our pro-
posed metric is (1) structural in the sense that
it depends only on the connectivity of a given
GRL model and not on its semantic, (2) local
since it is applied at the actor level rather than
the entire GRL model, and (3) quantitative since
it measures the degree of actor stability with
respect to changes a GRL model can undergo,
e.g. model refinement and maintenance.

2.3. Requirements stability measurement

Many metrics have been proposed to understand
the sources, frequencies and types of require-
ments evolution. Lam and Shankararaman [56]
proposed a change volatility metric to measure
the number or proportion of changes, within
a specified period. Change volatility [56] helps
assess the stability of a system. A high-risk re-
quirement may be characterized by a high-level
change volatility. Anderson and Felici [57] pro-
posed the Requirements Maturity Index (RMI),
a metric used to quantify the readiness of require-
ments. The RMI is computed as follows:

RMI = RT − RC
RT

where RT is the total number of software re-
quirements in the current release and RC is
the number of requirements changes, i.e. added,
deleted or modified requirements, allocated to
the current release. It is worth noting that RMI
metric is sensitive to requirements change in suc-
cessive releases, but it does not take into account
historical information about change. To address
this issue Anderson and Felici [58] refined RMI
by introducing the Requirements Stability In-
dex (RSI) (a metric used to measure the extent
of requirements stability and the frequency of
changes to requirements) and the Historical Re-
quirements Maturity Index (HRMI). RSI takes
into account CRC (the cumulative number of

Measuring Goal-Oriented Requirements Language Actor Stability 207

requirements changes) and is defined as follows:

RSI = RT − CRC
RT

HRMI takes into consideration ARC (the av-
erage number of requirement changes) and is
defined as follows:

HRMI = RT −ARC
RT

The authors [57] claimed that HRMI are less
sensitive than RMI to changes over consecutive
releases. Stark et al. [58] characterized require-
ments volatility as additions to the delivery con-
tent, deletions from the delivery content and
changes in scope to an agreed-upon requirement.
More recently, AbuHassan and Alshayeb [40]
proposed a suite of stability metrics for UML
use case models, UML sequence diagrams and
UML class diagrams. However, in the context
of goal-oriented languages and to the best of
our knowledge, no stability metrics have been
proposed. In this paper, we aim to fill this gap by
proposing a novel metric to measure GRL “actor
stability” that provides a quantitative indicator
of the actor maintainability, allowing for a better
estimation of GRL models change.

3. GRL in a nutshell

TheGoal-orientedRequirements Language (GRL)
[9] is an ITU-T standard visual goal modeling
language used to model stakeholders’ intentions,
business goals and non-functional requirements.
GRL is based on i* [5] and the NFR framework [6].
In what follows, we briefly introduce the different
GRL constructs.

3.1. GRL actors

An actor (illustrated as), where the name of
the actor reference is shown as a label next to
a stickman icon on the top-left side of the dashed
ellipse) represents an entity that has intentions
and carries out actions to achieve its goals by

exercising its know-how. Actors are often used
to represent stakeholders as well as systems.

3.2. GRL intentional elements and
indicators

There are five different types of intentional ele-
ments:
1. Goal (illustrated as): A (hard) Goal (ei-

ther a business goal or a system goal) is a con-
dition or state of affairs in the world that the
stakeholders would like to achieve.

2. Softgoal (illustrated as): is a condition
or state of affairs in the world that the ac-
tor would like to achieve, but there are no
clear-cut criteria for whether the condition
can be entirely achieved. However, it can be
sufficiently achieved. Softgoals are often used
to describe non-functional aspects such as
availability, security, etc.

3. Task (illustrated as): states a particular
way of performing something. Tasks can be
considered as the operations, processes, data
representations, structuring and constraints
used to meet the needs stated in the goals
and softgoals of the target system.

4. Resource (illustrated as): is a physical or
informational entity.

5. Belief (illustrated as): used to represent
design rationale. Intentional elements may be
included in actor definitions and they can be
linked to each other in different ways. In ad-
dition to intentional elements, GRL defines
indicators (illustrated as) to describe
a qualitative or quantitative real-world mea-
surement.

3.3. GRL links

There are five types of GRL links [9]:
1. Contributions (illustrated as

): describe
how a source intentional element or source
indicator contributes to the satisfaction of
a destination intentional element. A contri-
bution has a qualitative level and an optional
quantitative value.

2. Correlations (illustrated as

): express
knowledge about interactions between inten-

208 Jameleddine Hassine, Mohammad Alshayeb

tional elements. A correlation link is similar
to a contribution link except that the correla-
tion is not an explicit desire but is a side-effect
and that correlations are only used with in-
tentional elements and not with indicators.

3. Dependencies (illustrated as

): enable

reasoning about how actor definitions depend
on each other to achieve their desired goals.
It describes how a source actor (the depen-
der) depends on a destination actor (the de-
pendee).

4. Decompositions (illustrated as): provide
the ability to define what source intentional
elements need to be satisfied in order for a tar-
get intentional element to be satisfied. There
is no ordering between the decomposing ele-
ments. A decomposition link can be one of
the following:
– AND decomposition: The satisfaction of

each of the sub-intentional elements is
necessary to achieve the target.

– XOR decomposition: The satisfaction of
one and only one of the sub-intentional el-
ements is necessary to achieve the target.

– OR decomposition: The satisfaction of
one of the sub-intentional elements is suf-
ficient to achieve the target, but many
sub-intentional elements can be satisfied.

5. Belief links (illustrated as): used to con-
nect beliefs to GRL intentional elements.

3.4. Qualitative contributions

The qualitative contribution of a source inten-
tional element or indicator to a destination inten-
tional element can be one of the following values
based on the degree (positive or negative) and
sufficiency of the contribution to the satisfaction
of the destination intentional element:
1. Make (illustrated as): the contribution is

positive and sufficient.
2. Help (illustrated as): the contribution is

positive but not sufficient.
3. SomePositive (illustrated as): the contribu-

tion is positive, but the extent of the contri-
bution is unknown.

4. Unknown (no symbol on the link): there is
some contribution, but the extent and the de-

gree (positive or negative) of the contribution
is unknown.

5. SomeNegative (illustrated as): the contri-
bution is negative, but the extent of the con-
tribution is unknown.

6. Hurt (illustrated as): the contribution is
negative but not sufficient.

7. Break (illustrated as): the contribution of
the contributing element is negative and suf-
ficient.
It is worth noting that GRL is permissive in

how intentional elements can be linked to each
other, contrary to i* [5] which imposes restrictive
usage of relationships (e.g. a contribution link
cannot have a task as a destination).

For a detailed description of theGRL language,
the reader is invited to consult the URN (User
Requirements Notation) ITU-T standard [9].

3.5. GRL example

Figure 1 illustrates a GRLmodel composed of one
GRL actor, called Commuter, who wants to mini-
mize the time lost during a commute (modeled as
a GRL goal “Minimize time lost by commute”).
Two goals “Work during commute” and “Mini-
mize travel time” contribute positively (through
two Help contributions) to the achievement of
the upper goal. While taking public transporta-
tion (represented as a goal called “take public
transportation”) contributes positively (through
aHelp contribution) to the achievement of the goal
“Work during commute”, it contributes negatively
(through a Hurt contribution) to the achievement
of the goal “Minimize travel time”. Similarly, tak-
ing private transportation (represented as a goal
called “take private transportation”) contributes
positively (through a Help contribution) to the
achievement of the goal “Minimize travel time”,
it contributes negatively (through a Hurt con-
tribution) to the achievement of the goal “Work
during commute”. When it comes to use public
transportation, the commuter has the choice (illus-
trated as an OR decomposition link) between tak-
ing the regular bus (i.e. illustrated as task “Take
regular bus”) or taking the express bus (i.e. illus-
trated as task “Take express bus”). Furthermore,
two options (illustrated as an OR decomposition

Measuring Goal-Oriented Requirements Language Actor Stability 209

Figure 1. GRL commuter example

link) are available to the commuter when it comes
to the use of the private transportation: take his
own car (represented as task “Take own car”) or
hitch a ride (represented as task “Hitch a ride”).

4. Measuring GRL actor stability

In this section, we propose a novel metric to
measure GRL actor stability and we provide an
example to illustrate its calculation.

4.1. GRL Change Unit (GCU)

Conducting a maintenance task on a GRL model
generates a new version (version i is the current
version and version i + 1 is the modified ver-
sion). To quantitatively assess the magnitude of
a change, we should characterize the basic units
(GRL sub-models) that are subject to change.
We define the “GRL Change Unit (GCU)”, as
being:
1. An intentional element combined with its

outgoing link (with or without a quantitative
value). It is worth noting that a GCU may
have an outgoing link that crosses the bound-
ary of the containing actor to reach another
intentional element contained within another
actor.
Or

2. An intentional element that does not have
any outgoing links.
Links are not unique while intentional el-

ements are unique within an actor, therefore,
many similar links may exist in the actor model
and hence we will not be able to identify which
links remain unchanged. Therefore, we combine
the intentional element with its outgoing link
to form a GCU. Figure 2a illustrates a generic
GRL example composed of two actors A and B.
Actor A is composed of two GCUs: (1) GCU1
composed of task T1 and a help contribution
and (2) GCU2 composed of goal G0 and the
dependency link. Actor B is composed of three
GCUs: (1) GCU1 composed of goal G1 and the
AND decomposition, (2) GCU2 composed of goal
G2 and the AND decomposition and (3) GCU3
composed of the softgoal SG1.

Compared with version i of a GRL model,
version i + 1 may have added, deleted, changed,
and unchanged GCUs. It is worth noting that
we consider both syntactic and semantic changes.
Examples of possible changes include: changing
the type of an intentional element (e.g. from
a goal to a task), changing the type of a decom-
position (e.g. from OR to AND), changing the
qualitative/quantitative values of a contribution
(e.g. from help to hurt), changing the text of
an intentional element with a different text not
having the same meaning (semantic change), re-

210 Jameleddine Hassine, Mohammad Alshayeb

(a) A GRL model with 5 GCUs

(b) Modification1

(c) Modification2

(d) Modification3

(e) Modification4

Figure 2. GRL Change Unit (GCU)

arranging the text within an intentional element
(although such a change seems to impact only
the syntactic aspect, it may also impact the se-
mantics if the text meaning changes). However,
fixing typos in the text of an intentional element
is not considered as a change. Furthermore, since
the GCU represents the smallest change unit, we
count for only one single change when either the
intentional element changes or the outgoing link
changes or both changes.

In what follows, we discuss and justify the
GCU definition through some examples of possi-
ble changes. Assume that we perform the follow-
ing changes to the GRL actor B of Figure 2a:
1. Modification1: Replace goal G1 by another

goal G3 (see Figure 2b). Intuitively, it should
be accounted as a single change, which is
captured by the GCU definition as a change
in GCU1 only (GCU2 and GCU3 remain un-
changed). Indeed, since G1 is part of GCU1
only (within actor B), replacing G1 by G3
would only affect GCU1.

2. Modification2: Replace goal G1 by goal G3
and replace goal G2 by goal G4 (see Figure 2c).
Intuitively, these two replacements should be
accounted as two changes, which is captured

by the GCU definition as two changes in
both GCU1 and GCU2, while GCU3 remains
unchanged. Considering the AND-decompo-
sition as a single unit (as opposed to our
current definition of GCU) would not reflect
the amount of applied change.

3. Modification3: Replace the softgoal SG1
by softgoal SG2 (see Figure 2d). Intuitively,
it should be accounted as a single change,
which is captured by the GCU definition as
a change in GCU3 only (GCU1 and GCU2
remain unchanged). The enclosure of the tar-
get element into the GCU (as opposed to our
current definition of enclosing source and link
only), e.g. G1–AND–SG1 and G2–AND–SG1,
would lead to double counting the change that
impacts SG1.

4. Modification4: Replace the AND-decom-
position by an OR-decomposition (see Fig-
ure 2e). This change has an impact on how
goals G1 and G2 contribute to the achieve-
ment of SG1.
Hence, both links of the decomposition are

modified from AND to OR, which is captured by
the GCU definition as two changes in GCU1 and
GCU2 (GCU3 remains unchanged). Considering

Measuring Goal-Oriented Requirements Language Actor Stability 211

the AND decomposition as a single unit would
not reflect the fact that many children have to
contribute differently to their parent node.

GRL beliefs are connected to intentional ele-
ments through belief links, presenting no specific
direction. We assume that a belief link terminates
at a GRL belief. Since indicators are used only
in converting real-world values into satisfaction
levels, they are out of the scope of this research.

4.2. GRL actor stability metric

The objective of this paper is to propose a metric
to measure GRL actor stability. We will follow
a similar approach to the one by Alshayeb et
al. [47]. We will reason about GCU as being the
basic unit of change. We define possible changes
between versions i and i + 1 as follows:
1. Added GCU means that the GCU was not

present in GRL model version i and it has
been added in version i + 1.

2. Deleted GCU means that the GCU was
present in GRL model version i and has been
deleted in version i + 1.

3. Changed GCU means that the GCU was
present in GRL model version i and has been
changed in version i + 1.

4. Unchanged GCU means that the GCU was
present in GRL model version i and has nei-
ther been deleted nor changed in version i+1.
All actors within a GRL model are tagged

with a version number. When a change occurs

in any actor, the new GRL model is tagged
with a different version number, even though the
model may contain unchanged actor(s). Since we
are measuring the stability of the GRL actor,
we will measure the number of GCUs that have
been unchanged.

We measure the stability between two con-
secutive versions, i.e. we measure the stability of
version i+1 with respect to its previous version i.
Version i + 1 is considered fully stable when all
GCUs in version i have not been changed or
removed and is considered fully instable if all
of its GCUs have been changed or removed as
compared to version i.

To measure the GRL actor stability, we mea-
sure the stability of each GRL intentional element
type for the actor and then sum the stabilities of
all GRL Intentional element type for that actor.
To calculate the stability of each GRL Intentional
element type, we use the steps shown in Algo-
rithm 1. Equations (1–5) show the metrics used
to calculate each GRL actor intentional element
stability.

If the intentional element has more than one
outgoing link, each link is treated independently.
The actor stability value ranges from 0 to 1, with
0 denoting completely instable and 1 denoting
completely stable actor.

To calculate the GRL actor stability of ver-
sion i + 1 with respect to version i, we then av-
erage the stabilities of all GRL actor intentional
element stability as shown in equation (6).

Goal Stability(GS)i,i+1 = number of unchanged Goals between model version i and version i + 1
number of Goals in model version i

(1)

Softgoal Stability(SS)i,i+1 = number of unchanged Softgoals between model version i and version i + 1
number of Softgoals in model version i

(2)

Task Stability(TS)i,i+1 = number of unchanged Tasks between model version i and version i + 1
number of Tasks in model version i

(3)

Resource Stability(RS)i,i+1 = number of unchanged Resources between model version i and version i + 1
number of Resources in model version i

(4)

Belief Stability(BS)i,i+1 = number of unchanged Beliefs between model version i and version i + 1
number of Beliefs in model version i

(5)

Actor Stabilityi,i+1 = GS + SS + TS + RS + BS
number of distinct types of intentional elements in model version i

(6)

212 Jameleddine Hassine, Mohammad Alshayeb

Algorithm 1: Measuring GRL actor stability
Input :Actor A
Output : Stability of Actor A
Let T denote the set of distinct intentional element types {GS, SS, TS, RS, BS} within Actor A
foreach t ∈ T do

Compute unchangedCount;
. Count the number of unchanged GCUs (the number of unchanged occurrences of

that Intentional element type between versions i and i+1
Compute maximumPossibleChangeCount;
. Count the maximum possible change of that GCU (the number of occurrences of

that Intentional element that exists in version i)

extentOfChange[t](i,i+1) =
UnchangedCount(i,i+1)

maximumPossibleChangeCount in model version i
;

end
. Compute Actor’s A stability

ActorStability(i,i+1) =
∑

t extentOfChange[t](i,i+1)

number of distinct intentional element types in model versioni
;

return ActorStability;

Where 1 (at least one type) ≤ number of
distinct types of intentional elements ≤ 5 (goals,
softgoals, tasks, resources and beliefs).

The proposed metric neither measures the per-
centage of change nor the number of changes, it
rather measures the extent of change between two
versions. The extent of change is measured by ag-
gregating the individual stability values for all the
intentional elements types. A GRL actor stability
value of x% does not mean x% of the actor ele-
ments have unchanged, rather, it means that x%
of the actor model structure remains unchanged.

To reduce the impact of having one change
in simple actor that has few possible changes as
compared to a single change for a complex actor,
we do not just calculate the number of possible
changes for all GCUs in the actor together; rather,
we consider the actor to have 5 main intentional el-
ement types and we calculate the extent of change
for each intentional element type separately. Thus,
the change will be with respect to the GCUs for
that particular intentional element type.

4.3. Measuring GRL actor
stability example

In this section, we apply the proposed actor sta-
bility metric to a generic GRL example. Figure 3a

illustrates an AND decomposition within actor A.
In Figure 3b, the AND decomposition is con-
verted to an OR decomposition, the goal Goal1
is changed to Softgoal1 and Task3 is deleted.

To calculate the extent of change, we first
calculate the maximumPossibleChangeCount as
proposed in [59]. The maximumPossibleChange-
Count counts the maximum possible change that
can happen to each property with respect to
version i, thus it measures the number of GCUs
for each property that exists in the model, as
shown in Table 1. For example, in Figure 3a,
we have two GCUs with goals as intentional
elements: (1) Goal1 with the help link and (2)
Goal2. In addition, we have three GCUs with
tasks as intentional elements: (1) Task1 with
the AND decomposition link, (2) Task2 with the
AND decomposition link and (3) Task3 with the
AND decomposition link. The remaining types
of intentional elements (i.e. Softgoal, Resource,
Belief) are not present in the model. Hence, their
maximum possible change is zero.

Then, calculate the number of GCUs that
have not been changed between the two ver-
sions as given in Table 2. In Figure 3b,
the GCU composed of Goal2 has not been
changed, while the GCU composed of Goal1 and
the help contribution link has been changed, re-

Measuring Goal-Oriented Requirements Language Actor Stability 213

(a) Initial decomposition

(b) Changed decomposition

Figure 3. GRL example

Table 1. Calculate maximum-possible-change for each GCU’ intentional element

GCU intentional element Maximum possible change
Goals 2
Softgoals 0
Tasks 3
Resources 0
Beliefs 0

sulting into Softgoal1 and a help contribu-
tion link. Hence, the number of unchanged
GCUs with a goal as intentional element is 1.
Since, the AND decomposition is changed
to an OR decomposition, the three GCUs
involving tasks as intentional elements are
considered as changed. Consequently, their
number of unchanged GCUs is 0.

Finally, calculate stability value for each prop-
erty and the whole GRL actor stability as shown
in Table 3. This is done by dividing number of
unchanged GCU by maximum possible change
for each property. The GRL actor stability is
computed as the total stability divided by the
number of distinct intentional element types in-
volved in the model, since not all intentional
element types might be present in the model. In
this example, it is 2 (Goals and Tasks).

5. GRL actor stability
metric validation

Theoretical and empirical validation of software
metrics are usually performed before they can
be used with confidence. In this section, we vali-

date the proposed GRL actors stability metric
theoretically and we evaluate it empirically.

5.1. Theoretical validation

Theoretical validation refers to the process of
certifying that the metric confirms to the prin-
ciples of measurement theory. Different frame-
works have been proposed to validate software
metrics [60–63]. However, no framework has
been found to specifically validate stability met-
rics. Therefore, we use Kitchenham et al. frame-
work [64] which is a generic metric validation
framework, to theoretically validate the pro-
posed GRL actor stability metric. They proposed
a framework for validating software measurement;
the framework contains four properties the met-
ric should satisfy to be theoretically valid. These
properties are: (1) different entities must be dis-
tinguished from each other, (2) the valid mea-
sure must satisfy the representation condition,
(3) units that contribute to the valid measure
must be equivalent and (4) different entities can
have the same attribute value. In addition to
Kitchenham’s et al. framework [64], we show the
validation through an example. Figure 4 shows an

214 Jameleddine Hassine, Mohammad Alshayeb

Table 2. Calculation of the number of Unchanged GCU’ intentional wlements

GCU intentional element Number of unchanged GCUs
Goals 1
Softgoals 0
Tasks 0
Resources 0
Beliefs 0

Table 3. Stability calculation for each property and the overall actor stability

GCU intentional element Maximum possible change Number of nnchanged GCUs Stability
Goals 2 1 0.5
Softgoals – – –
Tasks 3 0 0
Resources – – –
Beliefs – – –
Total stability = 0.5 + 0 = 0.5
GRL actor stability = 0.5/2 = 0.25
Note: “–” means the intentional element is not present in the actor.

example of four versions of a GRL actor enclosed
elements, the base version (version 0) and three
other versions (versions 1 to 3). The examples are
used to demonstrate the validity of the proposed
metric against Kitchenham’s et al. theoretical
validation properties. For simplicity, we only use
goals in these examples; however, what applies
to goals applies to the other intentional elements.

Property 1: “For an attribute to be mea-
surable, it must allow different entities to be
distinguished from one another” [64]. That is, dif-
ferent entities should have different measurement
values, thus, the stability value for two actors
will be different if they have different number of
unchanged entities between the two versions.

To validate this property, consider the GRL
models in Figures 4a–4c. As compared to the
base version of Figure 4a, in Figure 4b three goals
remained unchanged (Goal1, Goal2, and Goal4)
while in Figure 4c four goals remained unchanged.
Since the number of unchanged goals in Figure 4b
and Figure 4c with respect to the base version
Figure 4a are different, stability values should
also be different. This will always be true as the
denominator will be the same when calculating
the stability for both versions (number of goals
in the base version) while the numerator value
(unchanged goals) will be different; therefore, the

overall stability value will also be different. By
calculating the stability value for these versions,
we notice that the stability value for the GRL
model shown in Figure 4b is 0.6 while the stabil-
ity value for the GRL model shown in Figure 4c
is 0.8. Thus, this property is shown to be true.

Property 2: “A valid measure must obey the
Representation Condition” [64]. That is, if more
entities have been unchanged between the two
versions in two GRL actors, then the stability
value of the GRL actor that has less unchanged
entities should be higher.

To validate this property through the exam-
ple, consider the same scenario used to prove
property 1. The GRL model shown in Figure 4b
has less unchanged properties as compared to the
GRL model shown in Figure 4c; this is reflected
in their stability values being 0.6 and 0.8, respec-
tively. This property will always be true as the
value in the denominator will be the same when
calculating the stability for both versions while
the numerator value will be different and when
more unchanged properties exists, the numerator
value will be higher and thus the overall stability
is higher.

Property 3: “Each unit of an attribute con-
tributing to a valid measure is equivalent” [64].
Consider Figure 4b and Figure 4c, in the same line

Measuring Goal-Oriented Requirements Language Actor Stability 215

(a) Version 0 – base version

(b) Version 1

(c) Version 2

(d) Version 3

Figure 4. Different versions of GRL models

as property 1 and property 2, the denominator
will be the same when calculating the stability
for both versions (five in the example shown in
Figure 4). Each change in the goal will have the
same weight since it has impact of 0.2 (which is
1/5); thus, each change contributes by the same
weight. In Figure 4b, three goals are unchanged,
which makes its stability 0.6; there are four
unchanged goals in Figure 4c, which makes its
stability 0.8. Since the three goals still exist in
Figure 4c and one more goal has unchanged, the
stability of the model in Figure 4c should be equal
to the value of actor stability in Figure 4b (0.6)
plus the stability of the individual goal that has
unchanged (0.2), which is shown to be true as the
total stability of the model in Figure 4c is 0.8.

Property 4: “Different entities can have the
same attribute value” [64]. That is, two GRL
actors can have the same stability value if the
same number of GCUs have unchanged when
they have the same number of GCUs in each
distinct intentional element.

Finally, to show the validity of property 4,
consider the GRL models shown in Figure 4c
and Figure 4d. Figure 4c has four goals that are
unchanged (goal 1, 2, 4 and 5), while Figure 4d has
four unchanged goals (goal 1, 2, 3 and 4).Wenotice
that in Figure 4c goal 3 has been deleted, while

in Figure 4d goal 5 has been deleted as compared
to the base version shown in Figure 4a. Therefore,
the two GRL models are different, yet, they both
have the same stability value (0.8) when compared
to the base version (shown in Figure 4a). This is
true because the denominator (number of goals in
the base version) is the same in both cases and the
numerator (number of unchanged goals) is also
the same as the count of unchanged goals is equal
regardless of which goals have changed. Therefore,
the four properties proposed by Kitchenham et
al. [64] are satisfied, thus, the proposed metric is
theoretically valid.

5.2. Empirical validation

The empirical validation of a metric helps in as-
sessing its usefulness and relevance. This section
describes the experiments carried out to provide
empirical evidence with respect to the usefulness
and relevance of the proposed actor stability met-
ric. This is achieved by following the templates and
recommendations presented in Wohlin et al. [65].

5.2.1. Experiment goals

The main goal of our empirical study is to investi-
gate the relationship between maintainability and

216 Jameleddine Hassine, Mohammad Alshayeb

the proposed stability metric. If such relationship
is revealed by the experiment, then it can be shown
that the proposed stability metric can be used as
an indicator of the maintenance effort for the GRL
actor model. Previous studies used time and effort
to measure maintainability. Time is measured
by the number of hours spent on maintenance
activities [66, 67] and effort is measured by the
number of lines added, deleted, or changed [68, 69].
The proposed metric is at the model level; thus,
we measure maintainability effort using the time
spent on performing the maintenance task. Since
the proposed stability metric is measured between
two consecutive versions (Stability(i, i + 1)), we
measure the effort (Effort(i, i + 1)) to produce
version i + 1 using version i as base version.

5.2.2. Experimental design

Empirical studies are conducted to test a theory
to provide further evidence to support or reject
it [70]. Since software stability is directly related
to maintainability [4], we expect that a decrease
in software stability will translate to more time
spent on maintainability. To empirically validate
the proposed metric, we designed and conducted
a controlled experiment to test this assumption.
In the experiment, we correlate the proposed
metric values with the time spent on performing
four maintenance tasks. We expect that the more
stable an actor is, the less the time required for
its maintenance will be. If such relation is ob-
served, we can conclude that the proposed metric
is empirically valid. Figure 5 illustrates the main
steps of our experimental plan.
1. Subjects. Our subjects are 28 undergradu-

ate software engineering students (randomly
assigned to 7 groups of 4 members each) and
9 individual software engineering undergrad-
uate students, enrolled in requirements en-
gineering course. This would allow for more
variability to gain more confidence in the
experiment results. All participants received
around 9 hours of training on GRL including
hands-on using the jUCMNav tool [55].

2. Material. The material given to the subjects
consists of printouts of a GRL model that de-
scribes how to foster the relationship between

a university and its alum.ni. Figure 6 shows
the initial version of the designed GRL model
that has been adapted from [71].
The four maintenance tasks to be executed on
the GRL model are detailed in Section 5. To
address the variability in the experiment, we
considered four different actors with different
sizes, performed the maintenance tasks on
different actors and model constructs and
applied all types of changes (modification,
addition, and deletion).

3. Variables. We measure maintainability by
means of the following dependent variables:
(1) the time spent by the subjects in perform-
ing the four maintenance tasks (in seconds)
and (2) the stability values of the four actors
computed by the authors after each mainte-
nance task. The independent variable is the
performed maintenance tasks.

4. Hypothesis. The experiment was planned
with the purpose of testing the following hy-
pothesis:
Null hypothesis (H0): there is no correla-
tion between actor stability and maintainabil-
ity measured by time spend on performing
the maintenance task.
Alternative hypothesis (H1): there is
a correlation between actor stability and
maintainability measured by time spend on
performing the maintenance task.

5. Experimental tasks. The subjects were
asked to conduct 4 corrective maintenance
tasks. We have considered the following as-
pects when designing the maintenance tasks:
(1) Tasks are small enough so they can be
performed by students within a short period
of time, (2) Maintenance tasks are not trivial
and require careful analysis (to mimic real
maintenance tasks), (3) Tasks are not too
restrictive. Hence, more than one solution
may be retained.
The four maintenance tasks are as follows:
– Maintenance Task 1: The “Alumni De-

partment” investigated ways to assess
precisely how the department can serve
alumni. It turned out that the goal “Serv-
ing alumni through University commit-
ment” has no clear-cut satisfaction crite-

Measuring Goal-Oriented Requirements Language Actor Stability 217

Figure 5. Experimental design

ria. In addition, the alumnus found that
the “Alumni Department” is breaching
their privacy by sending too many SMSs.
Please fix the GRL model to resolve these
two issues.

– Maintenance Task 2: Please use the
GRL model that you have already modi-
fied in maintenance Task 1. The university
allocated funds to the alumni department
have been reduced. The alumni depart-
ment has to cope with this constraint by
reducing their expenses without affect-
ing the offered activities. Please modify
the GRL model to implement these con-
straints.

– Maintenance Task 3: Please use the
GRL model that you have already modi-
fied in maintenance Task 2. Each semester,
the “Alumni Department” has been ask-
ing their alumnus to mentor an increas-
ing number of undergraduate students,
in their respective fields. However, based
on our undergraduate students’ feedback,
this experience has many shortcomings
and was not that positive. According to
the alumni, mentoring a large number of
students is not sustainable. Please modify
the GRL model to reflect this fact.

– Maintenance Task 4: Please use the
GRL model that you have already mod-
ified in maintenance Task 3. Alumni are
willing to contribute to the university ac-
tivities, but they are reluctant to donate
money. Please modify the GRL model to
reflect this fact.

It is worth noting that for tasks 2, 3, and
4, subjects were asked to not count the time
taken to copy changes made in the previous
task.

5.2.3. Experiment execution and data collection

In this section, we present samples of the execu-
tions of the maintenance tasks along with their
corresponding actor stability computation. It is
worth noting that some data was excluded as
some subjects did not complete some/all tasks,
did not produce correct responses for the required
tasks, did not record the start and end time,
and/or did provide an unrealistic time. Solutions
containing minor syntactic errors or typos are
retained as long as they make sense semantically.
Furthermore, since actor stability is computed
between two GRL consecutive versions, the out-
put of the current task, is considered as the base
to the next task. We discard the output of a task

218 Jameleddine Hassine, Mohammad Alshayeb

Fi
gu

re
6:

In
iti
al

G
R
L
m
od

el
de

sc
rib

in
g
th
e
fo
st
er
in
g
of

th
e
un

iv
er
sit

y
–
al
um

ni
re
la
tio

ns
hi
p

Measuring Goal-Oriented Requirements Language Actor Stability 219

that results in an invalid GRL model. However, if
a task output is syntactically valid but represents
an incorrect solution then we consider it as a base
model for the subsequent task since the tasks are
independent.

Figure 7 illustrates an example of the result-
ing “Alumni Department” actor performed by
one of the groups as part of maintenance Task
1 and Table 4 shows its corresponding stability
computation. In order to address the first issue,
the goal “Serving alumni through University com-
mitment” is converted to a softgoal. To address
the second issue, the contribution type between
task “Use SMSs for all communications” and
softgoal “Serving alumni through University com-
mitment” is changed from “help” to “hurt”.

In the original model, the Alumni depart-
ment has 8 GCUs (i.e. 6 GCUs with tasks and
contributions, one GCU composed of a goal and
a dependency and one GCU composed of one goal
and one AND decomposition link). By convert-
ing the goal to a softgoal both GCUs involving
the goal are considered as changed (i.e. num-
ber of unchanged goal GCUs is zero). Among
the 6 GCUs involving tasks, only “use SMS for
all communications” task and the help contri-
bution (converted to a hurt) has changed, i.e.
the number of unchanged task GCUs is 5. The
number of distinct types of intentional elements
is equal to 2 for the Alumni Department (goals
and tasks). Hence, the stability of the “Alumni
Department” actor is 0.416.

Figure 8 illustrates an example of the resulting
“Alumnus” actor performedby one of the groups as

part of maintenance Task 3 and Table 5 shows its
corresponding stability computation. To address
the issue of mentoring a large number of students,
the task “mentoring current students” is changed
to “Mentoring a maximum of 2 students per year”.
Another possible change would be to keep the task
as is and change the contribution type from help
to hurt (not shown in Figure 8).

In the original model, the Alumnus actor has
11 GCUs (i.e. 8 GCUs with tasks and contribu-
tions, 2 GCUs composed of a task and a depen-
dency and one GCU composed of one softgoal
and one AND decomposition link). Only one
GCU, having a task as intentional element, is
changed leaving the 9 task GCUs unchanged. The
number of distinct types of intentional elements
is equal to 2 for the Alumnus actor (softgoals
and tasks). Hence, the stability of the Alumnus
actor is 0.95.

The University and Professor actors are fully
stable (i.e. stability equal to 1) since they have
not been changed as part of the four maintenance
tasks, while Alumnus and Alumni Department
actors are partially stable.

5.2.4. Experimental analysis

To test the hypothesis, we performed Spearman
correlation between the actor stability value and
maintainability effort measured by the time spent
on each task (in seconds). We considered each
task as a different experiment and thus the data
was combined to perform the analysis. Results
of performing a maintenance task can vary be-

Figure 7. Example of maintenance Task 1 solution

Figure 8. Example of maintenance Task 3 solution

220 Jameleddine Hassine, Mohammad Alshayeb

Table 4. Maintenance Task 1 stability computation

Actor: Alumni department
GCU intentional element Maximum possible change Number of unchanged GCUs
Goals 2 0
Softgoals – –
Tasks 6 5
Resources – –
Beliefs – –
ExtentOfChange: (0/2) + (5/6) = (5/6)
Distinct types of intentional elements: 2
GRL actor stability: (5/6) / 2 = 0.416
Note: “–” means the intentional element is not present in the Actor.

Table 5. Maintenance Task 3 stability computation

Actor: Alumnus
GCU intentional element Maximum possible change Number of unchanged GCUs
Goals – 0
Softgoals 1 1
Tasks 10 9
Resources – –
Beliefs – –
ExtentOfChange: (1/1) + (9/10) = (19/10)
Distinct types of intentional elements: 2
GRL actor stability: (19/10) / 2 = 0.95
Note: “–” means the intentional element is not present in the Actor.

tween subjects as their solutions might be dif-
ferent. Therefore, the time recorded to perform
the maintenance task can also vary by different
subjects. However, the stability measurement of
the solution can be equal. The results of the
experiment, shown in Figure 9, show that the
maintainability effort has a significant strong
negative correlation as the correlation value is
-0.713 and the P-value is <0.05 [72]. Thus, we
reject the null hypothesis and accept the alter-
native hypothesis, that there is a correlation be-
tween actor stability and maintainability mea-
sured by time spend on performing the mainte-
nance task.

The results confirm that there is a negative
relationship between GRL actor stability and
maintenance effort, hence, the less stable the
actor, the more maintenance effort it requires.
Therefore, actor stability value can be used as
an indicator of maintenance effort. Requirements

engineers need to give the GRL model special
attention when the stability value is low as this
will yield to high maintenance cost.

5.2.5. Threats to validity

The proposed metric and its empirical validation
are subject to some limitations and threats to
validity that we categorize as follows:

Conclusion validity: a possible threat is the
small sample size used in the validation. More
samples would have provided more confidence in
the evaluation. Another possible conclusion threat
is that we used a simple case study; this should not
affect the validity of the results, as the metric will
be measured in the same way regardless the sys-
tems’ size. However, in our future work, our plans
include conducting an experiment using bigger
real-world case studies to further support our find-
ings. A third possible conclusion threat is the re-

Measuring Goal-Oriented Requirements Language Actor Stability 221

Figure 9. Correlation between maintenance time and actor stability

liability of the time measurement recorded by the
subject. Although how to measure the time span
was clarified to the subjects, variation in timemea-
surement may have occurred. The last possible
conclusion validity threat is that we correlated the
actor stability values with maintainability effort
measured by the time it takes to perform a task.
However, we assumed that this relation exists
based on the relationship identified by ISO 25010.

Internal validity: a possible internal threat
is that some subjects did not perform the task
correctly and thus produced a wrong GRL model
that does not satisfy the task requirement. The
data of such tasks was excluded from the em-
pirical validation as they produced invalid GRL
model. However, to mitigate this threat, we pro-
vided all subjects with similar training in GRL
language including hands-on using the jUCMNav
tool. Another possible internal threat is related to
the variables used in the empirical validation; we
used the time spent by the subjects in performing
the four maintenance tasks and the stability val-
ues of the actors as dependent variables. However,
the selection of these variables is done based on
the existing relationship reported in ISO 25010.
ISO 25010 indicates that maintainability is re-
lated to modifiability which in turns is related
to stability. Thus, we expect maintainability to
be correlated with stability. Furthermore, there
is a threat that the time for solving latter tasks

might be affected by the learning time spent
on earlier tasks. However, this practice effect is
experienced by all participants as we followed the
same sequence of tasks in all experiment tasks
with all subjects.

Construct validity: a possible construct va-
lidity threat is that we consider all intentional
elements to have the same weight regardless of
the number of instances each element has; how-
ever, this is done intentionally to make sure that
we treat all intentional elements equally as some
intentional elements might be used more than
others in GRL models. In fact, this is the rea-
son why we did not consider a simpler metric
that measures the number of unchanged GCUs
divided by the total number of GCUs.

External validity: the subjects who per-
formed the experiments are undergraduate soft-
ware engineering students. The subjects executed
the experiment tasks and recorded the time taken
to perform each task. This presents an external
threat as the experiments were not performed by
professionals, however, a recent study by Falessi
et al. [73] shows that using students as subjects
is acceptable and provides simplification of the
actual context. Another possible external threat
is related to the tasks used in the empirical evalu-
ation as they are not industry tasks. To mitigate
this threat, we planned and designed the mainte-
nance tasks carefully so that they are not trivial

222 Jameleddine Hassine, Mohammad Alshayeb

and require careful analysis to mimic real main-
tenance tasks in addition to involving changes
on different intentional elements.

6. Discussion

In the following subsections, we discuss the ben-
efits of our proposed approach and how to inter-
pret the metric.

6.1. Metric benefits

In early requirements engineering process, goal
models are used to capture interests, intentions
and strategies of different stakeholders. They go
through many modifications that are necessary to
accommodate changing user requirements, evolv-
ing business goals and objectives or even induced
by changes in implementation technologies. The
proposed GRL actor stability metric brings the
following benefits:
1. It offers a systematic way to measure the

extent of modifications across many versions
of a goal model.

2. The computation of the metric is based on
easily countable parameters, such as the num-
ber of unchanged GCUs, that does not require
individual attention or time-consuming pro-
cessing.

3. It allows for reasoning about which actor is
less/more stable. In case, an actor represents
a human stakeholder, an instable actor may
be an indication that your stakeholders do
not understand the problem they are trying
to address, as they have changed their minds
drastically. Some sort of visioning session with
them may be necessary. In addition, it allows
for an early assessment of the risk of a ma-
jor project reset as a result of several new
stakeholder input.

4. The proposed metric takes into consideration
all GRL constructs. We believe that the com-
putation of the stability metric can be fully
automated in this context.

5. It can be generalized to cover other goal-ori-
ented languages, such as i* [5], KAOS [7] and
TROPOS [8]. Indeed, our approach is based

on the notion of GCU, which is present in
i* Strategic Rationale (SR) diagrams. The
KAOS approach covers goals of many types
but is less concerned with the intentional-
ity of actors. However, our stability metric
may be applied at the goal model level to
assess the extent of changes between differ-
ent versions of the model. Similarly, we may
tweak the metric to cover TROPOS and i*
Strategic Dependency (SD) models. Indeed,
the relationships between actors and other
constructs in i* SD models and in TROPOS
can be considered as a GCU, which is the
basic concept in our proposed metric.

6.2. Metric practical implication

The proposed GRL actor stability metric can
be used as a proxy of maintenance effort. Our
empirical validation of the proposed metric has
shown a direct negative relationship between
actor stability and maintenance effort. Hence,
requirements engineers may have an indicator
of the maintenance effort required to maintain
the GRL model. A low stability value indicates
that the model will require more maintenance
effort, therefore, the requirements engineers can
make appropriate actions to refactor the cur-
rent GRL model in order to reduce the expected
maintenance effort.

7. Conclusion and future work

Requirements evolution is a main driver for sys-
tems evolution. Many metrics have been pro-
posed to understand the sources, frequencies and
types of requirements evolution. More specifically,
many metrics have been introduced to measure
requirements stability at different abstraction
and granularity levels. Goal models are used to
capture interests, intentions and strategies of
different stakeholders in early requirements en-
gineering. In this paper, we presented a novel
metric to measure GRL actor stability. The pro-
posed metric provides a quantitative indicator
of GRL actor maintainability to have a better
estimation of the change cost. We have validated

Measuring Goal-Oriented Requirements Language Actor Stability 223

theoretically and empirically our proposed sta-
bility metric using a case study.

As a future work, we plan to automate and
apply the proposed metric to real-world large-size
case studies to assess whether our metric is
a good indicator of the stability of GRL actors.
We also plan to investigate which type of mainte-
nance effort has the highest impact on stability.
In addition, we plan to build prediction mod-
els to predict GRL actor stability. Furthermore,
we plan to conduct an empirical experiment to
study if stability measures converge over time
and have a consistent trend. Moreover, we are
currently working on proposing a metric suite for
goal-oriented languages, which includes model
stability. In this paper, we used time to measure
maintainability, in future studies, we plan to use
other measures such as effort.

Acknowledgment

The authors would like to acknowledge the
support provided by King Fahd University of
Petroleum & Minerals (KFUPM) for funding
this work.

References

[1] J.C. Chen and S.J. Huang, “An empirical analy-
sis of the impact of software development prob-
lem factors on software maintainability,” Journal
of Systems and Software, Vol. 82, No. 6, 2009,
pp. 981–992.

[2] D. Galorath, “Software total ownership costs:
development is only job one,” Software Tech
News, Vol. 11, No. 3, 2008.

[3] J. Li, H. Zhang, L. Zhu, R. Jeffery, Q. Wang,
and M. Li, “Preliminary results of a systematic
review on requirements evolution,” IET Confer-
ence Proceedings, 2012, pp. 12–21.

[4] ISO/IEC, “25010:2011: Systems and software
engineering – systems and software quality re-
quirements and evaluation,” 2011.

[5] E.S. Yu, “Towards modelling and reasoning sup-
port for early-phase requirements engineering,”
in International Symposium on Requirements
Engineering. IEEE, 1997, pp. 226–235.

[6] L. Chung and J. Leite, On Non-Functional Re-
quirements in Software Engineering. Springer,
2009, pp. 363–379.

[7] A. van Lamsweerde, “Requirements engineering:
from craft to discipline,” in Proceedings of the
16th ACM SIGSOFT International Symposium
on Foundations of software engineering. ACM,
2008, pp. 238–249.

[8] P. Giorgini, J. Mylopoulos, and R. Sebastiani,
“Goal-oriented requirements analysis and reason-
ing in the tropos methodology,” Engineering Ap-
plications of Artificial Intelligence, Vol. 18, No. 2,
2005, pp. 159–171.

[9] ITU-T, “Recommendation Z.151 (10/18), User
Requirements Notation (URN) language defini-
tion, Geneva, Switzerland,” Geneva, Switzerland,
2018. [Online]. http://www.itu.int/rec/T-REC-
Z.151/en

[10] S. Overbeek, U. Frank, and C. Köhling,
“A language for multi-perspective goal mod-
elling: Challenges, requirements and solutions,”
Computer Standards & Interfaces, Vol. 38, 2015,
pp. 1–16. [Online]. http://www.sciencedirect.
com/science/article/pii/S0920548914000798

[11] A. Dias, V. Amaral, and J. Araujo, “Towards
a domain specific language for a goal-oriented ap-
proach based on KAOS,” in Third International
Conference on Research Challenges in Informa-
tion Science. IEEE, 2009, pp. 409–420.

[12] D. Quartel, W. Engelsman, H. Jonkers, and
M. van Sinderen, “A goal-oriented requirements
modelling language for enterprise architecture,”
in International Enterprise Distributed Object
Computing Conference. IEEE, 2009, pp. 3–13.

[13] X. Franch and N. Maiden, “Modelling compo-
nent dependencies to inform their selection,”
COTS-Based Software Systems, Vol. 2580 of
LNCS, 2003, pp. 81–91.

[14] X. Franch, G. Grau, and C. Quer, “A framework
for the definition of metrics for actor-dependency
models,” in 12th International Requirements En-
gineering Conference. IEEE, 2004, pp. 348–349.

[15] X. Franch, “On the quantitative analysis of
agent-oriented models,” Advanced Information
Systems Engineering, Vol. 4001 of LNCS, 2006,
pp. 495–509.

[16] G. Grau, X. Franch, and N. Maiden, “Prim:
An i*-based process reengineering method for
information systems specification,” Information
and Software Technology, Vol. 50, No. 1-2, 2008,
pp. 76–100.

[17] H. Kaiya, H. Horai, and M. Saeki, “Agora:
attributed goal-oriented requirements analysis
method,” Joint International Conference on Re-
quirements Engineering, 2002, pp. 13–22.

[18] G. Grau and X. Franch, “A goal-oriented ap-
proach for the generation and evaluation of al-
ternative architectures,” in European Confer-

224 Jameleddine Hassine, Mohammad Alshayeb

ence on Software Architecture. Springer, 2007,
pp. 139–155.

[19] A. van Lamsweerde, “Goal-oriented require-
ments engineering: A guided tour,” in Proceed-
ings fifth International Symposium on Require-
ments Engineering. IEEE, 2001, pp. 249–262.

[20] A.I. Antón, W.M. McCracken, and C. Potts,
“Goal decomposition and scenario analysis in
business process reengineering,” in International
Conference on Advanced Information Systems
Engineering. Springer, 1994, pp. 94–104.

[21] C.M. Nguyen, R. Sebastiani, P. Giorgini, and
J. Mylopoulos, “Multi-objective reasoning with
constrained goal models,” Requirements Engi-
neering, 2016, pp. 1–37.

[22] J. Horkoff, F.B. Aydemir, E. Cardoso, T. Li,
A. Maté, E. Paja, M. Salnitri, J. Mylopoulos,
and P. Giorgini, “Goal-oriented requirements en-
gineering: A systematic literature map,” in 24th
International Requirements Engineering Confer-
ence (RE). IEEE, 2016, pp. 106–115.

[23] T. Ambreen, N. Ikram, M. Usman, and M. Niazi,
“Empirical research in requirements engineering:
trends and opportunities,” Requirements Engi-
neering, 2016, pp. 1–33.

[24] L. López, F.B. Aydemir, F. Dalpiaz, and
J. Horkoff, “An empirical evaluation roadmap
for iStar 2.0,” in Proceedings of the Ninth Inter-
national i* Workshop (istar’16), Vol. 1674, 2016,
pp. 55–60.

[25] M.A. Teruel, E. Navarro, V. López-Jaquero,
F. Montero, and P. González, “Comparing
goal-oriented approaches to model requirements
for CSCW,” in International Conference on Eval-
uation of Novel Approaches to Software Engi-
neering. Springer, 2011, pp. 169–184.

[26] J.P. Carvallo and X. Franch, “On the use of i*
for architecting hybrid systems: A method and
an evaluation report,” in IFIP Working Con-
ference on The Practice of Enterprise Modeling.
Springer, 2009, pp. 38–53.

[27] G. Elahi, E. Yu, and M.C. Annosi, “Modeling
knowledge transfer in a software maintenance
organization – an experience report and critical
analysis,” in IFIP Working Conference on The
Practice of Enterprise Modeling. Springer, 2008,
pp. 15–29.

[28] K. Hoesch-Klohe, A Framework to support the
Maintenance of Formal Goal Models, Ph.D.
dissertation, University of Wollongong, 2013.
[Online]. http://ro.uow.edu.au/theses/4214

[29] N.A. Ernst, J. Mylopoulos, and Y. Wang, Re-
quirements Evolution and What (Research) to
Do about It. Berlin, Heidelberg: Springer, 2009,
pp. 186–214.

[30] A.K. Ghose, “Formal tools for managing incon-
sistency and change in RE,” in Proceedings of the
10th International Workshop on Software Spec-
ification and Design. IEEE Computer Society,
2000, p. 171.

[31] N.A. Ernst, A. Borgida, J. Mylopoulos, and
I.J. Jureta, Agile Requirements Evolution via
Paraconsistent Reasoning. Berlin, Heidelberg:
Springer, 2012, pp. 382–397.

[32] A.M. Grubb and M. Chechik, “Looking into the
crystal ball: requirements evolution over time,”
in 24th International Requirements Engineering
Conference (RE). IEEE, 2016, pp. 86–95.

[33] Aprajita and G. Mussbacher, “TimedGRL: Spec-
ifying goal models over time,” in 24th Inter-
national Requirements Engineering Conference
Workshops (REW), 2016, pp. 125–134.

[34] M.O. Elish and D. Rine, “Investigation of met-
rics for object-oriented design logical stabil-
ity,” in Seventh European Conference onSoftware
Maintenance and Reengineering. IEEE, 2003,
pp. 193–200.

[35] N.L. Soong, “A program stability measure,”
in Proceedings of the 1977 Annual Conference.
ACM, 1977, pp. 163–173.

[36] M. Fayad, “Accomplishing software stability,”
Communications of the ACM, Vol. 45, No. 1,
2002, pp. 111–115.

[37] S.S. Yau and J.S. Collofello, “Some stability mea-
sures for software maintenance,” IEEE Transac-
tions on Software Engineering, Vol. SE-6, No. 6,
1980, pp. 545–552.

[38] W. Li, L. Etzkorn, C. Davis, and J. Talburt, “An
empirical study of object-oriented system evo-
lution,” Information and Software Technology,
Vol. 42, No. 6, 2000, pp. 373–381.

[39] M. Alshayeb and W. Li, “An empirical study
of system design instability metric and design
evolution in an agile software process,” Journal
of Systems and Software, Vol. 74, No. 3, 2005,
pp. 269–274.

[40] A. AbuHassan and M. Alshayeb, “A metrics
suite for UML model stability,” Software Sys-
tems Modeling, Vol. 18, No. 1, 2019, pp. 557–583.

[41] Y. Hassan, Measuring software architectural sta-
bility using retrospective analysis, Ph.D. disser-
tation, King Fahd University of Petroleum &
Minerals, 2007.

[42] J. Bansiya, “Evaluating framework architecture
structural stability,” ACM Computing Surveys,
Vol. 32, No. 1, 2000.

[43] M. Mattsson and J. Bosch, “Characterizing sta-
bility in evolving frameworks,” in Technology of
Object-Oriented Languages and Systems, 1999,
pp. 118–130.

Measuring Goal-Oriented Requirements Language Actor Stability 225

[44] S.A. Tonu, A. Ashkan, and L. Tahvildari, “Evalu-
ating architectural stability using a metric-based
approach,” in Conference on Software Main-
tenance and Reengineering (CSMR’06). IEEE,
2006, pp. 261–270.

[45] D. Grosser, H.A. Sahraoui, and P. Valtchev, “An
analogy-based approach for predicting design sta-
bility of Java classes,” in 5th International Work-
shop on Enterprise Networking and Computing
in Healthcare Industry. IEEE, 2004, pp. 252–262.

[46] D. Rapu, S. Ducasse, T. Gîrba, and R. Mari-
nescu, “Using history information to improve
design flaws detection,” in Eighth European Con-
ference on Software Maintenance and Reengi-
neering. IEEE, 2004, pp. 223–232.

[47] M. Alshayeb, M. Naji, M. Elish, and
J. Al-Ghamdi, “Towards measuring ob-
ject-oriented class stability,” Software, IET,
Vol. 5, No. 4, 2011, pp. 415–424.

[48] R.C. Martin, “Large scale stability,” C++ Re-
port, Vol. 9, No. 2, 1997, pp. 54–60.

[49] D. Grosser, H.A. Sahraoui, and P. Valtchev,
“Predicting software stability using case-based
reasoning,” in Proceedings 17th International
Conference on Automated Software Engineering,.
IEEE, 2002, pp. 295–298.

[50] V. Basili, G. Caldiera, and H.D. Rombach, “The
goal question metric approach,” Encyclopedia of
Software Engineering, 1994.

[51] X. Franch, A method for the definition of metrics
over i* models. Berlin Heidelberg: Springer, 2009,
Vol. 5565, pp. 201–215.

[52] P. Espada, M. Goulão, and J. Araújo, “A frame-
work to evaluate complexity and completeness of
KAOS goal models,” in International Conference
on Advanced Information Systems Engineering.
Springer, 2013, pp. 562–577.

[53] C. Gralha, J. Araújo, and M. Goulão, “Met-
rics for measuring complexity and completeness
for social goal models,” Information Systems,
Vol. 53, 2015, pp. 346–362.

[54] J. Hassine and M. Alshayeb, “Measurement of
actor external dependencies in GRL models,” in
Proceedings of the Seventh International i* Work-
shop co-located with the 26th International Con-
ference on Advanced Information Systems Engi-
neering, 2014. [Online]. http://ceur-ws.org/Vol-
1157/paper22.pdf

[55] jUCMNav – Eclipse plugin for Use Case
Maps, University of Ottawa, Canada, 2016.
[Online]. http://softwareengineering.ca/jucmnav
Last accessed Jan. 2019.

[56] W. Lam and V. Shankararaman, “Requirements
change: A dissection of management issues,”

in 25th EUROMICRO Conference. Informatics:
Theory and Practice for the New Millennium,
Vol. 2. IEEE, 1999, pp. 244–251.

[57] S. Anderson and M. Felici, “Quantitative aspects
of requirements evolution,” in Proceedings 26th
Annual International Computer Software and
Applications. IEEE, 2002, pp. 27–32.

[58] G. Stark, A. Skillicorn, and R. Smeele, “A mi-
cro and macro based examination of the effects
of requirements changes on aerospace software
maintenance,” in Aerospace Conference, Vol. 4.
IEEE, 1998, pp. 165–172.

[59] M. Mattsson and J. Bosch, “Stability assess-
ment of evolving industrial object-oriented frame-
works,” Journal of Software Maintenance: Re-
search and Practice, Vol. 12, No. 2, 2000,
pp. 79–101.

[60] L.C. Briand, J.W. Daly, and J. Wüst, “A uni-
fied framework for cohesion measurement in ob-
ject-oriented systems,” Empirical Software En-
gineering, Vol. 3, No. 1, 1998, pp. 65–117.

[61] L. Briand, S. Morasca, and V. Basili, “Prop-
erty-based software engineering measurement,”
IEEE Transactions on Software Engineering,
Vol. 22, No. 1, 1996, pp. 68–86.

[62] E.J. Weyuker, “Evaluating software complexity
measures,” IEEE Transactions on Software En-
gineering, Vol. 14, No. 9, 1988, pp. 1357–1365.

[63] G. Poels and G. Dedene, “Distance-based soft-
ware measurement: necessary and sufficient
properties for software measures,” Information
& Software Technology, Vol. 42, No. 1, 2000,
pp. 35–46.

[64] B. Kitchenham, S.L. Pfleeger, and N. Fenton,
“Towards a framework for software measurement
validation,” IEEE Transactions on Software En-
gineering, Vol. 21, No. 12, 1995, pp. 929–944.

[65] C. Wohlin, P. Runeson, M. Host, M. Ohlsson,
B. Regnell, and A. Wesslen, Experimentation in
Software Engineering: An Introduction. Kluwer
Academic Publishers, 2000.

[66] A.B. Binkley and S.R. Schach, “Validation of
the coupling dependency metric as a predictor
of run-time failures and maintenance measures,”
in Proceedings of the 20th International Con-
ference on Software ERngineering. IEEE, 1998,
pp. 452–455.

[67] D. Darcy, C. Kemerer, S. Slaughter, and
J. Tomayko, “The structural complexity of soft-
ware: An experimental test,” IEEE Transactions
on Software Engineering, Vol. 31, No. 11, 2005,
pp. 982–995.

[68] W. Li and S. Henry, “Object-oriented metrics
that predict maintainability,” Journal of Systems

226 Jameleddine Hassine, Mohammad Alshayeb

and Software, Vol. 23, 1993, pp. 111–122.
[69] M. Alshayeb and W. Li, “An empirical valida-

tion of object-oriented metrics in two iterative
processes,” IEEE Transactions on Software En-
gineering, Vol. 29, No. 11, 2003, pp. 1043–1049.

[70] N. Fenton and J. Bieman, Software Metrics:
A Rigorous and Practical Approach. London:
CRC Press, 2014.

[71] J. Hassine and D. Amyot, “A questionnaire-
based survey methodology for systematically

validating goal-oriented models,” Requirements
Engineering, Vol. 21, No. 2, 2016, pp. 285–308.

[72] J. Evans, Straightforward Statistics for the Be-
havioral Sciences. Brooks/Cole Publishing, 1996.

[73] D. Falessi, N. Juristo, C. Wohlin, B. Turhan,
J. Münch, A. Jedlitschka, and M. Oivo, “Em-
pirical software engineering experts on the use
of students and professionals in experiments,”
Empirical Software Engineering, Vol. 23, No. 1,
2018, pp. 452–489.

e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 227–259, DOI 10.5277/e-Inf190107

Software Change Prediction: A Systematic
Review and Future Guidelines

Ruchika Malhotra∗, Megha Khanna∗∗
∗Department of Computer Science & Engineering, Delhi Technological University

∗∗Sri Guru Gobind Singh College of Commerce, University of Delhi
ruchikamalhotra@dtu.ac.in, meghakhanna86@gmail.com

Abstract
Background: The importance of Software Change Prediction (SCP) has been emphasized by
several studies. Numerous prediction models in literature claim to effectively predict change-prone
classes in software products. These models help software managers in optimizing resource usage
and in developing good quality, easily maintainable products.
Aim: There is an urgent need to compare and assess these numerous SCP models in order to
evaluate their effectiveness. Moreover, one also needs to assess the advancements and pitfalls in
the domain of SCP to guide researchers and practitioners.
Method: In order to fulfill the above stated aims, we conduct an extensive literature review of 38
primary SCP studies from January 2000 to June 2019.
Results: The review analyzes the different set of predictors, experimental settings, data analysis
techniques, statistical tests and the threats involved in the studies, which develop SCP models.
Conclusion: Besides, the review also provides future guidelines to researchers in the SCP domain,
some of which include exploring methods for dealing with imbalanced training data, evaluation of
search-based algorithms and ensemble of algorithms for SCP amongst others.

Keywords: change-proneness, machine learning, software quality, systematic review

1. Introduction

The importance of planning and implementing
change in a software is accepted universally. It
is crucial for a software to reform in order to
remove existing defects, to upgrade itself with
the changing user requirements and technological
progressions or to improve the current perfor-
mance and structure [1–3]. In case a software
product is unable to do so, it rapidly becomes
obsolete and extinct. Thus, change management
of a software product is a vital activity, which
needs to be properly enforced.

Prediction of change-prone parts of a soft-
ware product is an effective mechanism for soft-
ware change management. Change-proneness is
defined as the likelihood that a class would
change across different versions of a software

product [1, 4]. Since it indicates whether a spe-
cific class would require change in the forthcom-
ing release of the software, it is generally rep-
resented by a binary variable indicating “yes”
(change-prone class) or “no” (not change-prone
class). Knowledge of change-prone classes aids
software managers in effectively planning critical
software resources such as cost, time and human
effort. Sufficient allocation of these resources to
change-prone classes ensures that they are care-
fully designed and rigorously verified [1–3]. Such
activities would result in a good quality, easily
maintainable and cost-effective software prod-
ucts.

Various studies in literature have successfully
developed software quality models to predict
change-prone classes of a software. These studies
have explored a variety of predictor variables,

Submitted: 3 July 2019; Revised: 14 October 2019; Accepted: 14 October 2019; Available online: 12 November 2019

228 Ruchika Malhotra, Megha Khanna

numerous classification algorithms and extensive
software datasets for empirical validation. At
such a stage, it is imperative for researchers to
analyze the current state of literature and com-
pare the capabilities of existing SCP models in
literature. Such a step is important in order to
summarize the existing trends in the domain and
simultaneously analyze the shortcomings and
future directions in the area. Thus, we conduct
a systematic literature review of SCP studies
from the period of January 2000 to June 2019.
The review is conducted according to the guide-
lines specified by Kitchenham et al. [5].

Though, software change-proneness predic-
tion studies have been earlier assessed by previ-
ous review studies [6, 7], they have not been effec-
tively scrutinized for trends specific to the soft-
ware change domain. These studies have either
been explored as an application of Search-Based
Algorithms (SBA) to predictive modeling [6] or
for only assessing the threats specific to SBA [7].
A previous study by Godara and Singh [8] as-
sessed change-proneness prediction in Object-Ori-
ented (OO) software. However, they only pre-
sented a survey of the studies without critically
analyzing their various parameters. Also, though
a previous attempt by the authors [9] evaluated
SCP studies, the analysis was limited with no
emphasis on the predictive capabilities of vari-
ous data analysis algorithms. To the best of our
knowledge, no study in the literature has com-
prehensively evaluated and summarized the ex-
perimental settings, predictor metrics, datasets,
capabilities of data analysis algorithms, statisti-
cal tests and threats with respect to SCP studies.

On the other hand, there are various review
studies which analyze defect-proneness predic-
tion (a closely related area to change-proneness)
literature. A study by Catal and Diri [10] re-
viewed 74 defect prediction studies to assess the
metrics, data analysis algorithms and datasets
used in defect prediction literature. They con-
cluded that method-level metrics, machine learn-
ing algorithms and public datasets are the most
dominant in the area. Hall et al. [11] reviewed
36 primary studies to study the context, predic-
tors and data analysis algorithms used for defect
prediction. They concluded that combination of

predictor variables yields better defect prediction
models and feature selection enhances the perfor-
mance of the developed models. Radjenovic et al.
[12] reviewed 106 primary studies and classified
the metrics used in defect prediction literature as
Object-Oriented (OO) metrics, traditional source
code metrics and process metrics. A review study
by Wahono [13] assessed 71 defect prediction
studies between the period January 2000 to De-
cember 2013. The review assessed the trends and
frameworks in defect prediction literature apart
from datasets and data analysis algorithms. As
pointed out in the review, the frameworks devel-
oped by certain defect prediction studies do not
address the issue of class imbalance and noisy
data. Hosseini et al. [14] reviewed 30 primary
studies to assess the state of the art in cross
project defect prediction. They concluded that
cross-project defect prediction still requires ex-
tensive research before it yields reliable results.
Certain other reviews on defect-proneness predic-
tion includes the one conducted by Malhotra [15],
Singh et al. [16] and Catal [17]. Though these
reviews yield a significant contribution to defect
prediction literature, there a huge gap in change
prediction literature in terms of an effective and
extensive review.

We investigate the following Research Ques-
tions (RQs) in the review:
– RQ1: Which predictors are useful for devel-

oping SCP models?
– RQ2: What have been the various experimen-

tal settings used in primary studies while
developing SCP models?
– RQ2.1: What are the various feature se-

lection or dimensionality reduction tech-
niques?

– RQ2.2: What are the characteristics of
datasets used?

– RQ2.3: What are the various validation
methods used?

– RQ2.4: Which performance measures have
been used?

– RQ3: What are the various categories of data
analysis algorithms used for developing SCP
models?
– RQ3.1: Which is the most popular cate-

gory of data analysis algorithm used?

Software Change Prediction: A Systematic Review and Future Guidelines 229

– RQ3.2: Which Machine Learning (ML)
algorithms have been evaluated?

– RQ4: What is the predictive performance of
ML algorithms for developing SCP models?
How does the predictive capability of ML
algorithms compare amongst themselves?

– RQ5: What are the various statistical tests
used for validating the results of SCP models?

– RQ6: What threats to validity exist while
developing SCP models?
– RQ6.1: What are the various categories of

threats which exist while developing SCP
models?

– RQ6.2: What are the steps required to
mitigate the threats identified in RQ6.1?

The aim of the review is to summarize the
empirical evidence reported in literature with re-
spect to SCP. It would also help in identification
of research gaps and will provide future possible
guidelines to researchers and practitioners. The
organization of the study includes the impor-
tance of SCP (Section 2), review procedure and
the various review stages (Section 3), the review
protocol (Section 4), the answers to the investi-
gated RQ’s (Section 5), the threats (Section 6)
and finally the conclusions and future guidelines
(Section 7).

2. Importance of SCP

There are several diverse reasons for change-
proneness of a specific code segment. Some
real-world examples of why a specific code seg-
ment could be prone to changes are provided
below:
– A code segment may have bad structure or

rigid design which is difficult to extend [18].
– A code segment might contain errors which

have escaped the testing phase and now re-
quires maintenance [19–21].

– Business requirements of an organization
could change necessitating a change in source
code segment [19, 20].
Therefore, SCP is critical in order to identify

such change-prone code segments in the early
stages of software lifecycle so that developers
allocate proper manpower, cost and time to

modify them [18, 21–23]. Such a step is crucial
in order to keep the software operational, and
ensure customer satisfaction. Even in the era
of agile development, SCP is an approach to
continuously monitor change-proneness so that
effective product quality is maintained. Neglect
of change-prone code fragments could result in
poor software quality, extensive costs [20] as the
cost to correct errors increases manifold as they
propagate to later stages of the software product
coupled with delayed delivery schedules.

Before we state the review procedure, it is
important to ascertain as to how a specific seg-
ment (class/file/module) of source code is ad-
judged as change-prone or not change-prone in
primary studies. Majority of primary studies con-
sider a specific segment as change-prone if there
is at least one insertion, removal or modifica-
tion of Source Lines of Code (SLOC) in the
specific code segment from current software re-
lease to its next [24–26]. We term this defini-
tion as “SLOC-based” method. In certain other
primary studies, a specific code segment is con-
sidered change-prone if the number of changes
it underwent from one release to the next is
greater than the median value (median of num-
ber of changes in all the source code segments
in the software) [19, 27, 28]. We term the defi-
nition as “median-based” method. However, few
primary studies used boxplot-based partition
method [18], class stability [29] or other meth-
ods to define the dichotomous change-proneness
dependent variable.

As discussed above, primary studies have
used various methods to define change-proneness.
However, it is difficult to adjudge any one of them
as best as each method has its own merits and
demerits. The “SLOC-based method” may desig-
nate a segment as change-prone even if very few
(even one) SLOC has been changed. This ensures
that no change is missed as it is possible that crit-
ical changes to the code are performed by chang-
ing very few SLOC. It may be noted that such
code segments may be candidates for corrective
maintenance but not very much for preventive
maintenance as only few SLOC has been mod-
ified and not much structure would have been
altered. However, this method has a downside,

230 Ruchika Malhotra, Megha Khanna

even trivial changes to the code would also make
the code segment counted as change-prone. On
the other hand, the “median-based” method ig-
nores the code segments with very few changes. It
focuses on identifying classes which requires pre-
ventive maintenance. The goal of “median-based”
method is to find which classes will change more
than others, not which classes will change in
an absolute manner. But as discussed earlier
the “median-based” method may ignore critical
changes if they are performed using very few
lines.

3. Review procedure

According to the guidelines advocated by
Kitchenham et al. [5], a review is conducted
in three fundamental stages. These stages are
reportedly planning, conducting and reporting.
The foremost step of the planning stage is to
evaluate the necessity of the review. As already
discussed, this review is important so as to evalu-
ate, assess and summarize the empirical evidence
with respect to prediction of change-prone classes
in software products. It intends to provide an
overview of existing literature in the domain
and would scrutinize possible future directions.
Once the need of the review is assessed, the plan-
ning stage involves formation of RQs. Thereafter,
a review protocol is formulated. The protocol
includes a detailed search strategy. The search
strategy consists of the list of possible search
databases one intends to scrutinize, the search
string and the criteria for inclusion or omittance
of the extracted studies. Apart from the search
strategy, the protocol also includes the criteria
for assessing the quality of the candidate studies,
the procedure for collecting the relevant data
from the primary studies and synthesis of the
collected data. The second stage involves the
actual execution of the review protocol. In this
stage, all the primary studies are extracted, scru-
tinized and the relevant data is obtained. The
final stage of the review reports the results of
the investigated RQs. The RQs are answered on
the basis of the data collected from the primary
studies of the review.

4. Protocol for conducting the review

The following sections describe the review proto-
col followed which lists the search strategy used,
the criteria used for selecting or omitting the
extracted studies and the criteria for evaluating
the quality of the collected candidate studies.

4.1. Search strategy

The search terms were designed by dividing the
explored RQs into logical units. Moreover, terms
were identified from paper titles, keywords and
abstracts. Thereafter, all equivalent terms and
synonyms were compiled using Boolean OR (||),
while distinguishable search terms were aggre-
gated using Boolean AND (&). As indicated ear-
lier, the search period was January 2000–June
2019. The designed search-string is:

(“software product” || “open source project”
|| “software application” || “software system”
|| “software quality” || “source code”) &
(“change” || “evolution” || “maintenance”) &
(“prediction” || “proneness” || “classification”
|| “classifier” || “empirical”) & (“machine
learning” || “statistical” || “search-based” ||
“evolutionary” || “data analysis”)
The search was conducted in SCOPUS, ACM

digital library, Wiley online library, IEEExplore
and SpringerLink, as these are well-known search
databases. We also searched the reference lists
of the studies and found seven studies. In all,
we identified and extracted 67 relevant studies,
which were further subjected to the criteria indi-
cated in Section 4.2.

4.2. Inclusion and omittance criteria

We use the following inclusion and omittance
criteria for selecting or rejecting a study based on
the RQs, after which we get 41 candidate studies.
– Inclusion Criteria: All studies which predict

the dichotomous change-proneness attribute
of a class/module or determine class stabil-
ity with the aid of software metrics were
included. We also include studies which re-
ported and compared various data analysis
algorithms amongst themselves for developing
SCP models.

Software Change Prediction: A Systematic Review and Future Guidelines 231

– Omittance Criteria: Extracted studies which
predict otherdependentvariables suchasmain-
tenance effort, maintainability, change-count,
fault-proneness, amount of changes, etc. were
excluded. A related concept to change-prone-
ness is code churn. It is defined as the volume
of SLOC that is changed (inserted, modified or
removed) between two versions of a software
and represents the extent of change [30]. It
is a continuous attribute and encapsulates
the maintenance effort required by the class
while it undergoes changes (bug correction,
enhancements or refactoring). The current re-
view limits itself to binary change-proneness
attribute and does not include studies which
assess code churn. Also, studies which predict
ordinal dependent variables for change-prone-
ness such as low, medium, high, etc. were not
included as a part of the review.
We also omitted survey or review papers, PhD
dissertations, short or poster papers and stud-
ies with limited or non-existent empirical anal-
ysis. A conference paper which has been pub-
lished as a journal article was also omitted
and only the corresponding journal article was
included. Though change-proneness attribute
has been explored in design pattern literature
[31] and technical debt literature [32], we ex-
clude such studies. Therefore, studies which
used only design patterns or code smells for
determining change-prone nature of a class
/module were removed.

4.3. Quality criteria

We assess the importance of each candidate study
in answering the investigated RQs. The 41 can-
didate studies were evaluated according to the
quality criteria illustrated in Table 1. Each can-
didate study was given a Quality Score (QS)
by combining the scores of a specific study on
the basis of the 10 quality questions stated in
Table 1. For each question, a candidate study can
be either given a score of 0 (No), 0.5 (Partly) or
1 (Yes). Table 1 states the number of candidate
studies which were allocated different scores (Yes,
Partly or No). All the studies whose QS was less
than 5 (50% of the total quality score) were
rejected. We rejected three studies [33–35]. After
quality analysis, we selected 38 studies, which we
term as the primary studies of the review. The
data needed to answer the RQs was extracted
only from the primary studies.

Table 2 states the Primary Studies (PS) with
a specific study number (S.No.) and its QS. The
most popularly cited studies were PS10 and
PS13.

4.4. Data extraction

The primary studies were classified according to
publication year, publication venue, predictors,
datasets, data analysis algorithms, performance
measures, validation methods, statistical tests
and threats to validity.Table A1 (Appendix A)

Table 1. Quality assessment questions

Quality questions Yes Partly No
Are the objectives of the research/research questions clear and concise? 41 0 0
Are the predictor variables clearly defined and described? 27 12 2
Are the number and magnitude of datasets analyzed suitable? 30 10 1
Are the predictors effectively chosen using feature selection/dimensionality reduction
techniques?

20 4 17

Are the data analysis techniques clearly defined and described? 25 9 7
Is there any comparative analysis amongst various models/techniques? 34 1 6
Are the performance measures clearly specified? 33 7 1
Did the study perform statistical hypothesis testing? 25 1 15
Does the study use appropriate validation methods? 32 1 8
Is there a description of threats to validity of research? 19 3 19

232 Ruchika Malhotra, Megha Khanna

Table 2. Primary studies with quality score

S.No. Study QS S.No. Study QS
PS1 Liu and Khoshgoftaar 2001 [36] 6.5 PS20 Elish et al. 2017 [37] 8
PS2 Khoshgoftaar et al. 2003 [38] 6.5 PS21 Kumar et al. 2017a [39] 8
PS3 Tsantalis et al. 2005 [40] 8 PS22 Kumar et al. 2017b [41] 9
PS4 Sharafat and Tahvildari 2008 [42] 5.5 PS23 Kumar et al. 2017c [43] 7
PS5 Azar 2010 [44] 6.5 PS24 Malhotra and Jangra 2017 [45] 9
PS6 Han et al. 2010 [46] 6 PS25 Malhotra and Khanna 2017a [26] 9.5
PS7 Azar and Vybihal 2011 [29] 7.5 PS26 Malhotra and Khanna 2017b [47] 9.5
PS8 Eski and Buzluca 2011 [48] 5 PS27 Yan et al. 2017 [49] 9.5
PS9 Lu et al. 2011 [24] 7 PS28 Agrawal and Singh 2018 [50] 8
PS10 Romano and Pinzger 2011 [27] 8 PS29 Catolino et al. 2018 [19] 9.5
PS11 Giger et al. 2012 [28] 8 PS30 Ge et al. 2018 [23] 6.5
PS12 Elish et al. 2013 [25] 9.5 PS31 Liu et al. 2018 [51] 7
PS13 Malhotra and Khanna 2013 [52] 9 PS32 Kaur and Mishra 2018 [53] 8
PS14 Malhotra and Bansal 2014 [54] 6 PS33 Malhotra and Khanna 2018a [55] 9.5
PS15 Malhotra and Khanna 2014 [56] 9 PS34 Malhotra and Khanna 2018b [57] 9.5
PS16 Marinescu 2014 [58] 7 PS35 Zhu et al. 2018 [18] 9.5
PS17 Elish et al. 2015 [59] 6 PS36 Catolino and Ferrucci 2019[19] 9.5
PS18 Malhotra and Khanna 2015 [60] 8.5 PS37 Kumar et al. 2019 [22] 8
PS19 Bansal 2017 [61] 9.5 PS38 Malhotra and Khanna 2019 [21] 9.5

states the key parameters of primary studies after
the data extraction step.

5. Review results

The current section states the review results and
the discussions corresponding to the obtained
results. We categorized the primary studies ac-
cording to their publication venue and found
that 37% of the 38 primary studies were con-
ference publications, 59% of the studies were
journal publications and one study each was
published as a technical report and a chap-
ter. The most popular journals were “Infor-
mation and Software Technology” (11% stud-
ies) and “Journal of Software: Evolution and
Process” (8% studies). “International Confer-
ence on Advances in Computing, Communica-
tion and Informatics” and “Innovations in Soft-
ware Engineering Conference” were found to be
the most popular conference venues with 5%
of publications each. Figure 1 depicts a distri-
bution of all the primary studies according to
“publication year”. According to the figure, the
highest number of SCP studies were published
in 2017.

Figure 1. Publication year of primary studies

5.1. Predictors used for SCP (RQ1)

This RQ determines the various predictors which
have been used for developing SCP models. An
analysis of primary studies reveals that both
product as well as process metrics have been used
as predictors for SCP. Table 3 lists the various
metrics used in primary studies for developing
SCP models.

According to Table 3, product metrics espe-
cially structural metrics extracted from source
code design have been widely used in SCP

Software Change Prediction: A Systematic Review and Future Guidelines 233

Table 3. Predictors used by SCP studies

Metric
category Brief description Study

numbers Category

Structural
metrics

These metrics are generally source code design metrics, which
depict the structural attributes of a class such as its inheritance,
cohesiveness, size, etc. Many such metric suites have been proposed
in literature such as Chidamber and Kemerer (CK) metrics suite
[62], Quality Models for Object Oriented Design metrics suite [63],
Lorenz and Kidd metrics suite [64], Li and Henry metrics suite [65]
and many others.

PS1–
PS38 Product

Network
metrics

These metrics are extracted from the dependency graph of the
software and identifies files which are “more central” and are
more likely to change, e.g. Degree centrality, Closeness centrality,
Reachability, etc.

PS11,
PS35 Product

Evolution
based metrics

These metrics characterize evolution history of a class, i.e. release
by release history of how a class has evolved in previous versions,
e.g. Birth of a Class, Frequency of changes, Change density, etc.

PS12,
PS20,
PS29,
PS33,
PS36

Process

Word
vector metrics

These metrics quantify the terms used in the source code files and
their names by using bag of words approach. PS35 Product

Developer
related metrics

These metrics quantify various developer related factors such as
entropy of changes introduced by a developer in a given time period,
number of developers employed on a specific software segment in
a specific time, structural and semantic scattering of developers in
a specific time period, etc., e.g. entropy of changes applied by de-
velopers in a given time period, structural scattering of developers
that work on a particular class in a given time period, etc.

PS29,
PS36 Process

Combination
of structural
and evolution
based metrics

This metric suite combines structural and evolution-based metrics
as they quantify two different attributes (software design and
evolution history) of a class.

PS12,
PS20,
PS33

Product
and
Process

Others
Metrics such as instability and maintainability index used by PS32,
probability of change based on inheritance, reference and depen-
dency used by PS3.

PS32,
PS3 Product

literature. It was found that all the studies
evaluated this category of metrics. Even pri-
mary studies which proposed other possible
category of metrics (evolution-based, network,
developer-related, etc.) assessed and compared
their proposed predictors with structural met-
rics as they are well established and success-
fully used by numerous studies. We found that
the CK metrics suite was the most commonly
used structural metrics suite in primary stud-
ies, which characterized various OO attributes.
A similar observation was stated by Radjenovic
et al. [12] while analyzing defect prediction stud-
ies. The CK metrics suite consists of Weighted

Methods of a Class (WMC), Lack of Cohesion
amongst Methods (LCOM), Coupling Between
Objects (CBO), Response for a Class (RFC),
Depth of Inheritance Tree (DIT) and Number
of Children (NOC) metrics. Apart from the CK
metric suite, the SLOC metric (a measure of
class size) has also been frequently used in pri-
mary studies. Other product metrics used were
network metrics, word vector metrics and the
“others” category.

Only 16% of primary studies used process
metrics. While PS12, PS20, PS29, PS33 and
PS36 used evolution-based metrics which char-
acterize the evolution history of a class, PS29

234 Ruchika Malhotra, Megha Khanna

and PS36 used metrics which depict the de-
velopment process complexity by quantifying
developer related factors. It may be noted
that PS12, PS20 and PS33 advocated the com-
bination of both process as well as product
metrics for determining change-prone nature
of a class.

We also analyzed the granularity level over
which these metrics were collected. Five stud-
ies (PS1, PS2, PS11, PS32 and PS35) collected
file-level metrics, one study each collected struc-
tural metrics at interface level (PS10) andmethod
level (PS4). However, all other studies analyzed
class-level metrics. It may also be noted that cer-
tain studies (PS5, PS7, PS9, PS22, PS23, PS24),
analyzed a large number of OO metrics with re-
spect to different dimensions (cohesion, coupling,
size and inheritance) in order to obtain generalized
results.

5.2. Experimental settings for SCP
(RQ2)

This RQ explores the various experimental set-
tings, i.e. the feature selection or dimensionality
reduction methods, the characteristics of datasets
used for empirical validation, the validation meth-
ods and the performance measures used by SCP
studies.

5.2.1. Feature selection and dimensionality
reduction techniques (RQ2.1)

Primary studies use feature selection or dimen-
sionality reduction techniques to aid the devel-
opment of effective SCP models. We analyzed
these studies to determine the most commonly
used methods (Table 4). An analysis of 38 pri-
mary studies revealed that 58% of them used
either a feature selection or a dimensionality
reduction technique. According to Table 4 the
most commonly used feature selection technique
was Correlation-based Feature Selection (CFS).
Apart from the techniques listed in Table 4,
other primary studies used several other mis-
cellaneous methods (Best-first search (PS12),
Variable Importance (PS15), Rough set analysis
(PS21, PS37), Information Gain (PS21, PS37),

t-test (PS23), Chi-square test (PS37), Genetic
Algorithm (PS23, PS37), Metric Violation Score
(PS27), Wrapper Method (PS36), Consistency
Feature selection (PS37), OneR feature evalua-
tion (PS37)). Apart from feature selection, sev-
eral studies performed correlation analysis to
investigate whether the predictors used are cor-
related with change-proneness attribute (PS8,
PS9, PS10, PS11, PS12, PS13, PS19, PS21, PS22,
PS37).

Certain studies in literature reported spe-
cific OO metrics as effective predictors of
change-prone nature of a class. These metrics
were selected after application of feature selection
or dimensionality reduction techniques. Since, in
RQ1 we reported that the CK metrics suite and
the SLOC metric are popular amongst primary
studies, we state the studies which report these
metrics as effective indicators of change-prone-
ness (Table 5). According to the table, 14 studies
reported metrics which characterize size attribute
(SLOC and WMC) and the ones which charac-
terize coupling attribute (CBO and RFC) as effi-
cient indicators of change-proneness. Moreover,
it may be noted that the inheritance attribute
metric, DIT was only selected as an effective
metric by three studies and there was no study
which selected NOC (another inheritance metric)
as an effective predictor of change-proneness.

5.2.2. Dataset characteristics (RQ2.2)

In order to perform empirical validation, pri-
mary studies have used a number of datasets.
This question explores the characteristics of
these datasets which includes their nature (pub-
lic/private), size, percentage of change and other
attributes.

Software datasets used by primary studies can
be broadly categorized into public/open-source
datasets or private/commercial datasets. We cat-
egorized the datasets in SCP studies and found
that only 5% of these studies used commer-
cial/private datasets. All other SCP studies used
open-source datasets, which are publicly avail-
able. This trend was observed as commercial
datasets are difficult to obtain and is similar to
the one observed by Catal and Diri [10] while

Software Change Prediction: A Systematic Review and Future Guidelines 235

Table 4. Feature selection/dimensionality reduction techniques

Feature selection/dimensionality reduction Study numbers
Correlation-based Feature Selection (CFS) PS13, PS18, PS19, PS24, PS25, PS26, PS30, PS34,

PS35, PS37, PS38
Univariate Analysis PS21, PS22, PS24, PS28, PS37
Principal Component Analysis (PCA) PS12, PS20, PS21, PS37
Gain Ratio PS21, PS29, PS37
Multivariate Regression with forward and backward
selection

PS3, PS13, PS22

Table 5. OO metrics selected for SCP in primary studies

Metric Acronym OO Attribute Study Numbers
SLOC Size PS4, PS8, PS15, PS18, PS19, PS21, PS24, PS25, PS26, PS28, PS33,

PS34, PS37, PS38
WMC Size PS8, PS15, PS18, PS20, PS22, PS24, PS25, PS28, PS33, PS34
CBO Coupling PS8, PS18, PS20, PS21, PS22, PS24, PS25, PS28, PS33, PS37, PS38
RFC Coupling PS8, PS13, PS15, PS19, PS20, PS21, PS28, PS37
LCOM Cohesion PS15, PS20, PS21, PS28, PS37
DIT Inheritance PS20, PS28, PS37

reviewing defect prediction literature. There-
fore, researchers tend to validate their results on
datasets that are open-source and easily available
in software repositories.

We also investigated the language used to de-
velop the datasets, which are used for empirical
validation for SCP. Only four studies (PS1, PS2,
PS15, PS18) used datasets developed using the
C++ language. It may be noted that all other
studies used datasets developed in Java language.

The datasets used in primary studies for SCP
are of varying sizes and with different percentage
of change-prone classes. For each study, we ana-
lyzed the number of datasets used and the mini-
mum and maximum size of datasets in terms of
number of data points, i.e. classes (Table 6). We
also state the minimum and maximum percent-
age of change in the datasets used by these stud-
ies (Table 6). It was noted that certain datasets
were used by more than one primary study. The
name of such datasets and the studies which use
them are listed in Table A2 (Appendix A).

It is also important to evaluate whether the
datasets used for developing models are imbal-
anced in nature. A dataset is said to be im-
balanced if it has a disproportionate number
of change-prone and not change-prone classes.
We state the number of datasets which were

found to be imbalanced for a specific study
in Table 6. As it is more important to deter-
mine the change-prone classes correctly, one
should have sufficient number of change-prone
classes in a dataset for effectively training the
model. We term a dataset as imbalanced if it
has less than 40% of change-prone classes. Stud-
ies from which relevant information could not
be extracted are not shown in the table. Ac-
cording to the information shown in Table 6,
the size of datasets used in primary studies for
SCP varies from 18–3,150 data points. There-
fore, these studies have analyzed small sized,
moderately sized and large-sized datasets for
developing SCP models. It may also be noted
that the percentage of change found in these
datasets varies from 1–97%. However, in a ma-
jority of the studies 25–100% of datasets an-
alyzed were imbalanced in nature. Only few
studies (PS26, PS30, PS35, PS36) addressed
the issue of learning from imbalanced training
data in SCP literature. It is mandatory for re-
searchers to take active steps to develop effec-
tive prediction models from imbalanced datasets
in order to develop reliable and unbiased mod-
els. On the other hand, it should be noted
that though having an imbalanced dataset is
an issue while training the model, it is good

236 Ruchika Malhotra, Megha Khanna

Table 6. Study-wise details of datasets

S.No. Number of data points Percentage of change Number of datasets
Imbalanced datasets (%)Minimum Maximum Minimum Maximum

PS1 – 1,211 – 24% 1 (100%)
PS2 – 1,211 – 24% 1 (100%)
PS3 58 169 25% 50% 2 (50%)
PS4 – 58 – 25% 1 (100%)
PS5 18 2,737 – – 15 (–)
PS6 44 62 – – 1 (–)
PS7 18 958 – – 8 (–)
PS8 38 693 – – 3 (–)
PS9 38 2,845 – – 102 (–)
PS10 25 165 – – 10 (–)
PS11 98 788 – – 2 (–)
PS12 36 170 4% 91% 20 (50%)
PS13 254 657 10% 52% 3 (67%)
PS14 607 2,786 1% 97% 12 (25%)
PS15 108 510 45% 66% 6 (0%)
PS16 – – – – 18 (–)
PS17 36 60 – – 2 (0%)
PS18 108 510 45% 66% 3 (0%)
PS19 685 756 24% 33% 2 (100%)
PS20 36 170 4% 78% 13 (38%)
PS21 – – – – 1 (–)
PS22 1,507 1,524 7% 16% 5 (100%)
PS23 83 1,943 30% 68% 10 (30%)
PS24 348 434 4% 30% 2 (100%)
PS25 72 374 19% 63% 6 (50%)
PS26 72 350 6% 37% 6 (100%)
PS27 53 3,150 8% 94% 14 (57%)
PS28 608 1,496 9% 46% 5 (80%)
PS29 – – 19% 35% 20 (100%)
PS30 341 1,505 3% 83% 20 (65%)
PS31 53 3,150 2% 93% 14 (64%)
PS32 86 130 14% 59% 4 (75%)
PS33 210 375 4% 52% 9 (67%)
PS34 78 1,404 29% 88% 10 (40%)
PS35 272 1,705 8% 17% 8 (100%)
PS36 121 2,2,46 22% 37% 33 (100%)
PS37 83 1,943 30% 68% 10 (30%)
PS38 222 1,101 16% 62% 15 (53%)
Note: “–” indicates the corresponding information was not found in the study.

that only few classes are change-prone. There-
fore, only these few classes require constant
monitoring and most of the maintenance re-
sources can be focused on these classes. In case
majority of the classes are change-prone, soft-
ware practitioners might face a tough time man-
aging constraint resources during maintenance
and testing.

5.2.3. Validation methods (RQ2.3)

Studies in literature have used various validation
methods for developing SCP models which can be
broadly categorized into within-project methods
and cross-project methods. Within-project vali-
dation models use training and testing data of the
same software project. The training data used by

Software Change Prediction: A Systematic Review and Future Guidelines 237

the model is obtained from the previous versions
of the same project and is validated on the later
versions. On the contrary, in cross- project valida-
tion, the prediction model is trained using data
from one project (say Project A) and is validated
on another project (Project B). Cross-project
validation is useful in case historical data of the
same software project is not available. Figure 2
depicts the most commonly used validation meth-
ods in SCP studies. An analysis of the figure
reveals that majority of studies developed mod-
els with within-project approach. It can be per-
formed using either hold-out validation, K-fold
cross validation or Leave-one-out Cross Valida-
tion (LOOCV), which are described below:
– LOOCV: For a dataset having N instances,

this method requires N iterations. In each
iteration, all data points except one are used
as training instances. The remaining data
point is used for validation. It is ensured that
all data points are used at least once for vali-
dating the developed model. Only one study
(PS17) used LOOCV.

– K-fold Cross Validation: The whole dataset
is randomly split into K parts, which are
nearly equal in size. Thereafter, K iterations
are performed. In each iteration, only one
partition is excluded for validation, while all
others are used for training the model. As in
LOOCV, each partition is used for validation
at least once. The most frequently used value
for K is 10. Only one primary study each
used K = 20 (PS22) and K = 5 (PS37). It is
the most popular method for validating SCP
models.

– Hold-out Validation: The available data
points are randomly split into testing and
training sets using a specific ratio. One of
the most common ratio used for partitioning
is 75:25. In such a case, 75% of data points
are used while training and the remaining
25% of data points are used while validation.
However, the method has high variability due
to random division of training and test sets.
The points which make the training and test
sets may affect the performance of the devel-
oped model. Only four studies used hold-out
validation.

Figure 2. Validation methods in primary studies

Apart from within-project validation, cross-
project validation was used by seven SCP studies
(PS14, PS18, PS23, PS24, PS30, PS31, PS38).
Also, inter-version validation, where different re-
leases of the same dataset are used for training
and validation was used by two studies (PS14,
PS26). We found that k-fold cross validation is
the most popular validation method as it pro-
vides the mean results obtained in various parti-
tions, thereby reducing variability. As a result, the
data is insensitive to the created partitions as in
the case of hold-out validation. PS29 considered
the time dimension for validating the developed
model. They used a three month sliding window
to train and test SCP models as the developers
metrics used by the study encapsulate developer
dynamics in a given time period.

5.2.4. Performance measures (RQ2.4)

The developed SCP models in primary studies
are assessed using various performance measures.
This RQ investigates the most commonly used
performance measures, depicted in Figure 3. The
definitions of these measures are stated as fol-
lows:
– Accuracy: It depicts the percentage of cor-

rectly predicted classes (change-prone and
not change-prone category).

– Recall: It is an estimate of the percent-
age of correctly predicted change-prone
classes amongst the total number of actual
change-prone classes. It is also commonly re-
ferred to as Sensitivity. A complementary
measure of Recall is specificity. Specificity rep-
resents the percentage of correctly predicted

238 Ruchika Malhotra, Megha Khanna

not change-prone classes amongst the total
number of actual not change-prone classes.

– Precision: It depicts the percentage of cor-
rectly predicted change-prone classes amongst
the total number of predicted change-prone
classes.

– F-measure: It is computed as the harmonic
mean of recall and precision.

– Area Under Receiver Operating Character-
istic Curve (AUC): It is a plot of recall and
specificity. Recall is depicted on the y-axis,
while a value of 1 specificity is depicted on
the x-axis. The area under the depicted plot
gives an estimate of the model’s performance.

Figure 3. Commonly used performance measures
in primary studies

It may be noted that a model which attains
higher value for all the discussed performance
measures is desirable. According to Figure 3, the
most commonly used measure is accuracy. How-
ever, in case of imbalanced datasets, accuracy is
not an appropriate measure [66–68]. Even if the
percentage of correctly predicted change-prone
classes are very few, accuracy values can be high
as the performance measure is not sensitive to
class distributions. On the contrary, the AUC
measure is effective as it takes into account both
recall and 1 specificity. Researchers should use
an appropriate performance measure to yield
unbiased results. Selection of an appropriate per-
formance measure is vital to strengthen the con-
clusion validity of the study. Apart from the mea-
sures shown in Figure 3, there were several other
performance measures (Type I error, Type II er-
ror, Overall misclassification error, False positive

ratio, False negative ratio, Specificity, Probability
of False Alarm (PF), Goodness of fit, J-index,
G-measure, G-mean, Change cost, cost ratio, Bal-
ance, Mathews Correlation Coefficient), which
were used by only few studies.

5.3. Data analysis algorithms
used for SCP (RQ3)

Prediction models require the aid of data analy-
sis algorithms, which can be broadly categorized
into statistical or ML. Statistical algorithms in-
clude regression techniques such as binary Lo-
gistic Regression (LR), polynomial regression or
Linear Discriminant Analysis (LDA). ML algo-
rithms include various categories such as Decision
Trees (DT), Bayesian algorithms, Artificial Neu-
ral Networks (ANN), ensembles, Search-Based
Algorithms (SBA), etc. We first investigate the
most popular category of algorithms for develop-
ing SCP models.

5.3.1. Popular category of data analysis
algorithms (RQ3.1)

Certain primary studies used only a specific cate-
gory of algorithm, i.e. only statistical or only ML,
while certain others used more than one category.
Figure 4 depicts the number of primary studies
using the various categories of algorithms. A new
category of algorithms, i.e. ensembles algorithms
were used by certain studies (PS17, PS20, PS21,
PS23, PS34, PS37, PS38), which were ensemble
of several base learning algorithms. For instance,
PS17 used an ensemble of Multilayer Perceptron
(MLP), Support Vector Machine (SVM), Genetic
Programming (GP), Logistic Regression (LR)
and k-means techniques which were aggregated
using majority voting. According to Figure 4,
ML algorithms are the most popular category,
followed by the statistical algorithms. The disad-
vantage of statistical algorithms over ML ones is
that the models developed using statistical tech-
niques are not easily interpretable [69]. Another
disadvantage of statistical models is that they are
highly reliant on data distribution and are based
on assumptions which may not be fulfilled by
the software product data whose change-prone-

Software Change Prediction: A Systematic Review and Future Guidelines 239

ness is to be predicted [69]. Out of the 38 stud-
ies, three studies did not use any specific algo-
rithm but predicted classes using a certain set of
equations (PS4), by using a combined rank list
(PS8) or by using random effect meta-analysis
model (PS9).

Figure 4. Categories of techniques

5.3.2. ML algorithms used for SCP (RQ3.2)

The ML algorithms can be further divided into
several categories in accordance with Malhotra
[15]. Table 7 states the various sub-categories of
ML techniques which are used by SCP studies.
These sub-categories are Decision Trees (DT),
Bayesian algorithms, SVM, ML Ensemble, ANN
and SBA. Other remaining algorithms were
grouped into a miscellaneous category.

We further analyzed the percentage of pri-
mary studies which used a specific category of
ML algorithms amongst the primary studies
which used an ML algorithm for SCP (Figure 5).
It was noted that ANN is the most popular cate-
gory of ML algorithms which are used by 53% of
studies. ANN are capable of modeling complex
non-linear relationships and are adaptive in na-
ture making them suitable for change prediction
tasks. The next popular category of techniques
were SBA, used by 41% of studies. It is a subclass
of ML algorithms, which have recently gained
popularity. SBA are self-optimizing techniques,
which are capable of dealing with noisy and im-
precise data. ML ensemble algorithms, which
form several classification models using variants
of training set and use voting scheme to com-

bine these models are also a popular category of
techniques used by 41% of studies.

Figure 5. Sub-categories of ML algorithms

5.4. Predictive performance
of ML algorithms for SCP (RQ4)

The various ML algorithms investigated in the
primary studies for developing SCP models
should be assessed so as to ascertain their ef-
fectiveness.

5.4.1. Predictive capability of ML algorithms

In order to assess the capability of ML algorithms,
we state the values of popular performance mea-
sures of the developed SCP models. However, we
need to generalize our results and avoid any bias.
This was done by reporting the results of models
developed by those algorithms which were vali-
dated by using at least three different datasets and
by at least two of the primary studies. This would
forbid an algorithm which exhibits exceptional
performance only in a certain study or only by
using certain datasets to be declared as a superior
one. We analyze the statistics in accordance with
the datasets. However, it may be the case that
the performance of a technique varies due to its
application on a specific dataset. Thus, we remove
outlier values in accordance with the investigated
datasets. We also report the median values to
reduce biased results. The following rules were
observed while extracting various statistics [6, 15].
The rules are chosen so that optimum values at-
tained by a technique may be reported. This is

240 Ruchika Malhotra, Megha Khanna

Table 7. Sub-categories of ML algorithms

Sub-category ML algorithms
Decision Tree
(DT)

C4.5, J48, Classification And Regression Tree (CART)

Bayesian Naive Bayes (NB), Bayesian Network (BN)
SVM SVM, Linear Kernel SVM, Sigmoid Kernel SVM, Polynomial Kernel SVM, Least-Square

SVM (Linear, Polynomial and RBF kernels)
Artificial
Neural
Networks
(ANN)

MLP, MLP with Conjugate Learning (MLP-CG), Radial Basis Function (RBF), Group
Method of Data Handling (GMDH), Extreme ML (Linear, Polynomial and RBF kernels)

ML Ensemble Random Forests (RF), Bagging (BG), Adaptive Boosting (AB), LogitBoost (LB)
Search Based
Algorithms
(SBA)

Ant Colony Optimization (ACO), Constricted Particle Swarm Optimization (CPSO),
Decision Tree-GP, Decision Tree- GA (DT-GA), GP, Genetic Expression Programming
(GEP), Hierarchical Decision Rules (HIDER), Memetic Pittsburgh Learning Classifier
System (MPLCS), Supervised Classifier System (SUCS), X Classifier System (XCS),
Genetic Algorithm with Adaptive Discretization Intervals (GA-ADI), Fuzzy Learning
based on Genetic Programming Grammar Operators and Simulated Annealing (GFS-SP),
Fuzzy Learning based on Genetic Programming (GFS-GP), Genetic Fuzzy System Ad-
aBoost (GFS-AB), Genetic Fuzzy System- LogitBoost (GFS-LB), Genetic Fuzzy System
MaxLogitBoost (GFS-MLB), Genetic Algorithm with Neural Networks (GANN), Neural
Net Evolutionary Programming (NNEP), Particle Swarm Optimization- Linear Discrimi-
nant Analysis (PSO-LDA); Structural Learning Algorithm in a Vague Environment with
Feature Selection (SLAVE)

Miscellaneous K-Nearest Neighbor (K-NN), k-means, KStar, Non-Nested Generalized Exemplars
(NNGE), PART, Decision Table

Figure 6. Dataset-wise accuracy outliers of ML algorithms

important as the performance of an ML algorithm
is dependent on its internal parameter settings.
– If a specific study develops models on the

same dataset more than once with different
experimental settings, we choose the best per-

formance measure values obtained by the tech-
nique.

– In case there is more than one study which
develops models using the same dataset and
the same technique, we use the best of per-

Software Change Prediction: A Systematic Review and Future Guidelines 241

Figure 7. Dataset-wise AUC outliers of ML algorithms

formance measure value reported in all the
studies.
According to Section 5.2.4, the most com-

monly used performance measures by SCP stud-
ies are accuracy and AUC. Figure 6 depicts the
dataset-wise outliers of different ML algorithms
with respect to accuracy measure. According to
the figure, the Hibernate dataset was an out-
lier for both MLP and LB algorithms, showing
lower accuracy values than all other investigated
datasets. JFreechart 0.7.2 is exhibited as an out-
lier for GFS-LB, GFS-SP and NNEP algorithms.
Figure 7 depicts the dataset-wise outliers of differ-
ent ML algorithms with respect to AUC measure.
According to the figure, NB, BG, RF and MLP
algorithms were found to have outliers with lower
AUC values except the IO dataset which had
higher AUC values for BG and RF.

As discussed before, a good change predic-
tion model exhibits higher values of accuracy
and AUC measures. Table 8, 9 presents the com-
parative results of the change prediction models
developed using ML algorithms for the accuracy
and AUC measure respectively. The tables re-
port the statistics values along with the count of
datasets from which the statistics were extracted,
after removing the outliers.

As depicted in Table 8, the majority of ML
techniques (except k-means and SVM) depicted
mean accuracy values in the range 60–80%. The
BG technique depicted the best mean accuracy

value of 81.72%. With respect to median ac-
curacy values, the best median value was de-
picted by the BG technique. As depicted in
Table 9, with respect to AUC, the majority
of ML techniques (except k-means, RBF and
SVM) depicted a mean AUC value in the range
0.65–0.78. Both the BG and RF techniques de-
picted the highest mean AUC value of 0.77.
The best median AUC values were depicted
by AB, RF and BG techniques of 0.76 each.
These results indicate effectiveness of ML tech-
niques in determining change-prone nature of
classes/modules.

It may be noted that the BG, RF and AB
techniques belong to the ensemble category of
ML algorithms. Therefore, their effective predic-
tive capability is a result of aggregation of results
of several base models. This leads to stable and
robust models. It may also be noted that the SBA
(GFS-AB, GFS-GP, GFS-LB, GFS-SP, NNEP,
HIDER) also exhibit good accuracy results. SBA
are effective in optimizing the accuracy of the
developed SCP models. This category of ML
algorithms needs to be further explored as their
results are promising. The statistics reported
in Tables 8 and 9 reveal that the use of ML
algorithms for change-proneness prediction tasks
should be encouraged as they yield effective re-
sults.

Furthermore, we also conducted a meta-analy-
sis of the review studies, which reported the AUC

242 Ruchika Malhotra, Megha Khanna

Table 8. Accuracy results of ML algorithms for SCP models

ML Algorithm Count Minimum Maximum Mean Median SD
AB 17 60.00 96.30 78.92 79.90 10.78
BG 16 63.71 96.30 81.72 80.95 9.25
C4.5 11 63.86 77.33 69.95 69.99 3.55
GEP 3 60.00 77.78 70.24 72.94 7.50
GFS-AB 6 74.50 86.20 78.05 76.00 4.06
GFS-GP 6 65.70 84.60 76.38 76.90 5.91
GFS-LB 5 76.00 78.40 77.10 77.00 0.93
GFS-SP 6 69.00 80.20 73.87 73.50 3.56
HIDER 3 71.00 76.00 73.67 74.00 2.05
k-means 16 26.99 91.17 54.51 56.91 18.73
LB 28 12.88 96.61 71.13 78.10 22.75
MLP 38 30.10 96.30 73.00 75.72 16.56
NB 15 59.00 95.38 77.98 78.19 10.22
NNEP 6 72.00 77.90 75.25 75.25 1.98
RF 25 57.91 98.18 79.32 75.70 10.58
RBF 27 6.38 98.00 63.32 72.00 24.69
SVM 17 6.38 92.29 53.15 60.33 28.20
SD indicates Standard Deviation.

Table 9. AUC results of ML algorithms for SCP models

ML Algorithm Count Minimum Maximum Mean Median SD
AB 25 0.47 0.96 0.74 0.76 0.18
BG 32 0.59 0.96 0.77 0.76 0.11
BN 21 0.58 0.91 0.72 0.71 0.09
C4.5 4 0.55 0.80 0.65 0.63 0.09
GEP 3 0.55 0.73 0.66 0.71 0.08
k-means 16 0.11 0.70 0.40 0.34 0.17
LB 31 0.12 0.98 0.65 0.72 0.23
MLP 47 0.24 0.90 0.69 0.74 0.16
NB 32 0.47 0.95 0.74 0.75 0.09
RBF 16 0.12 0.63 0.41 0.42 0.16
RF 31 0.60 0.98 0.77 0.76 0.10
SVM 27 0.11 0.88 0.53 0.51 0.24
SD indicates Standard Deviation.

performance measure. This was done in order to
evaluate the performance of ML methods in the
domain of SCP. Figure 8 reports the forest plot of
primary studies with the summary performance
measure statistic per study. The weights to the
primary study were allocated on the basis of stan-
dard error, i.e. higher standard error indicated
lower study weight [70]. The confidence interval is
computed at 95%. We assessed the random effects
model as the studies were heterogeneous in terms
of datasets, ML methods and their performance.
The overall effect in the figure indicates that ML
methods are effective for SCP.

5.4.2. Comparative performance of ML
algorithms

We investigate the comparative performance of
various ML algorithms with each other and with
traditional statistical algorithms used for devel-
oping SCP models. The explored hypothesis is
stated as follows:

Null Hypothesis (H0): There is no statistical
difference amongst the performance of different
ML algorithms when compared with each other
and with the statistical technique (LR), while
developing SCP models.

Software Change Prediction: A Systematic Review and Future Guidelines 243

Figure 8. Forest plot

Alternate Hypothesis (H1): There is signifi-
cant difference amongst the performance of dif-
ferent ML algorithms when compared with each
other and with the statistical technique (LR),
while developing SCP models.

The comparative performance was evaluated
dataset-wise and the rules were similar to the
ones followed in RQ4. Furthermore, Wilcoxon
signed rank test was performed at a significance
level of 0.05 for statistical evaluation of the com-
parative results. We compared the performance
of 17 ML algorithms namely, MLP, BG, AB,
RF, RBF, SVM, C4.5, k-means, LB, HIDER,
GFS-AB, GFS-GP, GFS-LB, GFS-SP, NNEP,
NB and BN amongst each other and with LR.
LR is chosen as it is the most common statisti-
cal algorithm used in SCP literature. The other
ML algorithms were chosen as we could extract
sufficient data from primary studies for their
comparison.

Tables 10 and 11 report the results of the
Wilcoxon signed rank test when different algo-
rithms are compared with one another and with
the LR algorithm according to accuracy and
AUC performance measures respectively. The
symbols used in the table represent whether the
performance of the technique stated in the row
is significantly superior (BT*), significantly infe-

rior (WR*), superior but not significantly (BT),
inferior but not significantly (WR) or equivalent
(=), when compared with the technique stated
in the column. We consider the two compared
techniques as equivalent when the pairwise com-
parison amongst the techniques yield equal num-
ber of negative and positive ranks in Wilcoxon
signed rank test. According to Table 10, the
MLP technique shows significantly better perfor-
mance than LR, C4.5 and NB techniques in terms
of accuracy measure. The performance of MLP
technique is worse but not significantly, when
compared with the AB technique. MLP’s accu-
racy performance is better than RF, RBF, SVM,
k-means and LB techniques but not significantly.
The Wilcoxon test results according to AUC
measure depicted in Table 11 show that the RF,
LB, BN and NB algorithms showed significantly
better AUC performance than various other algo-
rithms. The MLP algorithm also depicts better
AUC values than five other compared algorithms,
but not significantly.

It may be noted from the results of Tables
10 and 11 that three ML algorithms depicted
better accuracy results than the statistical al-
gorithm, LR. However, four algorithms (SVM,
GFS-SP, NNEP and AB) showed worse accuracy
results than LR. With respect to AUC, five ML

244 Ruchika Malhotra, Megha Khanna
Ta

bl
e
10
.
C
om

pa
ris

on
of

M
L
al
go
rit

hm
s
ba

se
d
on

ac
cu

ra
cy

m
ea
su
re

(W
ilc
ox

on
te
st

re
su
lts

)

A
lg
o.

M
LP

B
G

A
B

R
F

LR
R
B
F

SV
M

C
4.
5

K
M

LB
H
ID

ER
G
A
B

G
G
P

G
LB

G
SP

N
N
EP

N
B

M
LP

–
W

R
*

W
R

B
T

B
T
*

B
T

B
T

B
T
*

B
T

B
T

N
D

N
D

N
D

N
D

N
D

N
D

B
T
*

B
G

B
T
*

–
B
T

W
R

B
T

N
D

N
D

N
D

N
D

W
R

N
D

N
D

N
D

N
D

N
D

N
D

B
T

A
B

B
T

W
R

–
W

R
W

R
N
D

N
D

N
D

N
D

W
R

W
R

N
D

N
D

N
D

W
R

W
R

B
T
*

R
F

W
R

B
T

B
T

–
B
T
*

W
R

N
D

B
T
*

N
D

B
T

N
D

N
D

N
D

N
D

N
D

N
D

B
T
*

R
B
F

W
R

N
D

N
D

B
T

N
D

–
B
T

B
T
*

W
R

W
R

N
D

N
D

N
D

N
D

N
D

N
D

N
D

SV
M

W
R

N
D

N
D

N
D

W
R

N
D

–
N
D

W
R

W
R
*

N
D

N
D

N
D

N
D

N
D

N
D

N
D

C
4.
5

W
R
*

N
D

N
D

W
R
*

N
D

W
R
*

N
D

–
N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

k
-m

ea
ns

W
R

N
D

N
D

N
D

N
D

B
T

B
T

N
D

–
W

R
N
D

N
D

N
D

N
D

N
D

N
D

N
D

LB
W

R
B
T

B
T

W
R

N
D

B
T

B
T
*

N
D

B
T

–
N
D

N
D

N
D

N
D

N
D

N
D

B
T
*

H
ID

ER
N
D

N
D

B
T

N
D

N
D

N
D

N
D

N
D

N
D

N
D

–
N
D

N
D

N
D

B
T

W
R

N
D

G
FS

-A
B

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

–
B
T

W
R

B
T

B
T

N
D

G
FS

-G
P

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

W
R

–
W

R
W

R
W

R
N
D

G
FS

-L
B

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

B
T

B
T

–
B
T

B
T

N
D

G
FS

-S
P

N
D

N
D

B
T

N
D

W
R

N
D

N
D

N
D

N
D

N
D

W
R

W
R

B
T

W
R

–
W

R
N
D

N
N
EP

N
D

N
D

B
T

N
D

W
R

N
D

N
D

N
D

N
D

N
D

B
T

W
R

B
T

W
R

B
T

–
N
D

N
B

W
R
*

W
R

W
R
*

W
R
*

N
D

N
D

N
D

N
D

N
D

W
R
*

N
D

N
D

N
D

N
D

N
D

N
D

–

G
A
B
:G

FS
-A

B
;G

SP
:G

FS
-S
P;

G
LB

:G
FS

-L
B
;G

G
P:
G
FS

-G
P;

K
M
:k

-m
ea
ns
;“

B
T
*”
:S

ig
ni
fic
an

tly
be

tt
er

re
su
lts

;“
B
T
”:

B
et
te
r
bu

t
in
sig

ni
fic
an

t;
“W

R
*”

in
di
ca
te
s
sig

ni
fic
an

tly
w
or
se

re
su
lts

an
d
“W

R
”
m
ea
ns

w
or
se

bu
t
no

t
sig

ni
fic
an

t
re
su
lts

;
“N

D
”
in
di
ca
te
s
re
qu

isi
te

co
m
pa

ris
on

da
ta

co
ul
d
no

t
be

ex
tr
ac
te
d;

“–
”
in
di
ca
te
s
th
e
te
ch
ni
qu

es
ca
nn

ot
be

co
m
pa

re
d
w
ith

its
el
f.

Ta
bl
e
11
.
C
om

pa
ris

on
of

M
L
al
go
rit

hm
s
ba

se
d
on

A
U
C

m
ea
su
re

(W
ilc

ox
on

te
st

re
su
lts

)

Te
ch
ni
qu

e
M
LP

N
B

SV
M

B
G

A
B

R
F

LR
LB

R
B
F

C
4.
5

k
-m

ea
ns

B
N

M
LP

–
B
T

B
T

W
R
*

W
R

W
R
*

W
R
*

W
R
*

B
T

B
T

B
T

W
R
*

N
B

W
R

–
B
T

B
T
*

B
T
*

W
R
*

B
T
*

B
T
*

N
D

N
D

N
D

B
T

SV
M

W
R

W
R

–
W

R
W

R
W

R
W

R
*

W
R
*

W
R

N
D

W
R

W
R
*

B
G

B
T
*

W
R
*

B
T

–
B
T
*

W
R

B
T

B
T

B
T

N
D

N
D

B
T

A
B

B
T

W
R
*

B
T

W
R
*

–
W

R
B
T

W
R

B
T

N
D

N
D

W
R

R
F

B
T
*

B
T
*

B
T

B
T

B
T

–
B
T

B
T

B
T

N
D

N
D

W
R

LB
B
T
*

W
R
*

B
T
*

W
R

B
T

W
R

W
R

–
B
T

N
D

B
T

W
R
*

R
B
F

W
R

N
D

B
T

W
R

W
R

W
R

N
D

W
R

–
N
D

W
R

W
R
*

C
4.
5

W
R

N
D

N
D

N
D

N
D

N
D

N
D

N
D

N
D

–
N
D

B
T

k
-m

ea
ns

W
R

N
D

B
T

N
D

N
D

N
D

N
D

W
R

B
T

N
D

–
W

R
*

B
N

B
T
*

W
R

B
T
*

W
R

B
T

B
T

B
T

B
T
*

B
T
*

N
D

B
T
*

–

Sy
m
bo

ls
sa
m
e
as

Ta
bl
e
10
.

Software Change Prediction: A Systematic Review and Future Guidelines 245

techniques were found better than LR and three
were found worse than LR. This indicates effec-
tive performance of ML algorithms when com-
pared to that of the LR algorithm. However, more
studies need to be conducted for an extensive
comparison of various ML algorithms with that
of LR. Also, as a number of columns in Tables
10 and 11 have the value “ND”, where sufficient
data was not found to compare the predictive
ability of ML algorithms. Therefore, more studies
are needed which perform extensive comparison
of different ML algorithms with each other based
on different performance measures. However, on
the basis of current analysis we reject the null
hypothesis H0.

5.5. Statistical tests used by SCP studies
(RQ5)

Statistical verification of a study’s results is im-
portant in order to yield reliable conclusions. 66%
of primary studies used statistical tests for vali-
dating their results. These tests can be broadly
categorized as parametric tests or non-paramet-
ric tests.

Twenty-five primary studies which predicted
change-prone nature of a class/module statis-
tically validated their results. Out of these 25
studies, 88% of studies used non-parametric tests,
while the others used parametric tests. This trend
was observed as parametric tests require stringent
assumptions which should be fulfilled before their
application. In order to verify the assumptions
of normal tests, we require complete informa-
tion about the population distribution. Though
these characteristics make normal tests powerful
but they are harder to apply when compared
with non-parametric tests. Non-parametric tests
are easy to understand and use. Thus, they are
favored by the research community. Figure 9
states the number of studies using the most com-
monly used statistical tests. These tests were the
Wilcoxon signed rank test, Friedman test, t-test,
Scott–Knott test and Cliff’s test used by 15, 9, 2,
2 and 2 studies, respectively. The most popular
test was Wilcoxon signed rank test. The popular-
ity of Wilcoxon test is due to its non-parametric
nature. Moreover, the test can be used individ-

ually for pairwise comparisons or as a post-hoc
test after the application of Friedman test [6].
Certain other tests (ANOVA, Mann–Whitney,
Nemenyi, Proportion) were used by one study
each.

Figure 9. Statistical tests used in primary studies

5.6. Threats to validity in SCP studies
(RQ6)

This RQ extracts and analyzes the threats to
empirical studies which develop SCP models. It
is essential for a researcher to scrutinize all prob-
able threats in the early phases of an experiment
so that the obtained results are valid and re-
liable. This would ensure proper experimental
design so that majority of identified threats can
be mitigated. Furthermore, one should mention
the probable threats so that the readers are aware
of the limitations. We extracted the threats from
the primary studies of the review, which have
a separate section for “Threats to validity” or
“Limitations”.

5.6.1. Categories of threats (RQ6.1)

The probable threats to SCP studies are cate-
gorized into conclusion, internal, construct and
external threats.

Table 12 states the various threats corre-
sponding to each category along with the studies
which state them. It may be noted that we state
only those threats which are mentioned in at least
two or more primary studies. Threats specific to
a study’s experimental design are omitted to

246 Ruchika Malhotra, Megha Khanna

Table 12. Threats to validity in SCP studies

Threat No. Category Threat Description (Study Numbers)
T1 Conclusion Absence of appropriate statistical tests for validating study’s results (PS10,

PS16, PS25, PS26, PS29, PS33, PS34, PS36, PS38).
T2 Conclusion Absence of multiple and stable performance measures (PS25, PS26, PS29,

PS33, PS36, PS38).
T3 Conclusion Not accounting for validation bias by using inappropriate validation method

(PS25, PS26, PS29, PS33, PS34, PS38).
T4 Internal Omittance of significant variables that act as predictors or may affect the

predictors (PS3, PS11, PS31).
T5 Internal Inability to address the confounding effect of other variables such as class size

or other factors (such as developer experience, application domain, etc.) on the
relationship between dependent and independent variables (PS9, PS12, PS27,
PS33).

T6 Internal Does not account for the “causal effect” of the predictors on the target variable
(PS11, PS12, PS13, PS19, PS24, PS25, PS26, PS32).

T7 Internal Does not account for different rules or thresholds for computing the dependent
and the independent variables (PS9, PS10, PS24, PS27, PS29).

T8 Construct The type of change, i.e. whether it is corrective, adaptive, perfective or pre-
ventive is not taken into account (PS9, PS12, PS13, PS19, PS24, PS29, PS36,
PS38).

T9 Construct OO metrics may not be accurate representatives of the OO concepts they
propose to measure (PS9, PS12, PS19, PS24, PS25, PS26, PS33, PS34, PS38).

T10 Construct Independent variables (OO metrics) and dependent variable may not be cor-
rectly collected (PS9, PS11, PS12, PS13, PS16, PS19, PS21, PS24, PS25, PS26,
PS32, PS34).

T11 Construct There may be possible imprecisions in computation of change-proneness at-
tribute (PS29, PS32, PS36, PS38).

T12 Construct The severity of change and the effort spent by software practitioners in changing
code fragment is not taken into account while computing change-proneness
(PS29, PS21, PS36).

T13 Construct Absence of data pre-processing to eliminate noisy data or feature selection for
choosing effective feature sets (PS11, PS26, PS29, PS33, PS36).

T14 External Obtained results may be specific to a certain domain, i.e. all validated datasets
belonging to the same domain (PS3, PS10, PS11, PS12, PS19, PS21, PS25,
PS26, PS29, PS34, PS35, PS36, PS38).

T15 External Obtained results may not be validated on datasets of appropriate size or
appropriate number of datasets (PS10, PS12 PS13, PS16, PS19, PS22, PS24,
PS26, PS27, PS29, PS31 PS32, PS34, PS35, PS36, PS38).

T16 External Obtained results may not be easily replicated (PS10, PS16, PS25, PS26, PS33,
PS34, PS38).

T17 External Obtained results may not be validated on industrial datasets (PS16, PS22,
PS31).

T18 External Obtained results may not be validated on datasets developed using different
programming languages or programming paradigms (PS13, PS16, PS21, PS24,
PS25, PS26, PS27, PS29, PS31, PS32, PS33, PS34, PS36, PS38).

yield unbiased results. As stated in Table 12, we
found 3 conclusion validity threats, 4 threats to
internal validity, 6 construct validity threats and
5 external validity threats. It may be noted that
T16 was also referred to as “Reliability threat”
in two studies.

5.6.2. Mitigation of threats (RQ6.2)

This RQ explores how the various threats iden-
tified in RQ7.1 are addressed by the primary
studies. We state the steps suggested by primary
studies to mitigate the corresponding threats

Software Change Prediction: A Systematic Review and Future Guidelines 247

Table 13. Mitigation of threats to validity in SCP studies

Threat No. Threat Mitigation
T1 The results of a study should be validated using proper statistical tests. In case the underlying

data does not fulfill the assumptions of a parametric statistical test, non-parametric statistical
tests may be used.

T2 Multiple and stable performance measures should be used which give a realistic estimate of
the model’s performance.

T3 One should use an appropriate validation method so that the results are not biased due to
selection of training and testing datasets.

T5 The confounding effect of variables may be evaluated by first building a univariate regression
model of the confounding variable C on each predictor P . Thereafter, find the difference
between predicted values by the regression model from P to obtain a new variable P ′. The
obtained P ′ is free from confounding effect.

T6 Controlled experiments should be carried out where only one specific predictor variable
should be varied while keeping all other variables constant to determine the “causal” effect
of predictor variables.

T7 Additional thresholds or rules may be used to determine the impact of these on dependent
and the independent variables.

T9 OO metrics which are commonly used in literature and have been validated by previous
studies may be used.

T10 The tools used for collecting independent and dependent variables should be manually
verified to ascertain their correctness. The use of public datasets, which have been verified
by previous studies also mitigate the threat.

T11 Strategies which have been well recognized in previous literature studies for computation of
change-proneness attribute should be adopted, i.e. designation of a class as change-prone
or not change-prone should be done in accordance with the definitions that have been well
established in the past such as those followed by [9, 12].

T13 Effective data pre-processing strategies should be adopted for eliminating noisy data. More-
over, selection or extraction methods should be used for selecting relevant features.

T14 The results should be validated on datasets belonging to different domains.
T15 The results should be validated on datasets of appropriate size and on an appropriate number

of datasets.
T16 The use of open-source datasets enhances the replicability of the study. Furthermore, the

tools used to implement the approach should be available. The steps conducted in the
experiment should be clearly presented to ease replicated experiments.

T17 The results should be validated on industrial datasets or datasets whose characteristics are
similar to industrial datasets.

T18 The results should be validated on datasets developed using different programming languages.

in Table 13. The table states the mitigation of
only those threats, whose mitigation could be
extracted from primary studies.

The threats which were only mentioned in the
“Threats to Validity” section of primary studies
(T4, T8, T12), but could not be mitigated by the
study or whose mitigation was not suggested are
not stated in the table. Researchers should in-
corporate these steps (Table 13), while designing
the experimental set-ups of their study in order
to ensure reliable results. Also, several studies
should be performed with different size, cate-
gory, domain and other dataset characteristics

to obtain generalized results in the domain of
SCP.

6. Threats to validity

While searching for relevant candidate studies,
we applied the search string to only the titles of
the studies. Thus, we may fail to include studies
which do not use the key terms in their titles.
However, as we have extensively searched for can-
didate studies in the mentioned search databases,
have included journal as well as conference stud-

248 Ruchika Malhotra, Megha Khanna

ies, have searched for key authors and have also
searched the reference lists of the included pa-
pers, we are positive that we have not missed
a relevant study. It may be noted that the review
is based on the presumption that all the primary
studies are unprejudiced. In case, this is not true,
there is a possible threat to the review results
[6, 71] The review also rules out all unpublished
results [6].

In order to extract primary studies from can-
didate studies, both the authors independently
applied the quality assessment criteria on each
study. This practice ensures conclusion validity of
the obtained results. Publication bias is a possible
threat to the results of this review. In lieu of publi-
cation bias, it is highly likely that a primary study
would publish positive results on application of
a ML technique for developing SCP model as
compared to negative results [72]. It could also be
a scenariowhere researchersmight claim that their
proposed technique outperforms other established
techniques in literature. This could lead to an exag-
geration of the capability of ML techniques for de-
veloping SCP models. This threat was addressed
in two ways. Firstly, we included primary studies
which “reported and compared various data analy-
sis algorithms amongst themselves for developing
SCP models”. These studies are unlikely to be
biased towards specific ML techniques as they do
not propose a data analysis algorithm of their own.
Secondly, while comparing the predictive capa-
bility of ML techniques, we compared only those
techniques which were “validated on at least three
different datasets and were used by at least two
primary studies” to avoid bias. Also, the statistics
reported in the review were dataset wise after
removal of outliers. Furthermore, we state the me-
dian values to get a realistic estimate of the capabil-
ity of ML techniques for developing SCP models.

While evaluating the predictive capability of
ML techniques, we also state the AUC results
apart from accuracy results. Thus, we have ac-
counted for possible bias which could occur by
using imbalanced data as AUC is a stable per-
formance measure.

In order to statistically compare the perfor-
mance of ML techniques for developing SCP
models (Tables 9 and 10), we have conducted

several tests. However, certain erroneous infer-
ences may occur due to conduct of several tests
on the same data. This threat exists in the study.

7. Conclusions and future guidelines

An extensive systematic review was performed
to analyze the current state of existing literature
in the domain of SCP and to further identify
research gaps in this domain. 38 primary studies
were chosen to answer the various RQs. In lieu of
the result discussions with respect to the explored
RQs, we suggest certain guidelines to researchers
in the SCP domain which are mentioned below.
– The product metrics especially the CK met-

rics suite have been widely used in primary
studies for developing SCP models. However,
the validation of process metrics and their
combination with product metrics is limited
in this domain. Researchers should conduct
studies to assess the capability of only pro-
cess metrics as well as a combination of both
process and product metrics as predictors of
software change.

– Feature selection/dimensionality reduction
techniques have been used by a majority of
studies. However, more studies should exam-
ine effective predictors using feature selection
techniques in order to develop efficient SCP
models.

– Most of the datasets used by the primary
studies were open-source in nature. However,
more studies should be conducted to validate
commercial datasets to yield practical and
generalized results. Also, datasets developed
using other languages such as C#, Python, etc.
needs to be evaluated by literature studies.

– It was observed that 25–100% of datasets
in a majority of the SCP studies were imbal-
anced in nature (had less than 40% of changed
classes). Researchers in future should evalu-
ate methods to develop effective models from
imbalanced datasets as correct identification
of change-prone classes is crucial. This would
aid developers in prioritizing their resources
effectively during maintenance and testing
phases of a software development lifecycle.

Software Change Prediction: A Systematic Review and Future Guidelines 249

– Within project validation has become a com-
mon standard while validating SCP mod-
els. Though, cross-project validation has also
been investigated, however, studies in the
future should explore cross-organization and
cross-company validation. Effective transfer
learning in cross-organization and cross-com-
pany scenario is the need of the hour, which
should be actively investigated by researchers
in future studies. Furthermore, temporal val-
idation, which takes into account the time
dimension should also be explored in the SCP
domain.

– Apart from accuracy, the use of AUC mea-
sure is prominent in literature for evaluating
SCP models. Stable performance measures
such as AUC should be used by researchers in
future as they give a realistic estimate of the
performance of models which are developed
from imbalanced datasets.

– It was observed that a majority of studies
used ML algorithms and these algorithms are
effective in the domain of SCP. However, more
studies should be conducted which assess and
compare the effectiveness of statistical and
ML algorithms for SCP as we could find lim-
ited data in literature which compares the
performance of different algorithms for de-
veloping effective SCP models. Also, more
researchers should explore the use of ensem-
ble of algorithms as an alternative to other
data analysis algorithms for developing SCP
models.

– It was found that SBA (HIDER, GFS-AB,
GFS-GP, GFS-LB, GFS-SP and NNEP) ex-
hibited effective accuracy results. However,
data to assess and compare the ability of
SBA’s was limited. More studies which inves-
tigate the effectiveness of SBA in the domain
of SCP are required to yield conclusive results
about their capability. Studies should be con-
ducted to evaluate the effectiveness of SBA
and compare their performance with other
established ML and statistical techniques.

– The results indicate that a majority (66%)
of primary studies use statistical tests for
verifying the obtained results. This is a good

practice which should be continued in future
studies.

– It is mandatory to account for possible
“Threats to Validity”, while designing experi-
ments to yield effective and reliable results.
Though there are a number of research papers

that illustrate quantitative results from SCP in
lab environments, there is a need for longitudinal
studies with developers in industry that focuses
on qualitative research so that the effectiveness
of SCP models in industry may be understood
in depth.

References

[1] A.G. Koru and H. Liu, “Identifying and charac-
terizing change-prone classes in two large-scale
open-source products,” Journal of Systems and
Software, Vol. 80, No. 1, 2007, pp. 63–73.

[2] Y. Zhou, H. Leung, and B. Xu, “Examining the
potentially confounding effect of class size on
the associations between object-oriented met-
rics and change-proneness,” IEEE Transactions
on Software Engineering, Vol. 35, No. 5, 2009,
pp. 607–623.

[3] A.G. Koru and J. Tian, “Comparing high-change
modules and modules with the highest measure-
ment values in two large-scale open-source prod-
ucts,” IEEE Transactions on Software Engineer-
ing, Vol. 31, No. 8, 2005, pp. 625–642.

[4] E. Arisholm, L.C. Briand, and A. Foyen, “Dy-
namic coupling measurement for object-oriented
software,” IEEE Transactions on software engi-
neering, Vol. 30, No. 8, 2004, pp. 491–506.

[5] B.A. Kitchenham, D. Budgen, and P. Brereton,
Evidence-based software engineering and system-
atic reviews. CRC Press, 2015, Vol. 4.

[6] R. Malhotra, M. Khanna, and R.R. Raje, “On
the application of search-based techniques for
software engineering predictive modeling: A sys-
tematic review and future directions,” Swarm
and Evolutionary Computation, Vol. 32, 2017,
pp. 85–109.

[7] R. Malhotra and M. Khanna, “Threats to va-
lidity in search-based predictive modelling for
software engineering,” IET Software, Vol. 12,
No. 4, 2018, pp. 293–305.

[8] D. Godara and R. Singh, “A review of studies on
change proneness prediction in object oriented
software,” International Journal of Computer
Applications, Vol. 105, No. 3, 2014, pp. 35–41.

250 Ruchika Malhotra, Megha Khanna

[9] R. Malhotra and A.J. Bansal, “Software change
prediction: A literature review,” International
Journal of Computer Applications in Technology,
Vol. 54, No. 4, 2016, pp. 240–256.

[10] C. Catal and B. Diri, “A systematic review of
software fault prediction studies,” Expert sys-
tems with applications, Vol. 36, No. 4, 2009,
pp. 7346–7354.

[11] T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell, “A systematic literature review on
fault prediction performance in software engi-
neering,” IEEE Transactions on Software Engi-
neering, Vol. 38, No. 6, 2011, pp. 1276–1304.

[12] D. Radjenović, M. Heričko, R. Torkar, and
A. Živkovič, “Software fault prediction metrics:
A systematic literature review,” Information
and Software Technology, Vol. 55, No. 8, 2013,
pp. 1397–1418.

[13] R.S. Wahono, “A systematic literature review
of software defect prediction: research trends,
datasets, methods and frameworks,” Journal
of Software Engineering, Vol. 1, No. 1, 2015,
pp. 1–16.

[14] S. Hosseini, B. Turhan, and D. Gunarathna,
“A systematic literature review and meta-anal-
ysis on cross project defect prediction,” IEEE
Transactions on Software Engineering, Vol. 45,
No. 2, 2017, pp. 111–147.

[15] R. Malhotra, “A systematic review of machine
learning techniques for software fault predic-
tion,” Applied Soft Computing, Vol. 27, 2015,
pp. 504–518.

[16] P.K. Singh, D. Agarwal, and A. Gupta, “A sys-
tematic review on software defect prediction,” in
2nd International Conference on Computing for
Sustainable Global Development (INDIACom).
IEEE, 2015, pp. 1793–1797.

[17] C. Catal, “Software fault prediction: A literature
review and current trends,” Expert systems with
applications, Vol. 38, No. 4, 2011, pp. 4626–4636.

[18] X. Zhu, Y. He, L. Cheng, X. Jia, and L. Zhu,
“Software change-proneness prediction through
combination of bagging and resampling meth-
ods,” Journal of Software: Evolution and Process,
Vol. 30, No. 12, 2018, p. e2111.

[19] G. Catolino and F. Ferrucci, “An extensive evalu-
ation of ensemble techniques for software change
prediction,” Journal of Software: Evolution and
Process, 2019, p. e2156.

[20] G. Catolino, F. Palomba, A. De Lucia, F. Fer-
rucci, and A. Zaidman, “Enhancing change pre-
diction models using developer-related factors,”
Journal of Systems and Software, Vol. 143, 2018,
pp. 14–28.

[21] R. Malhotra and M. Khanna, “Dynamic selection
of fitness function for software change prediction
using particle swarm optimization,” Informa-
tion and Software Technology, Vol. 112, 2019,
pp. 51–67.

[22] L. Kumar, S. Lal, A. Goyal, and N. Murthy,
“Change-proneness of object-oriented software
using combination of feature selection techniques
and ensemble learning techniques,” in Proceed-
ings of the 12th Innovations on Software Engi-
neering Conference. ACM, 2019, p. 8.

[23] Y. Ge, M. Chen, C. Liu, F. Chen, S. Huang, and
H. Wang, “Deep metric learning for software
change-proneness prediction,” in International
Conference on Intelligent Science and Big Data
Engineering. Springer, 2018, pp. 287–300.

[24] H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen,
“The ability of object-oriented metrics to pre-
dict change-proneness: A meta-analysis,” Empir-
ical software engineering, Vol. 17, No. 3, 2012,
pp. 200–242.

[25] M.O. Elish and M. Al-Rahman Al-Khiaty, “A
suite of metrics for quantifying historical changes
to predict future change-prone classes in ob-
ject-oriented software,” Journal of Software:
Evolution and Process, Vol. 25, No. 5, 2013,
pp. 407–437.

[26] R. Malhotra and M. Khanna, “An exploratory
study for software change prediction in object-ori-
ented systems using hybridized techniques,”Auto-
mated Software Engineering, Vol. 24, No. 3, 2017,
pp. 673–717.

[27] D. Romano and M. Pinzger, “Using source code
metrics to predict change-prone java interfaces,”
in 27th International Conference on Software
Maintenance (ICSM). IEEE, 2011, pp. 303–312.

[28] E. Giger, M. Pinzger, and H.C. Gall, “Can we
predict types of code changes? An empirical
analysis,” in 9th Working Conference on Min-
ing Software Repositories (MSR). IEEE, 2012,
pp. 217–226.

[29] D. Azar and J. Vybihal, “An ant colony opti-
mization algorithm to improve software quality
prediction models: Case of class stability,” Infor-
mation and Software Technology, Vol. 53, No. 4,
2011, pp. 388–393.

[30] S. Karus and M. Dumas, “Code churn estimation
using organisational and code metrics: An exper-
imental comparison,” Information and Software
Technology, Vol. 54, No. 2, 2012, pp. 203–211.

[31] J.M. Bieman, G. Straw, H. Wang, P.W. Munger,
and R.T. Alexander, “Design patterns and
change proneness: An examination of five evolv-
ing systems,” in Proceedings. 5th International

Software Change Prediction: A Systematic Review and Future Guidelines 251

Workshop on Enterprise Networking and Com-
puting in Healthcare Industry (IEEE Cat. No.
03EX717). IEEE, 2004, pp. 40–49.

[32] N. Zazworka, C. Izurieta, S. Wong, Y. Cai,
C. Seaman, F. Shull et al., “Comparing four
approaches for technical debt identification,”
Software Quality Journal, Vol. 22, No. 3, 2014,
pp. 403–426.

[33] X. Zhu, Q. Song, and Z. Sun, “Automated iden-
tification of change-prone classes in open source
software projects.” Journal of Software, Vol. 8,
No. 2, 2013, pp. 361–366.

[34] M. Lindvall, “Are large C++ classes change-
-prone? An empirical investigation,” Software:
Practice and Experience, Vol. 28, No. 15, 1998,
pp. 1551–1558.

[35] M. Lindvall, “Measurement of change: stable and
change-prone constructs in a commercial C++
system,” in Proceedings Sixth International Soft-
ware Metrics Symposium. IEEE, 1999, pp. 40–49.

[36] Y. Liu and T.M. Khoshgoftaar, “Genetic pro-
gramming model for software quality classifica-
tion,” in Proceedings Sixth International Sympo-
sium on High Assurance Systems Engineering.
Special Topic: Impact of Networking. IEEE, 2001,
pp. 127–136.

[37] M. Al-Khiaty, R. Abdel-Aal, and M.O. Elish,
“Abductive network ensembles for improved pre-
diction of future change-prone classes in ob-
ject-oriented software.” International Arab Jour-
nal of Information Technology, Vol. 14, No. 6,
2017, pp. 803–811.

[38] T.M. Khoshgoftaar, N. Seliya, and Y. Liu, “Ge-
netic programming-based decision trees for soft-
ware quality classification,” in 15th International
Conference on Tools with Artificial Intelligence.
IEEE, 2003, pp. 374–383.

[39] L. Kumar, S.K. Rath, and A. Sureka, “Empirical
analysis on effectiveness of source code metrics
for predicting change-proneness,” in 10th Innova-
tions in Software Engineering Conference. ACM,
2017, pp. 4–14.

[40] N. Tsantalis, A. Chatzigeorgiou, and G. Stephan-
ides, “Predicting the probability of change in
object-oriented systems,” IEEE Transactions
on Software Engineering, Vol. 31, No. 7, 2005,
pp. 601–614.

[41] L. Kumar, S.K. Rath, and A. Sureka, “Using
source code metrics to predict change-prone web
services: A case-study on ebay services,” inWork-
shop on Machine Learning Techniques for Soft-
ware Quality Evaluation (MaLTeSQuE). IEEE,
2017, pp. 1–7.

[42] A.R. Sharafat and L. Tahvildari, “Change predic-
tion in object-oriented software systems: A prob-
abilistic approach,” Journal of Software, Vol. 3,
No. 5, 2008, pp. 26–39.

[43] L. Kumar, R.K. Behera, S. Rath, and A. Sureka,
“Transfer learning for cross-project change-prone-
ness prediction in object-oriented software sys-
tems: A feasibility analysis,” ACM SIGSOFT
Software Engineering Notes, Vol. 42, No. 3, 2017,
pp. 1–11.

[44] D. Azar, “A genetic algorithm for improving
accuracy of software quality predictive models:
A search-based software engineering approach,”
International Journal of Computational Intel-
ligence and Applications, Vol. 9, No. 02, 2010,
pp. 125–136.

[45] R. Malhotra and R. Jangra, “Prediction and as-
sessment of change prone classes using statistical
and machine learning techniques,” Journal of
Information Processing Systems, Vol. 13, No. 4,
2017, pp. 778–804.

[46] A.R. Han, S.U. Jeon, D.H. Bae, and J.E. Hong,
“Measuring behavioral dependency for improving
change-proneness prediction in uml-based de-
sign models,” Journal of Systems and Software,
Vol. 83, No. 2, 2010, pp. 222–234.

[47] R. Malhotra and M. Khanna, “An empirical
study for software change prediction using im-
balanced data,” Empirical Software Engineering,
Vol. 22, No. 6, 2017, pp. 2806–2851.

[48] S. Eski and F. Buzluca, “An empirical study on
object-oriented metrics and software evolution
in order to reduce testing costs by predicting
change-prone classes,” in Fourth International
Conference on Software Testing, Verification and
Validation Workshops. IEEE, 2011, pp. 566–571.

[49] M. Yan, X. Zhang, C. Liu, L. Xu, M. Yang, and
D. Yang, “Automated change-prone class pre-
diction on unlabeled dataset using unsupervised
method,” Information and Software Technology,
Vol. 92, 2017, pp. 1–16.

[50] A. Agrawal and R.K. Singh, “Empirical valida-
tion of OO metrics and machine learning algo-
rithms for software change proneness prediction,”
in Towards Extensible and Adaptable Methods in
Computing. Springer, 2018, pp. 69–84.

[51] C. Liu, Y. Dan, X. Xin, Y. Meng, and Z. Xiao-
hong, “Cross-project change-proneness predic-
tion,” in 42nd Annual Computer Software and
Applications Conference (COMPSAC). IEEE,
2018, pp. 64–73.

[52] R. Malhotra and M. Khanna, “Investigation of
relationship between object-oriented metrics and

252 Ruchika Malhotra, Megha Khanna

change proneness,” International Journal of Ma-
chine Learning and Cybernetics, Vol. 4, No. 4,
2013, pp. 273–286.

[53] L. Kaur and M. Ashutosh, “A comparative anal-
ysis of evolutionary algorithms for the prediction
of software change,” in International Conference
on Innovations in Information Technology (IIT).
IEEE, 2018, pp. 188–192.

[54] R. Malhotra and A.J. Bansal, “Cross project
change prediction using open source projects,”
in International Conference on Advances in
Computing, Communications and Informatics
(ICACCI). IEEE, 2014, pp. 201–207.

[55] R. Malhotra and M. Khanna, “Prediction of
change prone classes using evolution-based and
object-oriented metrics,” Journal of Intelligent
and Robotic Systems Fuzzy Systems, Vol. 34,
No. 3, 2018, pp. 1755–1766.

[56] R. Malhotra and M. Khanna, “A new metric for
predicting software change using gene expression
programming,” in 5th International Workshop
on Emerging Trends in Software Metrics. ACM,
2014, pp. 8–14.

[57] R. Malhotra and M. Khanna, “Particle swarm
optimization-based ensemble learning for soft-
ware change prediction,” Information and Soft-
ware Technology, Vol. 102, 2018, pp. 65–84.

[58] C. Marinescu, “How good is genetic program-
ming at predicting changes and defects?” in
16th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing
(SYNASC). IEEE, 2014, pp. 544–548.

[59] M.O. Elish, H. Aljamaan, and I. Ahmad, “Three
empirical studies on predicting software main-
tainability using ensemble methods,” Soft Com-
puting, Vol. 19, No. 9, 2015, pp. 2511–2524.

[60] R. Malhotra and M. Khanna, “Mining the im-
pact of object oriented metrics for change pre-
diction using machine learning and search-based
techniques,” in International Conference on Ad-
vances in Computing, Communications and In-
formatics (ICACCI). IEEE, 2015, pp. 228–234.

[61] A. Bansal, “Empirical analysis of search based al-
gorithms to identify change prone classes of open
source software,” Computer Languages, Systems
and Structures, Vol. 47, 2017, pp. 211–231.

[62] S.R. Chidamber and C.F. Kemerer, “A metrics
suite for object oriented design,” IEEE Trans-
actions on Software Engineering, Vol. 20, No. 6,
1994, pp. 476–493.

[63] J. Bansiya and C.G. Davis, “A hierarchical
model for object-oriented design quality assess-
ment,” IEEE Transactions on Software Engi-
neering, Vol. 28, No. 1, 2002, pp. 4–17.

[64] M. Lorenz and J. Kidd, Object-oriented software
metrics: A practical guide. Prentice-Hall, Inc.,
1994.

[65] W. Li and S. Henry, “Object-oriented metrics
that predict maintainability,” Journal of Systems
and Software, Vol. 23, No. 2, 1993, pp. 111–122.

[66] K. Gao, T.M. Khoshgoftaar, and A. Napolitano,
“Combining feature subset selection and data
sampling for coping with highly imbalanced soft-
ware data,” in Software Engineering Knowledge
Engineering Conference, 2015, pp. 439–444.

[67] H. He and E.A. Garcia, “Learning from imbal-
anced data,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 21, No. 9, 2009,
pp. 1263–1284.

[68] C.G. Weng and J. Poon, “A new evaluation mea-
sure for imbalanced datasets,” in 7th Australian
Data Mining Conference. Australian Computer
Society, Inc., 2008, pp. 27–32.

[69] M.A. De Almeida and S. Matwin, “Machine
learning method for software quality model build-
ing,” in International symposium on method-
ologies for intelligent systems. Springer, 1999,
pp. 565–573.

[70] R. Malhotra, Empirical research in software en-
gineering: Concepts, analysis and applications.
CRC Press, 2016.

[71] W. Afzal and R. Torkar, “On the application
of genetic programming for software engineering
predictive modeling: A systematic review,” Ex-
pert Systems with Applications, Vol. 38, No. 9,
2011, pp. 11 984–11 997.

[72] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang,
“Systematic literature review of machine learn-
ing based software development effort estimation
models,” Information and Software Technology,
Vol. 54, No. 1, 2012, pp. 41–59.

Appendix A.

Table A1 states the results of data extraction, i.e. the key parameters extracted from each primary
study. Table A2 states the datasets that have been used by at least two primary studies.

Software Change Prediction: A Systematic Review and Future Guidelines 253
Ta

bl
e
A
1.

K
ey

pa
ra
m
et
er
s
of

pr
im

ar
y
st
ud

ie
s

S.
N
o.

Ye
ar

Ve
nu

e
Pr

ed
ic
to
rs

D
at
as
et
s

D
at
a
A
na

ly
sis

al
go
rit

hm
s

Pe
rf
or
m
an

ce
m
ea
su
re
s

Va
lid

at
io
n

m
et
ho

d
St
at
ist

ic
al

te
st

PS
1

20
01

C
on

f.
N
O
C
I,
4
Li
ne

s
of

co
de

m
ea
su
re
s

W
in
do

w
s
ba

se
d

so
ftw

ar
e
ap

pl
ic
at
io
n

(V
LW

A
da

ta
se
t)

LR
,G

P
T
yp

e
I
er
ro
r,

T
yp

e
II

er
ro
r,

O
ve
ra
ll

m
isc

la
ss
ifi
ca
tio

n
ra
te

H
ol
d-
ou

t
–

PS
2

20
03

C
on

f.
N
O
C
I,
4
Li
ne

s
of

C
od

e
m
ea
su
re
s

W
in
do

w
s
ba

se
d

So
ftw

ar
e
A
pp

lic
at
io
n

(V
LW

A
D
at
as
et
)

G
P,

D
ec
isi
on

tr
ee

ba
se
d

G
P

T
yp

e
I
er
ro
r,

T
yp

e
II

er
ro
r,

O
ve
ra
ll

m
isc

la
ss
ifi
ca
tio

n
ra
te

H
ol
d-
ou

t
–

PS
3

20
05

Jo
ur
na

l
C
K
,N

O
M
,P

ro
ba

bi
lit
y

va
lu
es

re
la
te
d
to

hi
st
or
y,

Pr
ob

ab
ili
ty

of
C
ha

ng
e

JF
le
x,

JM
ol

LR
A
cc
ur
ac
y,

R
ec
al
l,

Fa
lse

Po
sit

iv
e

R
at
io
,F

al
se

N
eg
at
iv
e
R
at
io
,

G
oo

dn
es
s
of

Fi
t

–
–

PS
4

20
05

Jo
ur
na

l
A
ID

,A
LD

,C
C
,S

LO
C
,

N
O
P,

M
N
O
B
,M

PC
,

N
O
LV

,N
IC

JF
le
x

N
on

-li
ne

ar
sy
st
em

of
eq
ua

tio
ns
,L

in
ea
r

sy
st
em

of
eq
ua

tio
ns
,

D
ep

th
fir
st

se
ar
ch

gr
ap

hs
,B

in
ar
y

de
pe

nd
en

ci
es

A
cc
ur
ac
y,

Fa
lse

Po
sit

iv
e
R
at
io
,

Fa
lse

N
eg
at
iv
e

R
at
io

–
–

PS
5

20
10

Jo
ur
na

l
22

O
O

m
et
ric

s:
4

co
he

sio
n
m
et
ric

s,
4

co
up

lin
g
m
et
ric

s,
7

in
he

rit
an

ce
m
et
ric

s,
7

siz
e
m
et
ric

s

B
ea
n
B
ro
w
se
r,

Ej
bv

oy
ag
er
,F

re
e,

Ja
va
m
ap

pe
r,

Jc
he

m
pa

in
t,
Je
di
t,
Je
tt
y,

Ji
gs
aw

,J
le
x,

Lm
js
,V

oj
i,

4
ve
rs
io
ns

of
JD

K

C
4.
5,

G
A

A
cc
ur
ac
y,

J-
In
de

x
Te

n-
fo
ld

–

PS
6

20
10

Jo
ur
na

l
C
K
,L

or
en

z
an

d
K
id
d

[6
4]
,M

O
O
D

m
et
ric

s,
B
D
M

Jfl
ex

(1
3
ve
rs
io
ns
)

St
ep
w
ise

M
ul
tip

le
R
eg
re
ss
io
n

G
oo

dn
es
s
of

Fi
t

–
A
N
O
VA

PS
7

20
11

Jo
ur
na

l
22

O
O

m
et
ric

s:
4

co
he

sio
n
m
et
ric

s,
4

co
up

lin
g
m
et
ric

s,
7

in
he

rit
an

ce
m
et
ric

s,
7

siz
e
m
et
ric

s

B
ea
n
B
ro
w
se
r,

Ej
bv

oy
ag
er
,F

re
e,

Ja
va
m
ap

pe
r,

Jc
he

m
pa

in
t,
Je
di
t,

Je
tt
y,

Ji
gs
aw

,J
le
x,

Vo
ji

C
4.
5,

A
C
O

A
cc
ur
ac
y

Te
n-
fo
ld

W
ilc
ox

on
Si
gn

ed
R
an

k

254 Ruchika Malhotra, Megha Khanna
Ta

bl
e
A
1
co
nt
in
ue

d

S.
N
o.

Ye
ar

Ve
nu

e
Pr

ed
ic
to
rs

D
at
as
et
s

D
at
a
an

al
ys
is

al
go
rit

hm
s

Pe
rf
or
m
an

ce
m
ea
su
re
s

Va
lid

at
io
n

m
et
ho

d
St
at
ist

ic
al

te
st

PS
8

20
11

C
on

f.
C
K
,Q

M
O
O
D

Ya
ri

(3
ve
rs
io
ns
),

U
C
de

te
ct
or

(4
ve
rs
io
ns
),

JF
re
eC

ha
rt

(4
ve
rs
io
ns
)

C
om

bi
ne

d
R
an

k
Li
st

M
ec
ha

ni
sm

H
it-
R
at
io

(R
ec
al
l),

C
ha

ng
e

C
os
t,
C
os
t
ra
tio

–
–

PS
9

20
11

Jo
ur
na

l
62

O
O

m
et
ric

s:
18

co
he

sio
n
m
et
ric

s,
20

co
up

lin
g
m
et
ric

s,
17

in
he

rit
an

ce
m
et
ric

s,
7

siz
e
m
et
ric

s

10
2
Ja
va

Sy
st
em

s
R
an

do
m

eff
ec
t

m
et
a-
an

al
ys
is

A
U
C

–
–

PS
10

20
11

Te
ch
ni
ca
l

R
ep

or
t

C
K
,3

us
ag
e
m
et
ric

s,
3

co
m
pl
ex
ity

m
et
ric

s,
In
te
rf
ac
e
U
sa
ge

C
oh

es
io
n
m
et
ric

8
Ec

lip
se

pl
ug

-in
pr
oj
ec
ts

an
d
2

H
ib
er
na

te
Sy

st
em

s

N
B
,S

V
M
,M

LP
R
ec
al
l,
Pr

ec
isi
on

,
A
U
C

Te
n-
Fo

ld
W

ilc
ox

on
Si
gn

ed
R
an

k

PS
11

20
12

C
on

f.
C
K
,7

N
et
w
or
k

ce
nt
ra
lit
y
m
ea
su
re
s

fr
om

so
ci
al

ne
tw

or
k

an
al
ys
is

19
Ec

lip
se

pl
ug

-in
pr
oj
ec
ts
,A

zu
re
us

M
LP

,B
N

R
ec
al
l,
Pr

ec
isi
on

,
A
U
C

Te
n-
Fo

ld
Fr
ie
dm

an
,

W
ilc
ox

on
Si
gn

ed
ra
nk

PS
12

20
13

Jo
ur
na

l
C
K
,1

6
Ev

ol
ut
io
n-
ba

se
d

m
et
ric

s
Pe

er
Si
m

(9
ve
rs
io
ns
),

V
SS

Pl
ug

in
(1
3
ve
rs
io
ns
)

LR
A
cc
ur
ac
y

Te
n-
Fo

ld
W

ilc
ox

on
Si
gn

ed
R
an

k
PS

13
20
13

Jo
ur
na

l
C
K
,1

6
ot
he

r
cl
as
s-
le
ve
l

m
et
ric

s
Fr
in
ik
a,

Fr
ee
M
in
d,

O
rD

ru
m
B
ox

LR
,R

F,
M
LP

,B
G

R
ec
al
l,
Sp

ec
ifi
ci
ty
,

A
U
C

Te
n-
Fo

ld
–

PS
14

20
14

C
on

f.
C
K
,S

LO
C

A
pa

ch
e
A
bd

er
a
(4

ve
rs
io
ns
),

A
pa

ch
e
PO

I
(4

ve
rs
io
ns
),

A
pa

ch
e

R
av
e
(4

ve
rs
io
ns
)

LB
Pr

ec
isi
on

,A
U
C

Te
n-
Fo

ld
,

C
ro
ss
-p
ro
je
ct

–

PS
15

20
14

C
on

f.
C
K
,S

LO
C

Si
m
ut
ra
ns
,G

le
st

G
EP

A
cc
ur
ac
y,

A
U
C

Te
n-
Fo

ld
–

PS
16

20
14

C
on

f.
N
O
M
,D

IT
,R

FC
,N

O
C
,

C
B
O
,T

C
C
,S

LO
C

A
rg
oU

m
L,

Fi
nd

bu
gs
,

FO
P,

Fr
ee
C
ol

G
P

R
ec
al
l,
Pr

ec
isi
on

–
P
ro
po

rt
io
n

te
st

PS
17

20
15

Jo
ur
na

l
C
K

Pe
er
Si
m
,V

SS
Pl
ug

in
LR

,M
LP

,R
B
F,

SV
M
,

D
T
,G

EP
,k

-m
ea
ns
,

En
se
m
bl
e
of

M
od

el
s

(B
es
t
in

tr
ai
ni
ng

,
B
ag
gi
ng

,B
oo

st
in
g,

M
aj
or
ity

Vo
tin

g,
N
on

-li
ne

ar
D
ec
isi
on

tr
ee

Fo
re
st
)

A
cc
ur
ac
y,

A
U
C

H
ol
d-
ou

t,
le
av
e-
on

e
ou

t
–

Software Change Prediction: A Systematic Review and Future Guidelines 255
Ta

bl
e
A
1
co
nt
in
ue

d

S.
N
o.

Ye
ar

Ve
nu

e
Pr

ed
ic
to
rs

D
at
as
et
s

D
at
a
an

al
ys
is

al
go
rit

hm
s

Pe
rf
or
m
an

ce
m
ea
su
re
s

Va
lid

at
io
n

m
et
ho

d
St
at
ist

ic
al

te
st

PS
18

20
15

C
on

f.
C
K
,S

LO
C
,N

O
M
,N

IV
,

N
PM

,N
IM

,N
O
A

Si
m
ut
ra
ns
,G

le
st
,

C
el
es
tia

LR
,R

F,
B
G
,M

LP
,A

B
,

C
PS

O
,H

ID
ER

,
M
PL

C
S,

SU
C
S,

G
FS

-S
P,

N
N
EP

A
cc
ur
ac
y,

A
U
C
,

Pr
ec
isi
on

,
Sp

ec
ifi
ci
ty
,R

ec
al
l,

F-
m
ea
su
re
,

G
-m

ea
su
re

Te
n-
fo
ld
,

C
ro
ss
-p
ro
je
ct

Fr
ie
dm

an

PS
19

20
17

Jo
ur
na

l
C
K
,S

LO
C

A
pa

ch
e
R
av
e,

A
pa

ch
e

M
at
h

N
B
,B

N
,L

B
,A

B
,

G
FS

-A
B
,G

FS
-L
B
,

G
FS

-M
LB

,H
ID

ER
,

N
N
EP

,P
SO

-L
D
A
,

G
FS

-G
P,

G
FS

-S
P,

SL
AV

E

A
cc
ur
ac
y,

G
-m

ea
n

Te
n-
fo
ld

W
ilc
ox

on
Si
gn

ed
R
an

k

PS
20

20
17

Jo
ur
na

l
C
K
,1

6
Ev

ol
ut
io
n-
ba

se
d

m
et
ric

s
V
SS

Pl
ug

in
(1
3
ve
rs
io
ns
)

G
M
D
H

A
cc
ur
ac
y,

A
U
C
,

Pr
ec
isi
on

,R
ec
al
l,

F-
m
ea
su
re

H
ol
d-
ou

t
–

PS
21

20
17

C
on

f.
62

O
O

m
et
ric

s:
19

co
he

sio
n
m
et
ric

s,
19

co
up

lin
g
m
et
ric

s,
17

in
he

rit
an

ce
m
et
ric

s,
7

siz
e
m
et
ric

s

Ec
lip

se
LR

,N
B
,E

xt
re
m
e

M
ac
hi
ne

Le
ar
ni
ng

(L
in
ea
r,

Po
ly
no

m
ia
la

nd
R
B
F
ke
rn
el
s)
,S

V
M

(L
in
ea
r,

Po
ly
no

m
ia
la

nd
Si
gm

oi
d
ke
rn
el
s)
,

En
se
m
bl
es

of
Te

ch
ni
qu

es
(B

es
t
in

Tr
ai
ni
ng

,M
aj
or
ity

Vo
tin

g)

A
cc
ur
ac
y,

A
U
C

Te
n-
fo
ld

–

PS
22

20
17

C
on

f.
21

O
O

m
et
ric

s
in
cl
ud

in
g
C
K

m
et
ric

s
Eb

ay
Se

rv
ic
es

(5
ve
rs
io
ns
)

Le
as
t
Sq

ua
re

SV
M

(L
in
ea
r,

Po
ly
no

m
ia
la

nd
R
B
F
ke
rn
el
s)

A
cc
ur
ac
y,

F-
m
ea
su
re

Tw
en
ty
-fo

ld
t-
te
st

PS
23

20
17

Jo
ur
na

l
61

O
O

m
et
ric

s
10

Ec
lip

se
pl
ug

-in
s

LR
,M

LP
,R

B
F,

D
T
,

R
F,

En
se
m
bl
es

of
Te

ch
ni
qu

es
(B

es
t
in

Tr
ai
ni
ng

,M
aj
or
ity

Vo
tin

g,
N
on

-L
in
ea
r

D
ec
isi
on

Tr
ee

Fo
re
st
)

A
cc
ur
ac
y,

Pr
ec
isi
on

,R
ec
al
l,

F-
m
ea
su
re

Te
n-
fo
ld
,

C
ro
ss
-p
ro
je
ct

W
ilc
ox

on
Si
gn

ed
R
an

k

PS
24

20
17

Jo
ur
na

l
13

O
O

m
et
ric

s
in
cl
ud

in
g
C
K

su
ite

A
O
I,
Sw

ee
tH

om
e
3D

LR
,R

F,
A
B
,B

G
,M

LP
,

N
B
,B

N
,J

48
,N

N
G
E

R
ec
al
l,
Sp

ec
ifi
ci
ty
,

A
U
C

Te
n-
fo
ld
,

C
ro
ss
-p
ro
je
ct

t-
te
st

256 Ruchika Malhotra, Megha Khanna
Ta

bl
e
A
1
co
nt
in
ue

d

S.
N
o.

Ye
ar

Ve
nu

e
Pr

ed
ic
to
rs

D
at
as
et
s

D
at
a
an

al
ys
is

al
go
rit

hm
s

Pe
rf
or
m
an

ce
m
ea
su
re
s

Va
lid

at
io
n

m
et
ho

d
St
at
ist

ic
al

te
st

PS
25

20
17

Jo
ur
na

l
18

O
O

m
et
ric

s
in
cl
ud

in
g
C
K

su
ite

,
SL

O
C
,Q

M
O
O
D

su
ite

,
A
C
,E

C
,L

C
O
M
3,

A
M
C
,I
C
,C

B
M

Si
x
A
nd

ro
id

ap
pl
ic
at
io
n

pa
ck
ag
es

PS
O
-L
D
A
,N

N
EP

,
G
FS

-L
B
,C

A
RT

,S
U
C
S,

C
PS

O
,C

4.
5,

G
A
-A

D
I,

H
ID

ER
,M

LP
-C

G
,

M
PL

C
S,

LD
A
,D

T
-G

A
,

X
C
S,

SV
M

R
ec
al
l,
PF

,
B
al
an

ce
,G

-m
ea
n

Te
n-
fo
ld

Fr
ie
dm

an
,

W
ilc
ox

on
Si
gn

ed
R
an

k

PS
26

20
17

Jo
ur
na

l
18

O
O

m
et
ric

s
in
cl
ud

in
g
C
K

su
ite

,
SL

O
C
,Q

M
O
O
D

su
ite

,
A
C
,E

C
,L

C
O
M
3,

A
M
C
,I
C
,C

B
M

T
hr
ee

A
nd

ro
id

ap
pl
ic
at
io
n
pa

ck
ag
es
,

N
et
,I
O
,L

og
4j

M
LP

,R
F,

N
B
,A

B
,L

B
,

B
G

R
ec
al
l,
Pr

ec
isi
on

,
A
cc
ur
ac
y,

A
U
C
,

B
al
an

ce
,G

-m
ea
n

Te
n-
fo
ld
,

In
te
r-
ve
rs
io
n

Fr
ie
dm

an
,

W
ilc
ox

on
Si
gn

ed
R
an

k

PS
27

20
17

Jo
ur
na

l
10

O
O

m
et
ric

s
in
cl
ud

in
g
C
K

su
ite

,L
i

an
d
H
en

ry
[6
5]
,S

IZ
E1

A
nt
,A

nt
lr,

A
rg
ou

m
l,

A
zu
re
us
,F

re
ec
ol
,

Fr
ee
m
in
d,

H
ib
er
na

te
,

Jg
ra
ph

,J
m
et
er
,J

st
oc
k,

Ju
ng

,J
un

it,
Lu

ce
ne

,
W
ek
a

LB
,M

LP
,R

B
F,

SV
M
,

k
-m

ea
ns
,C

LA
M
I,

C
LA

M
I+

A
cc
ur
ac
y,

A
U
C
,

F-
m
ea
su
re

W
ith

in
pr
oj
ec
t,

C
ro
ss
-p
ro
je
ct

Fr
ie
dm

an
,N

e-
m
en
yi

PS
28

20
18

C
ha

pt
er

15
O
O

m
et
ric

s
in
cl
ud

in
g
C
K

su
ite

G
AT

E,
Tu

xg
ui
ta
r,

Fr
ee
C
ol
,K

ol
M
afi

a,
Le

ga
tu
s

M
LP

,L
R
,R

F,
K
St
ar
,

PA
RT

,B
G
,B

N
R
ec
al
l,
Sp

ec
ifi
ci
ty
,

A
U
C
,F

-m
ea
su
re

Te
n-
fo
ld

Fr
ie
dm

an

PS
29

20
18

Jo
ur
na

l
En

tr
op

y
of

ch
an

ge
s,

nu
m
be

r
of

de
ve
lo
pe

rs
,

st
ru
ct
ur
al

an
d
se
m
an

tic
sc
at
te
rin

g
of

de
ve
lo
pe

rs
,

ev
ol
ut
io
-b
as
ed

m
et
ric

s,
O
O

m
et
ric

s

A
nt
,C

as
sa
nd

ra
,L

uc
en

e,
PO

I,
Sy

na
ps
e,

Ve
lo
ci
ty
,

X
al
an

,X
er
ce
s,

A
rg
oU

M
L,

aT
un

es
,

Fr
ee
M
in
d,

JE
di
t,

JF
re
eC

ha
rt
,J

H
ot
D
ra
w
,

JV
LT

,p
B
ea
ns
,

pd
fT
ra
ns
la
to
r,

R
ed

ak
to
r,

Se
ra
pi
on

,
Zu

ze
l

LR
R
ec
al
l,
Pr

ec
isi
on

,
A
U
C
,M

C
C
,

B
rie

r
Sc
or
e

3
m
on

th
sli
di
ng

w
in
do

w
to

tr
ai
n
an

d
te
st

m
od

el
s

M
an

n–
W

hi
tn
ey
,

C
liff

PS
30

20
18

C
on

f.
C
K
,S

LO
C

A
rg
oU

M
L,

Fr
ee
C
ol
,

JM
et
er
,J

un
g,

W
ek
a

(4
ve
rs
io
ns

ea
ch
)

LR
,N

B
,D

T
,S

V
M
,

D
ec
isi
on

Ta
bl
e,

D
ee
p

M
et
ric

Le
ar
ni
ng

R
ec
al
l,
Pr

ec
isi
on

,
F-
M
ea
su
re

C
ro
ss
-p
ro
je
ct

–

Software Change Prediction: A Systematic Review and Future Guidelines 257
Ta

bl
e
A
1
co
nt
in
ue

d

S.
N
o.

Ye
ar

Ve
nu

e
Pr

ed
ic
to
rs

D
at
as
et
s

D
at
a
an

al
ys
is

al
go
rit

hm
s

Pe
rf
or
m
an

ce
m
ea
su
re
s

Va
lid

at
io
n

m
et
ho

d
St
at
ist

ic
al

te
st

PS
31

20
18

C
on

f.
C
K

A
nt
,A

nt
lr,

A
rg
oU

M
L,

A
zu
re
us
,F

re
eC

ol
,

Fr
ee
M
in
d,

H
ib
er
na

te
,

JG
ra
ph

,J
M
et
er
,

JS
to
ck
,J

un
g,

JU
ni
t,

Lu
ce
ne

,W
ek
a

B
N

A
U
C

C
ro
ss
-p
ro
je
ct

W
ilc
ox

on
Si
gn

ed
R
an

k

PS
32

20
18

C
on

f.
T
C
C
,C

H
L,

C
H
V
,C

H
E,

C
H
B
,M

I,
A
C
,E

C
,

In
st
ab

ili
ty

JF
re
eC

ha
rt

(4
ve
rs
io
ns
)

LR
,L

D
A
,G

FS
-G

P,
G
FS

-L
B
,G

FS
-S
P,

G
FS

-A
B
,N

N
EP

,
G
A
N
N

A
cc
ur
ac
y

Te
n-
fo
ld

Fr
ie
dm

an
,

W
ilc
ox

on
Si
gn

ed
R
an

k

PS
33

20
18

Jo
ur
na

l
C
K
,1

6
Ev

ol
ut
io
n-
ba

se
d

m
et
ric

s
A
nd

ro
id

C
on

ta
ct
s

(5
ve
rs
io
ns
),

A
nd

ro
id

G
al
le
ry
2
(4

ve
rs
io
ns
)

LR
,M

LP
,N

B
,R

F,
A
B
,

B
G
,L

B
A
cc
ur
ac
y,

A
U
C

Te
n-
fo
ld

Fr
ie
dm

an
,

W
ilc
ox

on
Si
gn

ed
R
an

k
PS

34
20
18

Jo
ur
na

l
C
K
,S

LO
C

Si
x
A
nd

ro
id

ap
pl
ic
at
io
n

pa
ck
ag
es
,I
O
,N

et
,

M
at
h,

Lo
g4
j

R
F,

B
G
,A

B
,L

B
,4

C
PS

O
vo
tin

g
ba

se
d

fit
ne

ss
en
se
m
bl
es

B
al
an

ce
,G

-M
ea
n

Te
n-
fo
ld

Fr
ie
dm

an
,

W
ilc
ox

on
Si
gn

ed
R
an

k
PS

35
20
18

Jo
ur
na

l
C
om

pl
ex
ity

m
et
ric

s,
W
or
d
m
et
ric

s,
N
et
w
or
k

M
et
ric

s

A
nt
,E

cl
ip
se
,J

Ed
it,

It
ex
tp
df
,L

ife
ra
y,

Lu
ce
ne

,S
tr
ut
s,

To
m
ca
t

C
4.
5,

N
B
,S

V
M

R
ec
al
l,
Pr

ec
isi
on

,
F-
m
ea
su
re
,A

U
C
,

M
C
C

Te
n-
fo
ld

Sc
ot
t–
K
no

tt

PS
36

20
19

Jo
ur
na

l
O
O

m
et
ric

s,
Pr

oc
es
s

m
et
ric

s,
D
ev
el
op

er
re
la
te
d
fa
ct
or
s

A
nt
,L

og
4j
,L

uc
en

e,
Pb

ea
ns
,P

O
I,
Sy

na
ps
e,

Ve
lo
ci
ty
,X

al
an

,X
er
ce
s,

JE
di
t

LR
,S

im
pl
e
Lo

gi
st
ic
,

N
B
,M

LP
,A

B
,B

G
,R

F,
Vo

tin
g

F-
m
ea
su
re
,A

U
C
,

M
C
C

Te
n-
fo
ld

Sc
ot
t–
K
no

tt
,

C
liff

258 Ruchika Malhotra, Megha Khanna
Ta

bl
e
A
1
co
nt
in
ue

d

S.
N
o.

Ye
ar

Ve
nu

e
Pr

ed
ic
to
rs

D
at
as
et
s

D
at
a
an

al
ys
is

al
go
rit

hm
s

Pe
rf
or
m
an

ce
m
ea
su
re
s

Va
lid

at
io
n

m
et
ho

d
St
at
ist

ic
al

te
st

PS
37

20
19

C
on

f.
20

O
O

m
et
ric

s
in
cl
ud

in
g
C
K

m
et
ric

s
su
ite

co
m
pa

re
,w

eb
da

v,
de

bu
g,

up
da

te
,c

or
e,

sw
t,

te
am

,p
de

,u
i,
jd
t

LR
,L

in
ea
r
R
eg
re
ss
io
n,

Po
ly
no

m
ia
lR

eg
re
ss
io
n,

D
T
,S

V
M

(L
in
ea
r,

Po
ly
no

m
ia
l,
R
B
F)

,
Ex

tr
em

e
M
L
(L

in
ea
r,

Po
ly
no

m
ia
l,
R
B
F)

,
Le

as
t-
Sq

ua
re

SV
M

(L
in
ea
r,

Po
ly
no

m
ia
l,

R
B
F)

Si
m
pl
e
Lo

gi
st
ic
,

N
eu

ra
ln

et
w
or
k
w
ith

5
tr
ai
ni
ng

al
go
rit

hm
s,

En
se
m
bl
es

of
Te

ch
ni
qu

es
(B

es
t
in

Tr
ai
ni
ng

,M
aj
or
ity

Vo
tin

g,
N
on

-L
in
ea
r

D
ec
isi
on

Tr
ee

Fo
re
st
)

A
cc
ur
ac
y,

F-
m
ea
su
re

Fi
ve
-fo

ld
W

ilc
ox

on
Si
gn

ed
R
an

k

PS
38

20
19

Jo
ur
na

l
C
K
,S

LO
C

A
O
I,
C
Li
ck
,D

rJ
av
a,

G
ira

ph
,G

or
a,

H
am

a,
H
yp

er
SQ

L
D
B
,J

ab
R
ef
,

JM
et
er
,J

Ed
it,

Lo
gi
ca
lD

oc
,M

av
en

,
Ph

oe
ni
x,

Su
bS

on
ic
,

Zo
oK

ee
pe

r

LR
,A

B
,B

G
,R

F,
LB

,4
C
PS

O
vo

tin
g
ba

se
d

fit
ne

ss
en

se
m
bl
es
,

A
SO

F
C
la
ss
ifi
er

F-
m
ea
su
re
,A

U
C
,

M
C
C

Te
n-
fo
ld

Sc
ot
t–
K
no

tt
,

C
liff

N
ot
e:

"–
"
in
di
ca
te
s
th
e
co
rr
es
po

nd
in
g
in
fo
rm

at
io
n
w
as

no
t
fo
un

d
in

th
e
st
ud

y.

A
C
:A

ffe
re
nt

C
ou

pl
in
g;

A
ID

:A
cc
es
s
of

Im
po

rt
ed

D
at
a;

A
LD

:A
cc
es
s
of

Lo
ca
lD

at
a;

A
M
C
:A

ve
ra
ge

M
et
ho

d
C
om

pl
ex
ity

;A
SO

F:
A
da

pt
iv
e
Se

le
ct
io
n
of

O
pt
im

um
Fi
tn
es
s;

B
D
M
:B

eh
av

io
ra
lD

ep
en

de
nc

y
M
ea
su
re
m
en
t;

C
B
M
:C

ou
pl
in
g
B
et
w
ee
n
M
et
ho

ds
of

a
C
la
ss
;C

on
f.:

C
on

fe
re
nc

e;
C
C
:C

yc
lo
m
at
ic

C
om

pl
ex
ity

;C
LA

M
I:

C
lu
st
er
in
g
La

bl
ei
ng

M
et
ric

se
le
ct
io
n
an

d
In
st
an

ce
se
le
ct
io
n;

E
C
:E

ffe
re
nt

C
ou

pl
in
g;

IC
:I
nh

er
ita

nc
e
C
ou

pl
in
g;

M
C
C
:M

at
he

w
s
C
or
re
la
tio

n
C
oe
ffi
ci
en
t;

M
N
O
B
:

M
ax

im
um

N
um

be
r
O
fB

ra
nc
he

s;
M
O
O
D
:M

et
ric

s
fo
r
O
bj
ec
t-
O
rie

nt
ed

D
es
ig
n;

M
PC

:M
es
sa
ge

Pa
ss
in
g
C
ou

pl
in
g;

N
IC

:N
um

be
r
of

Im
po

rt
ed

C
la
ss
es
,N

IM
:N

um
be

r
of

In
st
an

ce
M
et
ho

ds
;N

IV
:N

um
be

r
of

In
st
an

ce
Va

ria
bl
es
;N

O
C
I:
N
um

be
r
of

T
im

es
So

ur
ce

Fi
le

w
as

In
sp
ec
te
d;

N
O
LV

:N
um

be
r
O
fL

oc
al

Va
ria

bl
es
;N

O
A
:N

um
be

r
of

A
tt
rib

ut
es
;N

O
M
:N

um
be

r
of

M
et
ho

ds
pe

r
C
la
ss
;N

O
P
:N

um
be

r
O
fP

ar
am

et
er
s;

N
P
M
:N

um
be

r
of

P
ub

lic
M
et
ho

ds
;R

B
F:

R
ad

ia
lB

as
is

Fu
nc
tio

n;
T
C
C
:T

ot
al

C
yc
lo
m
at
ic

C
om

pl
ex
ity

;C
H
L:

C
um

ul
at
iv
e
H
al
st
ea
d
Le

ng
th
;C

H
V
:C

um
ul
at
iv
e
H
al
st
ea
d
Vo

lu
m
e;

C
H
E:

C
um

ul
at
iv
e
H
al
st
ea
d
Eff

or
t;
C
H
B
:C

um
ul
at
iv
e
H
al
st
ea
d

B
ug

s;
M
I:
M
ai
nt
ai
na

bi
lit
y
In
de

x;
Q
M
O
O
D
:Q

ua
lit
y
M
od

el
fo
r
O
bj
ec
t-
O
rie

nt
ed

D
es
ig
n.

Software Change Prediction: A Systematic Review and Future Guidelines 259

Table A2. Commonly used datasets

Dataset Name Study Numbers
Android Bluetooth PS27, PS26, PS34
Android Calendar PS27, PS26, PS34
Android Contacts PS26, PS33, PS34
Android Gallery PS26, PS33, PS34
Android MMS PS27, PS26, PS34
Android Telephony PS26, PS34
Ant PS27, PS29, PS31, PS35, PS36
Antlr PS27, PS31
AOI PS24, PS38
ArgoUML PS16, PS27, PS29, PS30, PS31
Azureus PS11, PS27, PS31
Bean Browser PS5, PS7
Eclipse PS10, PS11, PS21, PS23, PS35
Free PS5, PS7
FreeCol PS16, PS27, PS28, PS30, PS31
FreeMind PS13, PS27, PS29, PS31
Glest PS15, PS18
Hibernate PS10, PS27, PS31
IO PS27, PS34
JChempaint PS5, PS7
JEdit PS5, PS29, PS35, PS36, PS38
Jetty PS5, PS7
JFlex PS3, PS4
JFreeChart PS8, PS29, PS32
JGraph PS27, PS31
Jigsaw PS5, PS7
Jlex PS5, PS7
JavaMapper PS5, PS7
JMeter PS30, PS31, PS38
Jung PS30, PS31
Log4j PS27, PS34, PS36
Lucene PS29, PS31, PS35, PS36
Math PS19, PS34
Net PS27, PS34
PeerSim PS12, PS17
POI PS14, PS29, PS36
Synapse PS29, PS36
Velocity PS29, PS36
Voji PS5, PS7
VSSPlugin PS12, PS17, PS20
Weka PS30, PS31
Windows based software application (VLWA) PS1, PS2
Xalan PS29, PS36

e-Informatica Software Engineering Journal (eISEJ) is an international, open access, no authorship fees, blind peer-reviewed
journal that concerns theoretical and practical issues pertaining development of software systems. Our aim is to focus on
experimentation and machine learning in software engineering.
The journal is published under the auspices of the Software Engineering Section of the Committee on Informatics of the
Polish Academy of Sciences and Wrocław University of Science and Technology.
Aims and Scope:
The purpose of e-Informatica Software Engineering Journal is to publish original and significant results in all areas of
software engineering research.
The scope of e-Informatica Software Engineering Journal includes methodologies, practices, architectures, technologies
and tools used in processes along the software development lifecycle, but particular stress is laid on empirical evaluation.
e-Informatica Software Engineering Journal is published online and in hard copy form. The on-line version is from the
beginning published as a gratis, no authorship fees, open access journal, which means it is available at no charge to the
public. The printed version of the journal is the primary (reference) one.
Topics of interest include, but are not restricted to:
— Software requirements engineering and modeling
— Software architectures and design
— Software components and reuse
— Software testing, analysis and verification
— Agile software development methodologies and practices
— Model driven development
— Software quality
— Software measurement and metrics
— Reverse engineering and software maintenance
— Empirical and experimental studies in software engineering (incl. replications)
— Evidence based software engineering
— Systematic reviews and mapping studies
— Meta-analyses
— Object-oriented software development
— Aspect-oriented software development
— Software tools, containers, frameworks and development environments
— Formal methods in software engineering.
— Internet software systems development
— Dependability of software systems
— Human-computer interaction
— AI and knowledge based software engineering
— Data mining in software engineering
— Prediction models in software engineering
— Mining software repositories
— Search-based software engineering
— Multiobjective evolutionary algorithms
— Tools for software researchers or practitioners
— Project management
— Software products and process improvement and measurement programs
— Process maturity models
Important information: Papers can be rejected administratively without undergoing review for a variety reasons, such as
being out of scope, being badly presented to such an extent as to prevent review, missing some fundamental components of
research such as the articulation of a research problem, a clear statement of the contribution and research methods via
a structured abstract or the evaluation of the proposed solution (empirical evaluation is strongly suggested).
Funding acknowledgements: Authors are requested to identify who provided financial support for the conduct of the
research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the
collection, analysis and interpretation of data; in the writing of the paper. If the funding source(s) had no such involvement
then this should be stated as well.
The submissions will be accepted for publication on the base of positive reviews done by international Editorial Board
(http://www.e-informatyka.pl/index.php/einformatica/editorial-board/) and external reviewers. English is the
only accepted publication language. To submit an article please enter our online paper submission site (https://mc.
manuscriptcentral.com/e-InformaticaSEJ).
Subsequent issues of the journal will appear continuously according to the reviewed and accepted submissions.

http://www.e-informatyka.pl/index.php/einformatica/editorial-board/
https://mc.manuscriptcentral.com/e-InformaticaSEJ
https://mc.manuscriptcentral.com/e-InformaticaSEJ

