ALY

software engineering |ourna

2019 issue

<

e-Informatica

Al lman

eeeeeeeeeeeeeeeee

e-Informatica

Wroctaw University
of Science and Technology

Editors
Zbigniew Huzar (Zbigniew. Huzar@pwr.edu.pl)
Lech Madeyski (Lech. Madeyski@pwr.edu.pl, http://madeyski.e-informatyka.pl)

Department of Software Engineering, Faculty of Computer Science and Management,
Wroctaw University of Science and Technology, 50-370 Wroctaw, Wybrzeze Wyspianskiego 27,
Poland

e-Informatica Software Engineering Journal
www. e-informatyka.pl, DOI: 10.5277 /e-informatica

Editorial Office Manager: Wojciech Thomas
Typeset by Wojciech Myszka with the N TEX 2¢ Documentation Preparation System
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,

transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publishers.

© Copyright by Oficyna Wydawnicza Politechniki Wroctawskiej, Wroctaw 2019

OFICYNA WYDAWNICZA POLITECHNIKI WROCLAWSKIEJ
Wybrzeze Wyspianskiego 27, 50-370 Wroctaw
www.oficyna.pwr.edu.pl;

e-mail: oficwyd@pwr.edu.pl; zamawianie.ksiazek@pwr.edu.pl

ISSN 1897-7979

Print and binding: beta-druk, www.betadruk.pl

http://madeyski.e-informatyka.pl
http://www.e-informatyka.pl
http://dx.doi.org/10.5277/e-informatica
http://www.oficyna.pwr.edu.pl
mailto:oficwyd@pwr.edu.pl
mailto:zamawianie.ksiazek@pwr.edu.pl
http://www.betadruk.pl

Editorial Board

Co-Editors-in-Chief

Zbigniew Huzar (Wroctaw University of Science and Technology, Poland)
Lech Madeyski (Wroctaw University of Science and Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (NTNU, Norway)
Apostolos Ampatzoglou (University of
Macedonia, Thessaloniki, Greece)

Sami Beydeda (ZIVIT, Germany)

Miklés Biré (Software Competence Center
Hagenberg, Austria)

Markus Borg (SICS Swedish ICT AB Lund,
Sweden)

Pearl Brereton (Keele University, UK)

Mel O Cinnéide (UCD School of Computer
Science & Informatics, Ireland)

Steve Counsell (Brunel University, UK)
Norman Fenton (Queen Mary University

of London, UK)

Joaquim Filipe (Polytechnic Institute

of Settibal /INSTICC, Portugal)

Thomas Flohr (University of Hannover,
Germany)

Francesca Arcelli Fontana (University

of Milano-Bicocca, Italy)

Félix Garcia (University of Castilla-La Mancha,
Spain)

Carlo Ghezzi (Politecnico di Milano, Italy)
Janusz Gérski (Gdanisk University of Technology,
Poland)

Tracy Hall (Lancaster University, UK)
Andreas Jedlitschka (Fraunhofer IESE,
Germany)

Barbara Kitchenham (Keele University, UK)
Stanistaw Kozielski (Silesian University

of Technology, Poland)

Ludwik Kuzniarz (Blekinge Institute

of Technology, Sweden)

Pericles Loucopoulos (The University

of Manchester, UK)

Kalle Lyytinen (Case Western Reserve
University, USA)

Leszek A. Maciaszek (Wroctaw University

of Economics, Poland

and Macquarie University Sydney, Australia)
Jan Magott (Wroclaw University of Science and
Technology, Poland)

Zygmunt Mazur (Wroctaw University of Science
and Technology, Poland)

Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Miiller (IDOS Software AG, Germany)
Jiirgen Miinch (University of Helsinki, Finland)

Jerzy Nawrocki (Poznan University

of Technology, Poland)

Mirostaw Ochodek (Poznan University

of Technology, Poland)

Janis Osis (Riga Technical University, Latvia)
Mike Papadakis (Luxembourg University,
Luxembourg)

Kai Petersen (Hochschule Flensburg, University
of Applied Sciences, Germany)

Lukasz Radlinski (West Pomeranian University
of Technology in Szczecin, Poland)

Guenther Ruhe (University of Calgary, Canada)
Krzysztof Sacha (Warsaw University

of Technology, Poland)

Martin Shepperd (Brunel University London,
UK)

Rini van Solingen (Drenthe University,

The Netherlands)

Miroslaw Staron (IT University of Goteborg,
Sweden)

Tomasz Szmuc (AGH University of Science and
Technology Krakéw, Poland)

Iwan Tabakow (Wroctaw University of Science
and Technology, Poland)

Guilherme Horta Travassos (Federal
University of Rio de Janeiro, Brazil)

Adam Trendowicz (Fraunhofer IESE, Germany)
Burak Turhan (University of Oulu, Finland)
Rainer Unland (University of Duisburg-Essen,
Germany)

Sira Vegas (Polytechnic University of Madrit,
Spain)

Corrado Aaron Visaggio (University of Sannio,
Ttaly)

Bartosz Walter (Poznan University

of Technology, Poland)

Bogdan Wiszniewski (Gdansk University

of Technology, Poland)

Dietmar Winkler (Technische Universitdt Wien,
Austria)

Marco Zanoni (University of Milano-Bicocca,
Italy)

Jaroslav Zendulka (Brno University

of Technology, The Czech Republic)

Krzysztof Zielinnski (AGH University of Science
and Technology Krakéw, Poland)

Contents

Usage, Retention and Abandonment of Agile Practices: A Survey and Interviews Results
Indira Nurdiani, Jirgen Bérstler, Samuel Fricker, Kai Petersen 7
Do Software Firms Collaborate or Compete?
A Model of Coopetition in Community-initiated OSS Projects
Anh Nguyen-Duc, Daniela S. Cruzes, Snarby Terje, Pekka Abrahamsson 37
Representation of UML Class Diagrams in OWL 2 on the Background
of Domain Ontologies
Malgorzata Sadowska, Zbigniew Huzar 63
A Three Dimensional Empirical Study of Logging Questions
from Six Popular Q&A Websites
Harshit Gujral, Abhinav Sharma, Sangeeta Lal, Lov Kumar 105
Empirical Studies on Software Product Maintainability Prediction:
A Systematic Mapping and Review

Sara Elmidaoui, Laila Cheikhi, Ali Idri, Alain Abran 141
Measuring Goal-Oriented Requirements Language Actor Stability
Jameleddine Hassine, Mohammad Alshayeb 203

Software Change Prediction: A Systematic Review and Future Guidelines
Ruchika Malhotra, Megha Khanna o 227

e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 7-35, DOI 10.5277/e-Inf190101

Usage, Retention, and Abandonment of Agile
Practices: A Survey and Interviews Results

Indira Nurdiani*, Jirgen Borstler®™, Samuel Fricker**, Kai Petersen

Kok kok

* Department of Software Engineering/DTU Compute — Software and Process Engineering Section,

Blekinge Institute of Technology, Sweden/Technical University of Denmark, Denmark
** Department of Software Engineering, Blekinge Institute of Technology, Sweden
** Institute for Interactive Technologies, Fachhochschule Nordwestschweiz, Switzerland
% Chair for Software Engineering, University of Applied Sciences Flensburg, Germany

indira.nurdiani@bth.se/innu@dtu.dk, jurgen.borstler@bth.se, samuel.fricker@fhnw.ch,
kai.petersen@hs-flensburg.de

Abstract

Background: A number of Agile maturity models (AMMs) have been proposed to guide software
organizations in their adoption of Agile practices. Typically the AMMSs suggest that higher
maturity levels are reached by gradually adding more practices. However, recent research indicates
that certain Agile practices, like test-driven development and continuous integration, are being
abandoned. Little is known on the rationales for abandoning Agile practices.

Aim: We aim to identify which Agile practices are abandoned in industry, as well as the reasons
for abandoning them.

Method: We conducted a web survey with 51 respondents and interviews with 11 industry
practitioners with experience in Agile adoption to investigate why Agile practices are abandoned.
Results: Of the 17 Agile practices that were included in the survey, all have been abandoned at
some point. Nevertheless, respondents who retained all practices as well as those who abandoned
one or more practices, perceived their overall adoption of Agile practices as successful.
Conclusion: Going against the suggestions of the AMMs, i.e. abandoning Agile one or more
practices, could still lead to successful outcomes. This finding indicates that introducing Agile
practices gradually in a certain order, as the AMMSs suggest, may not always be suitable in different

contexts.

Keywords: Agile practices, Agile maturity models, survey

1. Introduction

The software industry is highly competitive. Ag-
ile methods, like Scrum and eXtreme Program-
ming (XP), help to tackle the challenges of rapid
changes in the environment of software organi-
zations and help to reduce time to market, min-
imize development costs, and improve software
quality [1]. Agile practices are the enactment of
Agile principles [2].

A recent survey indicates that some prac-
tices like test-driven development (TDD), pair
programming, and continuous integration are

Submitted: 6 February 2018; Revised: 17 July 2018;

Accepted: 17 July 2018;

being abandoned [3]. Abandoning Agile practices
seems contradictory to common guidelines such
as Agile maturity models (AMMs) [4-6] that
prescribe which practices should be implemented
and when according to certain maturity levels.
According to the AMMSs, the more mature an or-
ganization becomes, the more Agile practices are
adopted. However, the indication of abandonment
of practices could also be due to lack of guidance.
Perhaps such practices were not introduced at
the right time, given the maturity of the software
development teams or organization, because Agile
practices dependencies are not well known.

Available online: 30 September 2018

Indira Nurdiani et al.

Table 1. Allocation of Agile practices to maturity levels in three AMMs

Sidky et al. [6]

Patel & Ramachandran [5]

Nawrocki et al. [4]

Agile practice adoption based

Adoption of XP based on
other maturity models

Tracking progress, on-site cus-
tomer, planning game, TDD

pair program-
ming, continuous integration,

TDD, coding standard, collec-

Self organizing team, 40 h week

Planning game, collaborating
customer (on-site customer),
user stories, metaphors
Pair programming, coding
standard, collective ownership,
continuous integration

Simplicity (simple design), on-

Context Agile practice adoption based

on a measurement index on CMM(I)
Level 1 On-site customer, collabora- —

tive planning, coding standard
Level 2 Tracking progress, continuous

delivery
Level 3 F2F meeting, continuous inte- Refactoring,

gration, self-organizing team

tive ownership

Level 4 Daily meeting (stand up meet-

ing), user stories, frequent re-

leases
Level 5 TDD, pair programming

ment

-site customer

Focus on continuous improve- —

Currently, we do not know why Agile prac-
tices are abandoned and how this impacts the
overall success of Agile implementations. With-
out such information, we are unable to evaluate
the suitability of AMMSs in industry. As the first
step towards evaluating the suitability of the
AMMs is to better understand the usage and
retention of Agile practices, and identify the ra-
tionales for abandoning Agile practices.

In this study, we aim to identify the rate of
usage of Agile practices, their retention, and the
rationales for their abandonment. To achieve our
aim, we conducted a web survey and 11 inter-
views with industry practitioners with experience
in Agile.

The remainder of the paper is structured as
follows: Section 2 presents related work. Section
3 presents the research questions and survey de-
sign. Section 4 presents the results and analysis
of the survey. Section 5 discusses the results and
Section 6 summarizes and concludes the paper.

2. Background and related work

2.1. Background

According Schweigert et al. [7], there are approx-
imately 40 AMMs proposed by academia and

industry consultants. Many AMMs usually asso-
ciate a number of Agile practices with a maturity
level [7, 8]. Practices are introduced gradually.
As a team or organization becomes more ma-
ture, more Agile practices are adopted [8]. An
overview over three typical AMMs is provided
in Table 1.

The idea of adding more Agile practices as
a team or organizations becomes more mature
seems contradictory to current empirical studies
that show that Agile practices like TDD, pair-pro-
grammang, and continuous integration are aban-
doned [3]. This raises a question regarding the
suitability of AMMs for industry, particularly
when the AMMs do not provide rationales for the
mapping of Agile practices to maturity models.
Critics of the AMMs indicate that the AMMs
are not fit for industry use [9] and that their
recommendations are contradictory [8, 10]. In
this study, we aim to evaluate the suitability
of AMMSs by investigating the usage and aban-
donment of Agile practices in industry through
a survey and a series of interviews.

2.2. Related work

Kurapati et al. [16] performed a survey to identify
commonly used Agile practices at project and
organization levels. Their results show that the
most commonly used practices both at project

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 9

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

2013 2014 2015

—_—

\}/mem\

——
e

==Daily Standup
Iteration Planning
Test-driven ==Retrospective
=TDD
Cont. Integration

Pair programming

2016 2017

Figure 1. Fluctuation of Agile practice usage from Version One’s State of Agile 2013-2017 [11-15].
The practices shown in the figure are for exemplification and the ones consistently reported across
the annual surveys

and organization levels include stand-up meeting,
sprint and iteration, collective ownership, and
tracking progress. Less common practices both
at project and organization levels include simple
design, TDD, pair-programming, and planning
game. One practice that is rarely practiced both
at project and organization levels is metaphor.
It is also interesting to highlight that the use of
metaphors reported by Kurapati et al. turns out
differently from Murphy et al. [17].

Kropp et al. [18] conducted a survey as part
of Swiss Agile Study 2014. They distinguished
three types of practices: technical, collabora-
tive, and advanced practices. Technical prac-
tices include refactoring, TDD, and coding stan-
dards. Collaborative practices include on-site cus-
tomer, daily stand-up, and pair programming.
Advanced practices are kanban pull-system, ac-
ceptance TDD, and Behaviour Driven Develop-
ment (BDD). Their results show that more ex-
perienced practitioners implement considerably
more practices compared to less experienced ones.
Furthermore, less experienced practitioners im-
plement primarily technical practices, meanwhile
more experienced ones implement more collabo-
rative practices. It is worth noting in this study
metaphors is not included in the survey, unlike
the previous survey by Kurapati et al. [16].

The two surveys described above, i.e. [16] and
[18], report the results of Agile practice usage
from one single calendar year. They do not capture
whether the practices are continuously used or not.

Murphy et al. [17] reported results of five an-
nual surveys internal to Microsoft over the course
of six years. Their results show that practices
like code reviews, metaphors, and retrospective
are increasing in their adoption. Meanwhile, cer-
tain practices like unit testing, TDD and pair
programming are decreasing in their adoption
[17, Figure 4, p. 79].

VersionOne also conducts annual state of Ag-
ile surveys. We took the results from the annual
survey over the past five years (2013-2017) and
created a figure that presents the trend of the
usage of some Agile practice [11-15] in Figure 1.
The results of the annual surveys indicate that
the use of Agile practices is fluctuating over the
past five years, see Figure 1.

The surveys reported by Murphy et al. [17]
and Version One [11-15] capture the increase and
decrease of Agile practices usage over the years.
However, the increase of some Agile practices
from one year to the next does not indicate that
those practices are being added, as suggested
by AMMs. The decrease of some Agile practices
does not indicate that those practices are being
abandoned. It is possible that the respondents of
the surveys from one year to the next are differ-
ent. In the case of Murphy et al. [17] respondents
who participated in one survey were not allowed
to participate in the next survey. These surveys
do not reflect the use of Agile practices in one
context /team over time. Thus, the results cannot
be used to assess the suitability of AMMs.

10

Indira Nurdiani et al.

Solinski and Petersen [3] surveyed Agile prac-
tice adoption scenarios over time as practitioners
transition from plan-driven development towards
Agile. The survey identified Agile adoption sce-
narios which include an incremental adoption of
practices, big-bang adoption — where plan driven
practices are discarded and replaced by Agile
practices, and complex tailored adoption pro-
cesses. Their results also revealed that practices
like TDD and continuous integration are being
abandoned. However, their study did not focus
on rationales for abandoning practices.

Indications of Agile practice abandonment is
also reported by Ralph and Shportun [19]. Their
case study revealed the abandonment of Scrum in
distributed teams. One of the main factors asso-
ciated with abandoning Scrum is the degradation
of Scrum practices. Three Scrum practices that
were difficult to implement due to distribution are
daily stand-up meeting, tracking progress using
burn-down chart, and fizing sprint backlog.

To summarize, current research indicates that
some Agile practices are abandoned. However, cur-
rent surveys have not yet focused on the rationales
for abandoning Agile practices, or the time-frames
from practice adoption to abandonment. Cur-
rently, we do not know how abandoning practices
may influence the perceived overall success of
implementing Agile methods. In this paper, we
investigate why Agile practices are abandoned and
whether or how this influences perceived success.

3. Research methodology

In this study, we aim to identify which Agile prac-
tices are being used and abandoned in the indus-
try and the rationales for abandoning a practice
to better understand practice adoption and the
relevance of Agile maturity models.
RQ1. What is the rate of usage of Agile prac-
tices?
RQ2. Which Agile practices have been aban-
doned?
RQ2.1. How long are practices in use before
they are abandoned?
RQ2.2. What are the rationales for abandon-
ing these practices?

RQ3: What is the perceived success rate of Agile
practices implementation?

RQ3.1. Does the perceived success rate differ
between respondents who retain practices
versus respondents who abandon prac-
tices?

RQ3.2. What are the used measures of suc-
cess?

By “use” or “usage”, we mean that an Agile
practice is used or was in use at some point in
time, while “abandoned” means that an Agile
practice was used in the past, but is no longer
used. To answer the research questions above,
we conducted a survey and a series of follow-up
interviews.

3.1. Survey

3.1.1. Sampling strategy

We distributed the survey to personal con-
tacts and well-established professional groups
in Agile software development on LinkedIn
and Google Groups, i.e. convenience sampling.
Distributing surveys over professional groups
is a known way to distribute surveys as re-
ported in [3, 16]. When using convenience sam-
pling, which is a common strategy in soft-
ware engineering surveys, it is important to de-
scribe the sample [20]. Following the guidelines
from Linaker et al. [20], we define our sample
as follows:

— Target audience: software industry practition-
ers who have experience in Agile practices
adoption. Particularly, those who have ex-
perience in observing or experiencing when
a practice is adopted and/or abandoned. In
this survey, all practitioners from different
industry domains, organization size and dif-
ferent levels of experienced are welcome to
participate. However, this does not necessar-
ily mean all responses will be considered (see
Data Screening in Section 3.3).

— Unit of analysis: Agile practices which have
been adopted and abandoned, their rationales,
and perceived success rates.

— Source of sampling: professional groups or
communities focused on Agile software devel-

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 11

opment. Personal contacts who are known to
work with Agile software development.

3.1.2. Survey design

We followed the recommendations from Rob-
son [21] in designing a self-administered web-based
survey. The survey was developed using the tool
SoSci Survey (https://www.soscisurvey.de).

We included interactive sliders as a visual
aid to allow respondents to indicate the start
and/or end of Agile practice usage, see Figure 2.
The survey design is adapted from Solinski and
Petersen [3], who also investigated time-frames
of Agile practice usage.

Similar to past surveys, we included a se-
lection of Agile practice. However, there is no
commonly agreed set of Agile practices. Different
surveys include different sets of Agile practices.
For example, Rodriguez et al. [22] include 16
practices; Kurapati et al. [16] include 25 prac-
tices. In this survey, we adopted the list used
by Solinski and Petersen [3], which includes 7
plan-driven practices and 14 Agile practices. We
chose this list because their survey is quite recent
and comprises a manageable number of practices.
In their survey, Solinski and Petersen [3], merged
some practices, such as short iterations and fre-
quent releases. We also merged two practices, if
the practices are closely related. To see if two
practices are related, we cross referenced the def-
initions of Agile practices described by Petersen
[23] and Williams [2]. However, we separated
Solinski and Petersen’s combined practice “tech-
nical excellence” into its original sub-practices
refactoring, simple design, and coding standards.

At the beginning of the survey, we briefly
described the aim of the survey to the respon-
dent. To avoid bias, we did not mention that we
are looking for practices which had been aban-
doned. We described that we are interested in
understanding the order in introducing Agile
practices. The survey itself comprises five main
parts. The detailed survey questions are available
in Appendix B.

Part 1A. Agile practice adoption (RQ1).
Respondents could indicate practice usage as
“used”, “never used”, or “don’t know”. See Fig-

ure 2 Part 1A (to the left). Definitions of prac-
tices are available by hovering the mouse over
the information icon. The practices included in
the survey and their definitions can be seen in
Appendix A. In this survey, we did not inquire
which Agile framework, e.g. Scrum, eXtreme Pro-
gramming (XP), etc. was used. This was done to
avoid confusion from the respondents because it
is possible that practitioners combine practices
from different frameworks or on occasions also
include plan-driven or waterfall practices [3, 24].

Part 1B. Start and end of Agile practice (RQ2
and RQ2.1). Using interactive sliders, respon-
dents could indicate the start- and stop-time for
when a practice was in use as shown in Figure 2
part 1B. The time-frame for the sliders is between
<2006 and “Still in Use”. When respondents indi-
cated “never used” or “don’t know” in Part 1A,
the sliders are disabled. We used the interactive
sliders to identify abandoned practices, so we
did not bias respondents by explicitly asking
for abandoned practices. Respondents could also
leave optional comments or additional informa-
tion regarding a practice.

Part 2. Perception and measures of success
(RQ3). From Part 1B, we would be able to
see which Agile practices were used, retained,
and abandoned. The usage, retention, and aban-
donment of Agile practices represent a strategy
for Agile practice adoption. We inquired the im-
pacts of Agile practice adoption, as described in
Part 1B, in terms of perceived success rate. Suc-
cess rate is respondents’ perceived degree of suc-
cess of Agile practice adoption on their projects
or teams. A Likert-type scale was used to indicate
success rate, from very unsuccessful (1) to very
successful (5). Respondents could also answer
“don’t know”. Furthermore, we asked respondents
to indicate how success was measured. We be-
lieve it is important to inquire what measures
are used to indicate success, because different
practitioners from different contexts may have
different perceptions of success.

Part 3. Limitations and rationales (RQ2.2).
We asked which challenges and limitations re-
spondents experienced during Agile practice
adoption according to Part 1B and, in particular,
why practices were discontinued (if any).

12

Indira Nurdiani et al.

Never Don't
Used wused know

Part 1A

e o [-~ B e v R By v [l |Part 1B
\

Comment

Face-to-face meeting®

Self-organizing cross

functional team®

On-site customer

Pair programmingﬁ

Planning game/ sprint

planning meeting®

Tracking progresse

Refactoring®

Iteration reviews/

Retrospective®

Short iterations &

frequent releases @

Simple Design®

Time-boxing/ Sprint/ Iteration

Stand up meetinge

Metaphors & stories @

Test-driven/ test-first

development®

Continuous integration €

Coding standards®

EEE R EEEE R BEEREEE R R

Collective ownership©

Before
2006

Al
2012 2012 2013 2013 2014 2014 2015 2015 2015

Figure 2. Interactive sliders

Part 4. Contexts. We asked respondents to
provide information about their personal back-
ground and organizational context: (1) their
role(s), (2) years of experience, (3) number of
team members involved in software development,
(4) team-setting (collocated or distributed),
(5) how Agile practice adoption was decided
(team-level or company), (6) industry domain(s),
and (7) type(s) of software systems being devel-
oped (classification is adopted from [25]).

Part 5. Contact. We also asked the respon-
dents to provide their names and email addresses,
for follow-up interviews or to receive a copy of
the survey results.

3.1.3. Survey pilot and execution

The sliders made the survey more complex and
increased the risk that questions are not well
understood. To mitigate these risks, we piloted
the survey with five colleagues of the authors
and five industry practitioners with experience
in Agile software development.

Regarding the pilot, some industry practi-
tioners felt that the definitions of some Agile
practices were too specific and might not be
applicable in their contexts. To address this is-
sue, we reformulated the definitions. Two pilot
respondents had difficulties to move the sliders.
We resolved this problem by adding instructions
on how to use the sliders. After addressing the
feedback from the pilot, we deployed the survey,
which was open between March—July 2016.

3.2. Interviews

3.2.1. Interviewees recruitment

Interviewees were recruited from the survey re-
spondents who left contact information for fur-
ther inquiries. Twelve invitations were sent out,
and three confirmed for follow up interviews.
We then recruited eight additional interviewees
through personal industry contact and referrals.
For the new recruits, we also asked them to fill
in the survey prior to the interview to maintain

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 13

consistency and helped us to formulate interview
questions.

In total, we had 11 interviewees. Our intervie-
wees represent a wide variety of contexts. They
came from various industry domains and geo-
graphic locations. More details on the intervie-
wees can be found in Table 2.

3.2.2. Interview design

The goal of the interviews was to gather richer
and better contextual information about the use
and abandonment of Agile practices. In the inter-
views, we used semi-structured interviews. The
interviews were done face-to-face whenever possi-
ble. Otherwise, the interviews were done over the
telephone or video call. Prior to the interview,
we sent each interviewee a summary of their
answers from the survey. Each interview lasted
45-60 minutes and was recorded and transcribed.
In the interviews, we inquired the following:
— Interviewee’s roles and responsibilities, short
description of the product being developed;
— The interviewee’s survey answers were revis-
ited and further clarified:

— Why did you mark (enumerate Agile prac-
tice marked as “never used”) as never
used? (RQ1),

— Why did you mark (enumerate Agile prac-
tice marked as “don’t know”) as don’t
know? (RQ1),

— Could you please elaborate the reasons for
abandoning (enumerate Agile practices
which were no longer used from Part 1B)?
(RQ2.2);

— Wrap-up. Inquire the interviewee’s impres-
sions on the interview.

3.3. Data analysis

Data screening. Prior to the analysis of the sur-
vey data, we carefully scrutinize each dataset to
ensure their reliability. We checked each respon-
dent’s answers to each question. For example, we
cross referenced the participants’ experience (in
years) and the time frame indicated in the sliders.
We also checked the respondents’ answers to the
open-ended questions. We excluded a response if

a respondent did not provide a comprehensible
answer to one of the open-ended questions. We
also excluded a response if a respondent indi-
cated that most or all of the practices had been
abandoned and did not specify that it was past
experience.

Rate of Agile practice usage (RQ1). We used
descriptive statistics to analyze the rate of Agile
practice usage, i.e. practices that are marked as
“used” by the survey respondents.

Agile practice abandonment (RQ2). For all
practices that were indicated as “Used” (in Part
1A of the survey), we checked the slider posi-
tion for “practice end”. If this position did not
indicate “In Use”, we considered the practice
as abandoned and calculated the timespan of
use by means of the slider positions for start
and end of use, respectively. We also calculated
the abandonment ratio for each Agile practice to
calculate the proportion of the number of times
a practice is abandoned to the number of times
a practice is used. To answer RQ2, we also in-
cluded the results from the interviews. To analyze
the interview transcripts, we used f4analyse tool
(https://www.audiotranskription.de/english /f4-
analyse) to help with coding steps. First, we
performed line-by-line coding as an approach to
open coding [26] on the interview transcripts.
Open coding was followed by focused coding to
identify common themes from the data. The re-
sult of focused coding can be seen, for example, in
Table 5. The coding process was primarily done
by the first author. To minimize bias, another
co-author conducted post-hoc validation on the
coding done by the first author.

Success rates and measures (RQ3). We ana-
lyzed the success rates of adopting Agile practices
across domains, and retain vs. abandoned. We
also used descriptive statistics to analyze the suc-
cess rates. To cross-tabulate the industry domain
and the success rates, we used the “Crosstab”
feature in SPSS. To identify the measures of
success from the survey, we employed qualitative
coding similar to the one used for analyzing the
interview data. First, we tabulated all responses
to each relevant question using a spreadsheet and
f4analyse tool. We then used open coding [26]
to assign codes to text fragments. For example,

14

Indira Nurdiani et al.

Table 2. List of interviewees and their contexts

ID* Location Role Experience Team Market Domain Context overview
size

R11 Indonesia Project 6 years 100 Market Insurance IT Department of a multinational
Manager driven, Fortune 500 company. Adopted 13
internal use practices except pair-programming,
TDD, and metaphors & user stories.
R14 Brazil Developer, 3 years 20 Internal use Government IT Department from the Brazilian
Trainer, (Court) court, of accounts. Adopted 15 prac-
System tices except pair programming and
architect retrospective. Abandoned on-site

customer and tracking progress.

R32 Canada Developer, 6 years 13 Market Independent Start-up company initiated in 2012.

Quality driven, Software Adopted 14 practices except for
Assurance, bespoke Vendor on-site customer, simple design, and
System (ISV) TDD. Abandoned pair programming
Analyst and tracking progress.
R33 Sweden Scrum 6 years 6 Internal use Telecoms A small project team within a large
Master multinational company. Adopted 15
practices except on-site customer
and TDD. Abandoned 13 prac-
tices except face-to-face meeting and
stand up meeting.

R34 Indonesia CEO 3 years 33 Bespoke ISV Start-up company initiated in 2014.
Adopted 14 practices except TDD,
collective ownership, and metaphors
& user stories.

R35 Ireland Scrum 3 years 6 Bespoke, ISV Start-up company initiated in 2012.

Master, market Adopted 14 practices, except TDD,
Developer driven, coding standard, and simple design.
maintenance

R36 Sweden Program 23 years 1000+ Market Telecoms A solution development program

Manager driven in a large multinational company.
Adopted 16 practices except TDD.
R37 Sweden Scrum 20 years 1000+ Market Telecoms A solution development program
Master driven in a large multinational company.
Adopted 16 practices except TDD.
R38 Sweden Scrum 7 years 70 Market ISV A project in a large multinational
Master, driven company. Adopted 15 practices ex-
QA cept on-site customer and simple de-
sign.
R39 USA Researcher, 3 years 6 Bespoke, Research & A project in a university to de-
Developer market develop- velop biomedical research support
driven ment, tool. Adopted 12 practices except
biomedical pair programming, tracking progress,
stand up meeting, metaphors & user
stories, and TDD.

R40 Finland CTO, 6 years 11 Market ISV A start-up company initiated in 2012.

Developer, driven Adopted 10 practices, except on-site
Scrum customer, planning game, refactor-
Master ing, retrospective, metaphors, TDD,

and collective ownership.

& Respondent ID according to the order they are received in the survey tool.
b Reflects the size of software development team affected by the Agile implementation. Not overall company size.

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 15

for the following response regarding used success
measures: “Success can be measured by com-
pletion of tasks on time with high quality and
without any blockers”, we assigned two codes:
time to deliver and product quality as measures of
success. The measures of success were then classi-
fied into product, process and resource measures
according to Fenton and Bieman [27].

3.4. Validity threats

In reporting the validity threats, we follow the clas-
sifications suggested by Petersen and Gencel [28].

Theoretical validity. It refers to pertains to
the issue of capturing the construct intended to
be collected. Both the survey and the interviews,
are retrospective. The respondents may not
remember precisely when an Agile practice was
introduced. To minimize the issue, we did not
inquire exact months or dates for the start or
the end of a practice. We only refer to the year,
half a year, or quarters. The slider design does
not support exact dates and only one start and
one end time. To minimize the issue we added
comment text boxes next to the sliders to supply
details. Maturation could pose as a threat if
the survey takes too much time to complete. To
minimize maturation, we minimized the number
of included Agile practice, i.e. 17 practices. It is
possible that we missed one or more Agile prac-
tices. To reduce maturation, we merged practices
that are similar in their definitions, as described
in [23]. It is also possible that merging some of the
practices caused confusions to the respondents.
In this survey, we also provided definitions of
the Agile practices primarily from the literature,
e.g. [2, 23]. It is known that how Agile practices
are implemented in the industry may differ from
their definitions in the literature [2]. This may
lead to respondents answering “don’t know” or
“never used”, when the practices are actually
in use. These issued are partially mitigated by
piloting the survey and performing follow up
interviews with 11 of the survey respondents.
Another concern pertaining theoretical validity is
with the sampling. In this survey, we used conve-
nience sampling by recruiting participants from
professional groups and personal contacts. The

former may lead to reliability issue, while the lat-
ter may lead to bias. To minimize reliability issue,
we checked each response to ensure coherence
(see Data Screening Section 3.3). For example,
if a respondent indicated to have 1-3 years
of experience, but used the sliders indicating
a period longer than that, we deemed the answer
to be invalid. To minimize bias from the personal
contacts, as well as the other respondents, we
did not specify that we aim to collect Agile
practices that are being abandoned. It is also
important to clarify that these personal contacts
were not individuals whom the authors had prior
close collaborations. Thus, they were never given
information about the plan of the study.

Descriptive validity. It concerns with the ac-
curacy of capturing the reality. In this study
data collection was done through a survey and
interviews. As researchers, we cannot observe
the reality, and the responses we obtained are
based on the respondents’ perception. For ex-
ample, a respondent’s experience can influence
his/her answers; a new hire may not be aware
that a practice was used before but has been
abandoned. It is also possible, that a respondent
perceives a practice was used because he/she
used it, but it was not institutionalized in the
team or project. The follow-up interviews helped
to capture better information that was other-
wise missing from the survey. However, in survey
and interviews studies, such a threat cannot be
fully eliminated, since no actual observation was
done. Although we were not able to eliminate
the issue, it is important that we acknowledge it.
In this survey we provided instructions for the
respondents to reflect on an experience that they
were most familiar with, it could be an experi-
ence from a specific team or a specific project.
The experience could also be from present or
past experience. It is possible that a respondent
reflected on past experience, and indicated all
practices had been abandoned. For such a case,
unless the respondent wrote a note that it was
past experience, we deemed the answer to be
invalid.

To improve thoroughness and trustworthiness
of the survey, we reported as many details as
possible regarding the design and execution of

16

Indira Nurdiani et al.

the survey, following the criteria described by
Stavru [29]. A self-assessment on the thorough-
ness of our survey using Stavru’s criteria and
calculation procedure resulted in a score of 0.8
on a scale 0—1 (see Table C.1 in Appendix C for
details). Stavru does not provide interpretation
of the scale. However, our score is higher than
other Agile surveys examined by Stavru in [29],
where the highest score was 0.64. This indicates
that we have provided sufficient information to
demonstrate the thoroughness of our survey [29].
Interpretative validity. 1t concerns with re-
searchers’ bias in drawing a conclusion. This
study primarily relies on qualitative data col-
lected from a survey and from interviews. Re-
searchers bias can affect the conclusions that are
drawn. In analyzing the data, the first author
was responsible for the qualitative coding. To
reduce bias, another co-author validated the cod-
ing post-hoc after the first five interviews, to see
if there could be disagreements in the codes.
Generalizability. 1t refers to the extent that
the results of the study are generalizable to
a larger population. In this study, both for the
survey and the interviews, we used convenience
sampling. The selection of the respondents was
non-purposeful and based on willingness. Re-
spondents have various roles and tasks in dif-
ferent organizational contexts. However, some
roles such as consultant and C-level managers are
under-represented. Furthermore, most of the re-
spondents work in small organizations. Although
we did not collect company name and geographi-
cal location of the respondents, we could ascer-
tain that our sample represents 20 unique orga-
nization from 11 different countries. Although
some countries like the Canada, Italy, and New
Zealand are under-represented, our sample rep-
resents different geographical locations. In this
survey, we also small sample size. We cannot
claim that our results are generalizable to a large
population or in anyway represents the current
state of Agile practice. However, the demograph-
ics of our respondents include a large variety of
contexts that adds to the richness of the data and
minimizes the risk of confounding factors that
could be present due to a homogeneous context.

4. Results and analysis

In total, 200 people started the survey, 70 com-
pleted the survey but only 43 answers were valid,
i.e. consistently answered part 1-4 of the survey.
Out of 43 respondents, 32 of them completed
part 1A and used the sliders from part 1B of the
survey. The remaining 11 respondents did not use
the sliders (part 1B). Including the new intervie-
wee recruits, in total, we have 51 respondents and
40 of them used the sliders. From 40 respondents
who used the sliders, 22 retained all practices
that were used. Meanwhile 18 abandoned one or
more practices.

Out of 51 respondents, 10 participated through
direct invitations, and 3 participated through re-
ferrals. In the survey, we did not inquire company
name and location where the respondents were or
had been employed. Based on direct invitations,
referrals, and a number of respondents who pro-
vided their work emails, we could ascertain 20
unique companies from 22 respondents. We could
also ascertain the geographic location of 19 re-
spondents; they were from Sweden (5), Ireland
(3), US (2), Indonesia (2), Canada, New Zealand,
Finland, Portugal, Brazil, Germany, and Italy
(1 of each).

The 51 respondents were primarily devel-
opers (20; 39.2%) followed by Scrum Masters
(15; 29.4%) and quality assurance specialists (13;
25.5%). Please note that multiple roles could be
selected. Further roles are system architect and
department head (8; 15.7% for each), project
manager and department head (each 7; 13.7%),
business analyst, system analyst trainer, product
owner, C-level managers (e.g. Chief Executive
Officer, Chief Technical Officer, etc.), and other
roles (<6; <10%).

Regarding their level of experience in soft-
ware development, 14 (27.4%) respondents had
more than 6 years of experience, 15 (29.4%) had
3-6 years of experience, 15 (29.4%) had 1-3 years
of experience, and 7 (13.7%) had less than one
year of experience. Most of the respondents (21;
52.5%) were part of a small organization with less
than 50 people involved with software develop-
ment. Eleven (27.5%) were part of organizations

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 17

with 50-249 people, and 7 (17.5%) were part of
organizations with 250-4999 people.

In terms of distribution, 28 (54.9%) of the
respondents mentioned that their Agile software
development teams were collocated; 19 (45%) of
them worked in a single team and nine (17.6%) in
multiple teams. The remaining 23 (45.1%) stated
that their Agile software development teams were
distributed; 10 (19.6%) of them worked in a single
distributed team and 13 (25.5%) in multiple
distributed teams.

Regarding application domains (multiple se-
lections possible), most of the respondents were
from independent software vendors (17; 33.3%),
followed by financial services (15; 20%). Re-
spondents also came from the following do-
mains: research and development (11; 21.6%),
telecoms (12; 23.5%), medical (8; 15.7%), me-
dia and entertainment (4; 7.8%), government
(3; 5.9%), and manufacturing (1; 2%). For the
types of software systems that respondents de-
velop and type of market, please refer to Figure 3a
and 3b.

To complement the survey, we also conducted
11 interviews with industry practitioners. The
list of interviewees and their respective contexts
are presented in Table 2.

4.1. Usage of Agile practices (RQ1)

Figure 4 shows the rate of Agile practice usage.
From Figure 4, we can see that out of 51 re-
spondents, face-to-face meeting was the most
commonly used Agile practice among our re-
spondents (48 respondents), followed by track-
ing progress (47 respondents). Other commonly
used Agile practices by our respondents were:
self-organizing team, planning game, and retro-
spective. Practices like TDD (27 respondents)
and pair-programming (28 respondents) were less
commonly used by our respondents.

The follow up interviews identified Agile
practices that were not included in the survey,
they are: (1) Behavior-driven development/BDD
(R35), (2) Scrum of scrums (R38). R32 mentioned
that in addition to retrospective at the end of
a sprint, they also do a project level retrospective
which was done every two months.

The follow up interviews also revealed that
some respondents interpreted the definition of
Agile practices slightly different to our definitions.
R35 and R36 indicated in the survey that on-site
customer was used. However, in the follow up
interviews, they clarified that they did not ac-
tually have customers present on their premises.
Rather they have a dedicated team member who
acted as a proxy to the customers, i.e. product
owner.

The rationales for never using certain Agile
practices are summarized in Table 3. From the
interviews, we identified that respondents R11,
R14, R32, R39, and R40, marked some of the
practices as “never used” or marked as “don’t
know” because they were not adopted according
to our provided definitions or were not adopted
consistently. For example, when inquired why
stand up meeting was never used respondent R39
mentioned that “ because of the word daily in the
definition, we do not do daily meeting”. Mean-
while respondent R11 mentioned the reason for
marking “do not know’ for collective ownership
is because the project involved outsourced devel-
opers and the level of collective ownership varies
from the internal team to the outsource team:
“internal [team] is not a problem, but the out-
source team has no collective ownership”. This
indicates that the usage of Agile practices is not
binary (used or not). Often Agile practices are
modified from how they are defined or imple-
mented inconsistently.

From Table 3, we can see that some practices
are not suitable in certain contexts. Some prac-
tices may not be applicable given certain contex-
tual factors like regulation, team/organization’s
culture, and organization set-up. The character-
istics of the software system, e.g. legacy code and
product complexity, could also make some Agile
practices unsuitable.

4.2. Abandonment
of Agile practices (RQ2)

As mentioned earlier, 18 of the respondents aban-
doned one or more Agile practices. Each respon-
dent abandoned at least one Agile practice. One
of the 18 respondents abandoned up to 13 Agile

18

Indira Nurdiani et al.

Table 3. Rationales for never using certain Agile practices and the supporting quotes from the respondents

Rationale Practice Quotes (with Respondent’s ID)
Incompatibility Short Release of each sprint to end customer is not possible in case of
with the domain iteration regulatory development (R20)
or market of
development
On-site Our customers are 100M people (R13)%
customer

Challenges in
implementing
a practice

Product
complexity

Legacy code

Organization
set up

Lack of resources

Lack of
management
involvement or
enforcement

Lack of perceived

value

Conflict with
team’s culture

User stories

TDD
Metaphors
Simple
design
TDD

Simple
design

TDD
On-site
customer
Collective

ownership
Retrospective

TDD
PP

Planning
game

Refactoring

Retrospective

We are product company, it is a [software as a service] product over
the Internet (R40).

Some of our customers are not even in the province (R32).

The biggest challenge was conforming to the structure of developing
user stories (R19)%

We do not have the patience to follow through with it. It is quite
challenging with a big ecosystem [of 26 products] like this (R36).
We use user stories but not metaphors, metaphors are too obscure
for most people to grasp (R35).

The product we were working on was extremely complex, we had
a lot moving pieces and that was an unavoidable complexity the
domain was complex [...] the hardware aspect definitely have to do
with it, hardware and firmware development (R32).

Our product is very explorative, [we are| creating new software, we
rather implement TDD next time (R40).

We are left with a mess from the previous development team. We
are adding and maintaining the legacy we are left with to get the
product to the market (R35).

We have a lot of [legacy] in our code, [it was not easy] for us just to
jump into [TDD)] [because] the old code was not done in that way
(R37).

we never interact with customers because were in the R&D depart-
ment, the department that interacts with the customers is called
customer unit (R33).

We have a massive product and too few people, collective ownership
is not possible, we need specialists (R40).

Most of time management would trust the team to work, they [would
not] be picky and asking people to do retrospective and that kind of
thing (R14).

I [do not] know why we [do not] use TDD, We at [the company] just
never use TDD (R33).

Management [did not] talk about it at all. T [do not] think we ever
discussed whether to use pair programming or not (R14).

There is no need for a planning game because each developer is
responsible for a component of a feature. I [do not] think planning
game helps in this case. Just keep releases small and often (R40).
It [does not] make sense to refactor because the components that
you refactor would be obsolete anyway in a very short time (R40).
We want to foster the kind of culture where you are not keeping
something for a [sprint]. You just bring it up immediately (R40).

2 Respondent provided answer through the survey.

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 19

Computation Dominant
6 (11.8%)

Control
Dominant
9 (17.6%)

Data Dominant
34 (66.7%)

Systems Software
21 (41.2%)

(a) Type of systems

Maintenance
8 (15.7%)

In-house
development
15 (29.4%)

Market Driven
30 (58.8%)

Bespoke
16 (31.4%)

(b) Type of markets

Figure 3. Respondents’ type of system and type of markets (multiple selection possible)

50 48 47

40

30

20

10

1 2 22

O - .
& S & > & 2
e e{;é‘“ @c & & &

SAEPC S S G e

"',Q & & & N & &S N N2

< -"v& Q\cb\. & > 6‘0 ‘\b' b\ﬁ\
&{&‘ \K’O‘ P [N

P

mUsed ®Never Used

46
8 £ ;
27
24
7 7 8 7
5 5
3
2 I : I . : 0

42

39
37

S - $ 8
s ‘\@Q SQ R B &
Qé' ‘&V 0@ :’Q ¥ _}0 Q"\
& & & & NS S <
S 2)
R & - & @ &
& R %\\ &N Q&
S & o &
S <
Don't Know

Figure 4. Adoption of Agile practices

practices. All 17 Agile practices included in the
survey were abandoned at some point. From Ta-
ble 4, we can see that face-to-face meeting has
the lowest abandonment ratio (0.05). Meanwhile,
Tracking progress has the highest abandonment
ration (0.29) followed by planning game (0.2).
This finding may indicate that certain practices,
like face-to-face meeting, are more easily retained
than others. Meanwhile, a practice like TDD may
not be as popular, but once it was adopted, it
is more likely to be retained, as we can see the
abandonment ratio is quite low (0.11).

From Table 4, the number of respondents who
abandoned individual Agile practices is relatively
low when compared to the number of respondents
who retained the practices. This shows that most
of the time each Agile practice is still in use.

4.2.1. Usage until abandonment (RQ2.1)

Table 4 summarizes the periods of time that an
Agile practice was in use. Practices are most
often abandoned within the first half year after
their introduction. After 3 years of use, the rate

20

Indira Nurdiani et al.

Table 4. Agile practices that have been abandoned and how long they had been in use before abandonment

Practices <6 <12 <24 <36 <48 60+ Abandon Still Total Abandon
mon mon mon mon Imon mon in use usage® ratio®
Tracking progress 3 2 3 1 1¢ 1 11 26 37 0.29
Planning game 3 1 1 1 1ed 7 28 35 0.2
Retrospective 2 1 2 1 6 30 36 0.17
Time-boxing 2 1 1 1 5 30 35 0.14
Collective ownership 2 1 1 1ed 5 25 30 0.17
Self organizing team 1 1 1 1 4 34 38 0.11
Pair programming 2 1 1 4 17 21 0.19
Simple design 2 2 4 22 26 0.15
Stand up meeting 2 1 3 32 35 0.08
Refactoring 2 1 3 26 29 0.1
Short iteration 2 1 3 29 32 0.09
Metaphors and stories 1 1 1 3 24 27 0.11
Continuous Integration 1 2 3 30 33 0.09
TDD 1 1 2 15 17 0.11
F2F Meeting 1 1 2 37 39 0.05
On-site customer 2 2 22 24 0.08
Coding standard 1 1 2 32 33 0.06
23 13 12 15 2 2

@ Total usage based on 40 respondents who used the sliders.
¢ Respondents in financial domains.

of abandonment drops significantly. Only track-
ing progress, planning game, collective ownership
and face-to-face meeting were abandoned after
having been in use for more than 3 years.

This finding may indicate that in some con-
texts, certain practices are not suitable to be
introduced in the first place, or introduced in
the wrong order due to dependencies on other
Agile practices. Also, as the findings from sub-
section 4.1 shows that Agile practices may be
modified or implemented inconsistently, it is pos-
sible that the modifications, or the lack thereof,
has undesired side effects that may present them-
selves at various time periods. The rationales for
abandoning Agile practices are presented in the
following subsection.

4.2.2. Rationales for abandonment (RQ2.2)

Eight respondents provided rationales for aban-
doning the following practices: pair programming,
tracking progress, and on-site customer. Mean-
while, two respondents, R28 and R33, abandoned
5 and 13 practices respectively. They did not
provide a rationale for each practice. Instead,
they provide a common rationale for abandoning

b Ratio = abandon/total usage.

d Response from the same respondent.

a group/set of Agile practices (indicated as Not
specific in Table 5). Most rationales were ob-
tained for tracking progress. Table 5 summarizes
the rationales for abandoning Agile practices.

The statements from R14 and R38 in the
discontinuation of tracking progress indicate that
Agile practices dependencies are not well un-
derstood. In the case of R14, tracking progress
was introduced before sprint planning was estab-
lished. Because sprint planning was not done,
new tasks could be added throughout the week,
and tracking progress became ineffective, as re-
spondents R14 explained: “It seems like we were
walking backwards. We were working towards
the end of the week, and things just got worse.
Because somebody would suddenly add a work-
load to the sprint.” Meanwhile, in the case of R38,
tracking progress was introduced before the team
members develop better product knowledge. This
shows that there could be prerequisites before
introducing certain Agile practice. The prerequi-
sites could be other Agile practices or acquiring
product or project-related knowledge.

From Table 5, one of the more interesting
rationale for abandoning one or more Agile prac-
tices is the influence of a person, as reported by

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 21

Table 5. Rationales to abandon Agile practices and the supporting quotes from the respondents

Rationale

Practice

Quote (with Respondent’s ID)

Poor estimation
and team
dependency
Lack of product
knowledge

Team member
discomfort

Lack of engagement

Conflict with other

Agile values

Influence of
a person

Lack of perceived
values

Dependency on
other practice

Tracking progress

Tracking progress

Pair programming
Tracking progress

Pair programming

Not specific

On-site customer
Tracking progress

Tracking progress

Tracking progress
Tracking progress
Not specific

Tracking progress

Due to bad estimation and dependency on other teams we are
unable to track progress by burn-down chart (R32)2

[The team members] complain that we [do not] have the prod-
uct knowledge, how do we estimate it if we [do not] know the
complete technicalities (R38).

People were uncomfortable and people did not really want to
engage in that (R32).

Half of the were tracking progress and they other half [were
not], management did not really care (R14).

The idea of sustainable pace, [...] we are only expected to be
at the office at certain core hours [...]. I would be one of the
people showing up around 9.30-16.30 [...]. so if I want to pair
program with one of the latecomers, it would only really work
from 13-15 (R32).

It was because one person was quite very opinionated, the
person thought why do all these things, it’s a waste of time
(R33)".

The guy [who initiated on-site customers] went on vacation
and he did not come back (R14).

The new product owner did not want/care for [statistics], and
the team did not demand them (R32).

As we do product development of a rather mature product, the
tracking of progress was not all that valuable. Stuff at the top
of the backlog has most value. Stuff lower has a lower value,
and will be released later. No real forecast of this was needed
(R21).

We just try to push things to production all the time (R40).
The team did not feel the need for it (R30)>.

The part that can be handled by Agile is finished. Other part
cannot use Agile (R28)>°.

We tried to do tracking progress but sprint planning was not
done [yet] (R14).

@ Respondent provided answer through the survey.
€5 out of 12 Agile practices were abandoned.

R14, R32, and R33. Respondent R14 mentioned
that on-site customer was adopted for only two
months because the person in charge had to leave
the company. This individual was crucial to make
on-site customer worked smoothly because the
person can bridge between the technical team
and the end users (court officers): “He was both
an engineer and a lawyer. So he could very easily
talk to the business people and to us”. Meanwhile,
R33 indicated that the practices were adopted
for up to three years until they are abandoned:
“They’ve been practicing Scrum since 2012. Sud-
denly in 2015, they stopped completely [...].

b 13 out of 15 Agile practices were abandoned.

They just dropped everything, and they only do
stand up meeting [...]”. This indicates the influ-
ence of an individual can affect the abandonment
of Agile practices, but also how long they were
adopted until abandonment.

From Table 5, we can see that there could be
more than one cause to abandon an Agile prac-
tice. For example, we identified multiple reasons
for abandoning tracking progress. One of the more
common reasons is lack of perceived values. To
abandon tracking progress due to the decrease of
perceived value seems counter intuitive because
the need for tracking progress would increase as

22

Indira Nurdiani et al.

the product grows and more tasks are associated
with delivering the product.

In the case of tracking progress, it is possible
that the practitioners did not completely aban-
don tracking progress altogether, but abandoned
tracking progress according to the definition in
the survey. Respondent R14, R23, R33, and R38
indicated in the survey and interviews that they
use Kanban board to replace burn up or burn
down charts as a means of tracking progress.

The results from the survey and follow up
interviews indicate that there could be multi-
ple factors that can contribute to abandoning
an Agile practice. Engagement, knowledge, and
dependencies between development teams can
contribute to the abandonment of one or more
Agile practices.

4.3. Perceived success of Agile practice
adoption (RQ3)

In Figure 5, we looked at the perceptions of
success of Agile practice adoption by industry
domain to see whether our sample shows differ-
ences between domains.

From Figure 5, we can see that the adop-
tion of Agile practices was generally perceived
as being successful. Most of the respondents (30;
60%) perceived the adoption of Agile practices
as successful and 11 (22%) as very successful.
Only one respondent (2.8%) perceived the adop-
tion of Agile practices in his/her organization to
be unsuccessful. No respondent answered “Very
unsuccessful”. There were only minor differences
between domains.

In the follow up interviews, we identified
a number of factors that contribute to the per-
ceived success:

— Management: Trust and commitment from
managers on Agile adoption (R32), a clear
vision of Agile transformation from the upper
management (R37).

— Leadership: Ability of the leader to provide
guidance (R38).

— Team members: Engagement (R36), experi-
ence and technical skills (R40).

During the follow up interview, R11 who in-
dicated unsuccessful adoption of Agile practices

mentioned that the issue was with the company
policy, which is also related to management, of
providing documentation at the end of every
sprint: “if you want to be effective, with the
small chunks of deliverables, there are more ef-
fort because the amount of procedure is the still
the same as the big one. Agile implementation
somehow is “heavier” on the procedure side. For
every deliverable we need to provide documents
like technical documentation, deployment guide,
training material, [user acceptance test] sign off”.
Respondent R11 also felt that the kind of product
they were developing did not fit Agile: “You need
6 months to develop the core engine. I cannot
split a function into two releases, because it will
be useless for the user. We have heavy rule engine
and workflow. For this type of project, Agile does
not work”.

The respondents who perceived Agile prac-
tice adoption as very successful or successful
(43 respondents) were primarily from small and
medium sized organizations (25 and 15 respon-
dents respectively out of the 43 respondents).
This, however, does not indicate that Agile prac-
tice adoption is more successful in small organi-
zations. We simply cannot make such assertions,
since we have a small sample size and more
than 50% of the respondents were from small
organizations. Performing inferential statistics
to examine the correlation between success rate
and organization size would not be meaningful.

Overall, our survey respondents perceived
their Agile practice adoption to be successful. We
did not find significant variations of perceived
success across the different domains. We identi-
fied factors that may influence the perception of
success from the respondents, such as manage-
ment, leadership, and team members.

4.3.1. Success rates: retained vs. abandoned
practices (RQ3.1)

We also compared the success rates of 40 respon-
dents who retained all adopted Agile practices
and respondents who abandoned one or more
Agile practices. From Figure 6, we can see that
the perceived success of Agile practices was sim-
ilar in both groups. This result indicates that

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 23

Overall (N=50)

ISV (N=16)

7 (43.8%)

Media (N=4)
Medical (N=8)
Manufacturing (N=1)
Telecom (N=12)
R&D (N=11)
Government (N=3)
Other (N=4)

-20% 0% 20%

® Unsuccessful

o Neutral

1 (25%)

2 (25%)

4 (36.4%)

1 (33.3%)

40% 60% 80% 100%

m Successful Very Successful

Figure 5. Perception of success of Agile practice adoption for all participants (“Overal”, top row)
and by industry domain (row 2-9). N = 50; one of the 51 respondents did not answer the question
about perceived success

(N=22)

8 (36.4%)

anaon [BUGON new L 3067%)
(N=18)
-10% 0% 10% 20% 30% 40% 50% 60% 70% 80%
B Unsuccessful ~ ® Neutral ™ Successful Very Successful

Figure 6. Success rates: retained versus abandoned practices

an abandoning of one or more Agile practices
might be required to achieve or sustain an overall
successful Agile adoption.

However, it is also important to remember
that not all respondents adopted the same set of
Agile practices. Those who achieved successful
or very successful Agile adoption by retaining all
Agile practices may have found the more suitable
set of Agile practices or have successfully found
an optimal way to tailor the Agile practices. We,
however, do not claim that those who abandoned
practices were less successful in selecting the suit-
able of Agile practices.

4.3.2. Measures of success (RQ3.2)

As we can see from subsection 4.3 and 4.3.1,
our survey respondents generally perceived their

Agile practice adoption to be successful. It is im-
portant to understand how success is measured
since there could be different ways to perceive
success. We collected measures of success from
35 respondents and classified them into product,
process, and resource measures [27, Chapter 3,
pp. 87-98]. Table 6 summarizes the measures that
were reported the respondents and the number
of respondents that reported them.

Among the product measures, “product qual-
ity” and “customer satisfaction” were named
most frequently (12 and 9 times, respectively).
Among the process measures, “time to deliver”
was named most frequently (16 times). “Team
spirit (happiness)” was the most frequently
named resource measure.

Respondents considered a large diversity of
indicators as being success-relevant, including

24

Indira Nurdiani et al.

measures from all three categories. Table 6 lists
16 unique “process” measures, 11 unique “re-
sources” measures, and 8 unique “product” mea-
sures. This result shows that success of Agile
practice adoption can be perceived in many dif-
ferent ways.

Looking at the number of different measures
and the number of respondents who contributed
them, we can see that our respondents put much
focus on how well a “process” is executed and on
the quality of the “product”. On a more detailed
level, the respondents focused on product quality,
customer satisfaction, and time to deliver, and
good team spirit. This result is in line with the
overall goals of the Agile manifesto [30] and the
principles behind it.

We can see that the respondents reported
measures at different levels of granularity. For
instance, most respondents referred to “product
quality” or “customer satisfaction” as measures
for quality without going into detail about how
those were measured. Few respondents named
actual specific measures, like “number of de-
fects/bugs” or “number of met sprint goals”.

When looking at the respondents’ experience
and roles, we could not identify any specific pat-
terns regarding the measures they provided. Re-
spondents with more technical roles, e.g. devel-
opers or testers as well as those with managerial
roles provided both specific and generic measures.

5. Discussion

In this study, we conducted a survey and 11
interviews on Agile practices adoption and aban-
donment. To guide the discussion, we reflect
our findings and compare them against known
recommendations from Agile maturity models
(AMMs).

The respondents of our survey indicate that
face-to-face meeting and tracking progress are
frequently used. Meanwhile, TDD and pair pro-
gramming are less commonly used by our survey
respondents. From the follow up interviews, we
identified different rationales from our respon-
dents why some Agile practices were never used.

The rationales for never using certain Agile prac-
tices indicate that all Agile practices are not
always applicable in different contexts. Agile
practices are not used due to incompatibility
with the development context, challenges, or lack
of management enforcement. AMMs typically
recommend to gradually add more and more
Agile practices (see Table 1) without considera-
tions on whether the practices are suitable within
a context. For example, 24 of our respondents
never used TDD, but two out three AMMSs that
we exemplified in this paper recommend that
TDD is to be introduced. Our study also in-
dicates that Agile practices could be modified
from its definition. However, the AMMSs that we
exemplified in this paper do not provide their
definitions of the Agile practices. This raises the
question regarding the suitability of AMM in
industry.

The result of our survey indicates that not all
Agile practices are sustainable. Eighteen of the
respondents have abandoned one or more Agile
practices. Our survey also shows that Agile prac-
tices were more frequently abandoned within the
first six months after their adoption. Meanwhile,
some Agile practices, like continuous integration,
planning game, and collective ownership were
adopted for extended period of time. This find-
ing complements the findings of a previous study
by Solinski and Petersen [3]. The AMMs indicate
that Agile practices are to be gradually added.
However, in certain contexts, it is not always
possible to sustain a practice, as indicated by
a number of our respondents. The question that
needs to be raised when adopting an AMM is, if
a practice is abandoned, how would this affect
the practices that are to be adopted next? And
how would this affect the overall maturity? The
findings from our study add more questions to
the suitability of the suggestions in the AMMs.

One of the rationales for abandoning Agile
practices was the influence of a person. For re-
spondent R14, on-site customer was introduced
by the IT manager, the person’s skills and abil-
ities were so crucial that upon his departure
from the organization, the practice had to cease.
Meanwhile, respondent R33 the influence of one
very opinionated individual convinced the rest

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results

25

Table 6. Measures of success

Category Measure No. of respondents

Product Product quality 12
Customer satisfaction 9
Number of defects/bugs 2
Number of relevant working products/deliverables 2
Other: Number of newly acquired users, code quality, code change quality, 1 each
business value

Process Time to deliver 16
Cost 3
Delivery frequency/cadence 3
Lead time 2
Ease to track progress (transparency) 2
Other: Time to resolve defects, time to implement change, correct use 1 each
of development process, effective use of Agile practices, number of de-
velopment issues, amount of maintenance work, number of story points,
number of released new features, number of met sprint goals, non ad-hoc
development process, velocity

Resource Team spirit (happiness) 6
Budget conformance 2
Productivity 2
team autonomy 3
Other: Collaboration, stress level, team engagement, ownership, mutual 1 each

understanding, continuous learning, collective ownership

of the team to stop using 13 Agile practice. The
case reported by R14 and R33 shows the pres-
ence of a “maverick” [31], a highly competent
and influential individual that can influence the
introduction and abandonment of Agile practices.
The AMMSs generally suggested that Agile prac-
tices are to be introduced in certain orders, and
do not provide details on how these practices are
to be introduced or sustained. This indicates that
the AMMSs have not considered the social aspects
and uniqueness of different software development
teams.

The results of our survey and interviews also
indicate that an Agile practice could be aban-
doned because it needed another practice to be
established beforehand or concurrently. For ex-
ample, tracking progress was abandoned because
sprint planning was not yet used (as reported by
R14). This suggests that there might be depen-
dencies between Agile practices, which the prac-
titioners may yet to be aware of. In such cases, it
would be preferred if practitioners can turn to the
AMM. However, when we look at the examples
of the AMMSs in Table 1, we can see that each

AMM has different suggestions as to which prac-
tices are introduced at which maturity level. For
example, Patel and Ramachandran [5] suggested
that tracking progress need to be introduced at
the same time as planning game; such suggestion
may not work in favor of R14. However, Sidky et
al. [6] suggest that (collaborative) planning game
need to be introduced before tracking progress,
which could have provided a better guideline
for R14. This indicates there could be a need
for guidelines. However, instead of suggesting
to gradually introduce Agile practices in fixed
orders, like the AMMs, more research can be
directed to evaluate which Agile practices need
to be introduced first, or later, given the contexts
of the software teams or organizations.

The result of our survey indicates that practi-
tioners, both who retained and abandoned one or
more Agile practice perceive their Agile practice
implementation to be successful. AMMs typically
suggest that Agile practices should be continu-
ously added in a certain order to achieve suc-
cessful Agile adoption [4-6]. This indicates that
successful Agile adoption could still be achieved

26

Indira Nurdiani et al.

without following the suggestions from AMMs.
Our follow up interviews also revealed that an Ag-
ile practice could be replaced by another practice,
such as a Lean practice. This shows that intro-
ducing Agile practices may not be as straight-
forward as what AMMs suggest. The follow up
interviews also revealed a number of factors that
could contribute to success, such as, management,
leadership, and team members. This indicates
the AMMs lack of consideration of the different
situations and contexts in different software de-
velopment team. This, again, raises the question
on the merits of gradually introducing Agile prac-
tices in a certain order as suggested by AMMs.

Most of our survey respondents (82%) per-
ceived that their Agile practice adoption to be
successful and very successful. However, our re-
spondents do not measure success the same way,
for example, 12 respondents use product quality
as a measure of success, and six respondents
measure success given the team happiness. It
indicates that success is perceived differently in
different contexts by different respondents. A sim-
ilar result is reported by Solinski and Petersen
that indicate practitioners have different priori-
ties on the perceived benefits and limitations of
Agile practices [3]. The AMMs do not consider
such prioritization of benefits and limitations
that practitioners may have. This further high-
lights the limitation of a hierarchical approach
to Agile adoption like the AMMSs, as previously
suggested by Gren et al. [32]. More research is
needed to support practitioners in deciding which
Agile practices are suitable for adoption given
the benefits that they prioritized.

The results of our survey suggest that retain-
ing or abandoning Agile practices can lead to
a successful Agile adoption. This shows that Ag-
ile adoption is not as straightforward and gradual
as suggested by the AMMs [4-6]. Practitioners
may need to abandon, or very rarely pause, the
implementation of one or more Agile practices.
This indicates that practitioners are constantly
assessing whether Agile practices are delivering
the values they expected. Sidky et al. [6] included
a step to assess whether to continue or discon-
tinue the whole Agile transformation process,
but not at the practice level. Practitioners might

need support to systematically evaluate their
state of Agile adoption so that decisions to add,
modify, discontinue, or replace a practice is based
on a rigorous and traceable process.

Implications towards Agile adoption guide-
lines. We noticed differences between the rec-
ommendations in AMMs and the results of our
survey. At the same time, our survey also in-
dicates the need for Agile adoption guidelines.
Such guidelines need to take into account that
Agile practices might not be sustainable and
that there might be dependencies between Agile
practices, as indicated by one our respondents,
that suggests certain orders or combinations of
adoptions. Furthermore, the situations and oper-
ating environment of software organizations may
change [33]. The guidelines need to provide an
appraisal means for practitioners on the benefits
and limitations of adopting Agile practices, given
the changing situations.

Implication towards Agile research. The re-
sults of our survey shares similarity to those of
Kurapati et al. [16]. However, we also observed
some differences, particularly pertaining to the
adoption rate of planning game. The respondents
in our survey indicate that planning game is
a commonly used practice (47 out of 51 respon-
dents), but Kurapati et al. reported the opposite.
We observed that Kurapati et al. defined the
practices slightly different. Their definition of
planning game includes the presence an on-site
customer. In our survey, we separated planning
game from on-site customer. To be able to syn-
thesize existing evidence regarding Agile practice
adoption, there is a need for commonly agreed
and consistent definitions of Agile practices.

The respondents in our survey indicate that
TDD and pair programming are less commonly
used practices. This result corroborates with past
surveys such as [16] and [17]. TDD and pair
programming are also less frequently abandoned.
This observation is rather interesting because
a tertiary literature study in Agile shows that
TDD and pair programming is highly studied [34].
There are also many reports on their benefits and
limitations to name a few: [35, 36]. This raised
the question of whether knowing better the ben-
efits and limitations of different Agile practices

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 27

can help practitioners to make better decisions
on whether to introduce a practice. Therefore
once the decision is made to adopt such practices
it is based on an informed decision. Thus the
practices are less likely to be abandoned.

6. Conclusion

We conducted a survey on Agile practices with
a particular focus on when adopted practices
were abandoned. We received 51 valid answers,
40 provided detailed start and end period for
the practices. We also conducted 11 follow up
interviews with the survey respondents. In the
following, we revisit our research questions by
summarizing answers:

RQ1. What is the rate of adoption of Ag-
ile practices? The rate of adoption of each prac-
tice can be seen in Figure 4. Commonly adopted
practices by our respondents were face-to-face
meeting, tracking progress, and planning game.
Comparably less commonly adopted practices by
our respondents were T'DD and pair programming.

RQ2. Which Agile practices have been
abandoned? All 17 Agile practices included in
this survey have been abandoned at some point
(see Table 4). Consistent with the answer to the
previous research question, the more commonly
used practices, particularly tracking progress and
planning game, also had high abandonment ratio.
The rationales for abandoning Agile practices in-
clude lack of perceived values, the influence of
a person, and team member discomfort. Agile
practices were used between 6—-60 months until
they were abandoned. Most of our respondents
abandoned practices within the first half year of
the introduction. Agile practices are less likely
to be abandoned by our survey respondents after
three years (36 months) of use.

RQ3. What is the perceived success
rate of Agile practicesimplementation? The
adoption of Agile practices was perceived as being
successful or very successful. Only one respon-
dent perceived the Agile adoption as unsuccessful
and none as very unsuccessful. The respondents
used a large variety of measures of success. The
following measures were used by the majority

of respondents: product quality, customer satis-
faction, and time to deliver. Furthermore, our
survey indicates no differences in the perceptions
of success between respondents who abandoned
practices and those who retained them. This re-
sult indicates that some teams or organization
needed to abandon some practices to achieve or
maintain an overall successful adoption of Agile
methodologies.

Future work. For future work, we suggest
the following avenues of research: (1) examine
how different Agile practices contribute to matu-
rity (2) better understand the impact of gradually
adding, or abandoning Agile practices, and (3) de-
veloping a common definition of Agile practices
to ease aggregation of evidence.

Acknowledgement

This work had been supported by ELLIIT,
a Strategic Research Area within IT and Mo-
bile Communications, funded by the Swedish
Government.

References

[1] P. Abrahamsson, O. Salo, J. Ronkainen, and
J. Warsta, “Agile software development methods
— review and analysis,” VI'T Publications, Tech.
Rep. 478, 2002.

[2] L. Williams, “Agile software development
methodologies and practices,” in Advances
in Computers, Advances in Computers,
M.V. Zelkowitz, Ed. Elsevier, 2010, Vol. 80,
pp. 1-44.

[3] A. Solinski and K. Petersen, “Prioritizing Agile
benefits and limitations in relation to practice
usage,” Software Quality Journal, Vol. 24, No. 2,
2016, pp. 447-482.

[4] J. Nawrocki, B. Walter, and A. Wojciechowski,
“Toward maturity model for extreme program-
ming,” in Furomicro Conference, 2001. Proceed-
ings. 27th, 2001, pp. 233-239.

[5] C. Patel and M. Ramachandran, “Agile maturity
model (AMM): A software process improvement
framework for Agile software development prac-
tices,” International Journal of Software Engi-
neering, IJSE, Vol. 2, No. 1, 2009, pp. 3-28.

[6] A. Sidky, J. Arthur, and S. Bohner, “A disci-
plined approach to adopting Agile practices: The

28

Indira Nurdiani et al.

[10]

Agile adoption framework,” Innovations in Sys-
tems and Software Engineering, Vol. 3, No. 3,
2007, pp. 203-216.

T. Schweigert, D. Vohwinkel, M. Korsaa,
R. Nevalainen, and M. Biro, “Agile maturity
model: A synopsis as a first step to synthe-
sis,” in Systems, Software and Services Pro-
cess Improvement, Communications in Com-
puter and Information Science, F. McCaffery,
R.V. O’Connor, and R. Messnarz, Eds., 2013,
Vol. 364, pp. 214-227.

M. Leppénen, “A comparative analysis of Agile
maturity models,” in Information Systems De-
velopment, R. Pooley, J. Coady, C. Schneider,
H. Linger, C. Barry, and M. Lang, Eds., 2013,
pp. 329-343.

T. Schweigert, D. Vohwinkel, M. Korsaa,
R. Nevalainen, and M. Biro, “Agile maturity
model: Analysing Agile maturity characteristics
from the spice perspective,” Journal of Soft-
ware: Bvolution and Process, Vol. 26, No. 5, 2014,
pp. 513-520.

0. Ozcan-Top and O. Demirors, “Assessment of
Agile maturity models: A multiple case study,”
in Software Process Improvement and Capabil-
ity Determination, Communications in Com-
puter and Information Science, T. Woronowicz,
T. Rout, R. O’Connor, and A. Dorling, Eds.,
2013, Vol. 349, pp. 130-141.

Version Onme, 8th Annual State of Agile™
Report, 2013. [Online]. https://www.versio
none.com/pdf/2013-state-of-agile-survey.pdf
(Accessed May 2018).

Version One, 9th Annual State of Agile™
Report, 2014. [Online]. https://explore.versio
none.com/state-of-agile/9th-annual-state-of-
agile-report-2 (Accessed May 2018).

Version One, 10th Annual State of Agile™
Report, 2015. [Online]. https://explore.versiono
ne.com/state-of-agile/versionone-10th-annual-
state-of-agile-report-2 (Accessed May 2018).
Version One, 11th Annual State of Agile™
Report, 2016. [Online]. https://explore.versiono
ne.com/state-of-agile/versionone-11th-annual-
state-of-agile-report-2 (Accessed June 2017).
Version One, 12th Annual State of Agile™
Report, 2017. [Online]. https://explore.versiono
ne.com/state-of-agile/versionone-12th-annual-
state-of-agile-report (Accessed May 2018).

N. Kurapati, V.S.C. Manyam, and K. Pe-
tersen, Agile Software Development Practice
Adoption Survey. Berlin, Heidelberg: Springer,
2012, pp. 16-30.

B. Murphy, C. Bird, T. Zimmermann, L. Williams,
N. Nagappan, and A. Begel, “Have Agile tech-

[25]

niques been the silver bullet for software develop-
ment at Microsoft?” in Proceedings of the 7th In-
ternational Symposium on Empirical Software En-
gineering and Measurement (ESEM 2013), 2013,
pp. 75-84.

M. Kropp, A. Meier, and R. Biddle, “Ag-
ile practices, collaboration and experience,” in
Product-Focused Software Process Improvement.
PROFES, Lecture Notes in Computer Science,
P. Abrahamsson, A. Jedlitschka, A. Nguyen Duc,
M. Felderer, S. Amasaki, and T. Mikkonen, Eds.
Springer, 2016, pp. 416-431.

P. Ralph and P. Shportun, “Scrum abandonment
in distributed teams: A revelatory case,” in The
Pacific Asia Conference on Information Systems
(PACIS), 2013, p. 42.

J. Lindker, S.M. Sulaman, R. Maiani de Mello,
and M. Host, “Guidelines for conducting surveys
in software engineering,” Lund University, Tech.
Rep., 2015.

C. Robson, Real world research, 2nd ed. West
Sussex, UK: John Wiley & Sons, 2011.

P. Rodriguez, J. Markkula, M. Oivo, and K. Tu-
rula, “Survey on Agile and lean usage in
Finnish software industry,” in Proceedings of the
ACM-IEEE International Symposium on Em-
pirical Software Engineering and Measurement,
2012, pp. 139-148.

K. Petersen, “Is lean Agile and Agile lean?” Mod-
ern Software Engineering Concepts and Prac-
tices: Advanced Approaches, IGI Global, 2011,
pp- 19-46.

M. Kuhrmann, P. Diebold, J. Miinch, P. Tell,
V. Garousi, M. Felderer, K. Trektere, F. McCaf-
fery, O. Linssen, E. Hanser, and C.R. Prause,
“Hybrid software and system development in
practice: Waterfall, scrum, and beyond,” in Pro-
ceedings of the 2017 International Conference
on Software and System Process, ICSSP, 2017,
pp- 30-39.

A. Forward and T.C. Lethbridge, “A taxon-
omy of software types to facilitate search and
evidence-based software engineering,” in Pro-
ceedings of the 2008 Conference of the Cen-
ter for Advanced Studies on Collaborative Re-
search: Meeting of Minds, CASCON ’08, 2008,
pp. 14:179-14:191.

J. Saldana, The Coding Manual for Qualitative
Researchers. SAGE Publications Limited, 2012.
N. Fenton and J. Bieman, Software Metrics:
A Rigorous and Practical Approach, 3rd ed. Boca
Raton, FL, USA: CRC Press, Inc., 2014.

K. Petersen and C. Gencel, “Worldviews, re-
search methods, and their relationship to valid-
ity in empirical software engineering research,”

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results

29

[29]

[30]

in Joint Conference of the 23rd International
Workshop on Software Measurement and the 8th
International Conference on Software Process
and Product Measurement, 2013, pp. 81-89.

S. Stavru, “A critical examination of recent in-
dustrial surveys on Agile method usage,” Jour-
nal of Systems and Software, Vol. 94, 2014,
pp. 87-97.

K. Beck, M. Beedle, A. van Bennekum, A. Cock-
burn, W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Mar-
ick, R.C. Martin, S. Mallor, K. Shwaber, and
J. Sutherland, “The Agile Manifesto,” The Ag-
ile Alliance, Tech. Rep., 2001. [Online]. http:
//agilemanifesto.org/

H. Sharp and H. Robinson, “Some social factors
of software engineering: The Maverick, commu-
nity and technical practices,” in Proceedings of
the Workshop on Human and Social Factors of
Software Engineering, HSSE 05, New York, NY,
USA, 2005, pp. 1-6.

L. Gren, R. Torkar, and R. Feldt, “The prospects
of a quantitative measurement of Agility: A vali-

[33]

[36]

dation study on an Agile maturity model,” Jour-
nal of Systems and Software, Vol. 107, 2015,
pp. 38-49.

I. Nurdiani, S.A. Fricker, and J. Borstler, “An
analysis of change scenarios of an IT organiza-
tion for flexibility building,” in Proceedings of
the 23rd European Conference on Information
Systems (ECIS 2015), 2015.

I. Nurdiani, J. Bérstler, and S. Fricker, “The
impacts of Agile and lean practices on project
constraints: A tertiary study,” Journal of Sys-
tems and Software, 2016.

A. Causevic, D. Sundmark, and S. Punnekkat,
“Factors limiting industrial adoption of test
driven development: A systematic review,” in
Proceedings of the 4th IEEE International Con-
ference on Software Testing, Verification and
Validation (ICST 2011), 2011, pp. 337-346.

T. Dyba, E. Arisholm, D. Sjoberg, J. Hannay,
and F. Shull, “Are two heads better than one?
On the effectiveness of pair programming,” IEEE
Software, Vol. 24, No. 6, 2007, pp. 12-15.

30

Indira Nurdiani et al.

Appendix A. Definition of Agile

practices in the survey

Agile practices definitions adapted from Solinski
and Petersen [3]:

1.

Face-to-face meeting: Team sits together,
open space office facilitating interaction,
video conference if the team is distributed.
Self-organizing cross functional team: Small
team with no more than 10 members that
consists of people with different competences
(developer, tester, etc.). Team is independent,
takes full responsibility of the task.

On-site customer: Continuous user involve-
ment in the development process, customer
can be consulted anytime if it is needed.
Pair programming: Two developers work to-
gether at one workstation.

Planning game/sprint planning meeting: The
entire team participates in selecting the feature
to be implemented in the following iteration.
Tracking progress: Tracking of the project
progress using burn down chart, burn up
chart.

Refactoring: Restructuring code for better
understandability and reduced complexity.
Iteration reviews/retrospective: Meeting after
each iteration to review the project, discuss
threats to process efficiency, modify and im-
prove.

Short iterations € frequent releases: Frequent
releases of the software, early and continu-

10.

11.

12.

13.

14.

15.

16.

17.

ous delivery of partial but fully functional
software.

Simple design: Goal to design simplest solu-
tion.

Time-boxing/sprint/iteration: Fixed start
and end dates are set for iterations and
projects, e.g. 30 days sprint.

Stand up meeting: Short daily meeting where
the whole team communicate and reflect on
the completed and ongoing work.
Metaphors € stories: A metaphor is a very
high level requirement outlining the purpose
of the system and characterizes what the sys-
tem should be like. The metaphor is broken
down into short statement of the detailed
functionalities called stories. The stories are
kept in a backlog.

Test-driven/test-first development: Writing
automated test cases for functionalities and
then implementing (coding) the tested func-
tionalities until the tests are passed success-
fully.

Continuous integration: Software is built fre-
quently, even a few times a day, accompanied
with testing (unit test, regression test, etc.).
Coding standards: Coding rules that are fol-
lowed by the developers to make sure that
developers write code in the same way.
Collective ownership: Everybody in the team
can change the code of other developers in
case of maintenance, bug-fixing or other de-
velopment activities.

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 31

Appendix B. Survey design

in real life

Experience in Agile Practice Adoption (Page 1 of 2)

Throughout your professional career, you may have closely observed or personally experienced instances of Agile practices being adopted in different organizations. In this section of the survey, we would like
you to reflect on a particular experience from your current or past employment regarding the adoption of Agile practices. An experience is your personal observation regarding the adoption or termination of
Agile practices in the organization that you are currently employed or were employed in the past. Please reflect on an experience that you are most familiar with and answer the following questions with
respect to this particular experience. If you want to share several cases or experiences, you can add further experiences later.

1. Which i have been in this case?

Please mark all practices that are/were used in this experience. For all practices that are/were used, please use the blue pointer to mark the start of a practice and grey pointer to mark the end of a practice.
If a practice is still in use please drag the grey pointer to the end. If a practice has never been used please mark it with “Never used”. If you are not sure about some practices, please mark it as “Don’t know”.

If you have difficulty to drag the slider pointer, please do the following:

1. Click on the start (blue) pointer.
2. Click the scale (the black line) on the respective year e.g., 2007, 2012 H1, etc.
3. Repeat step 1 for the end (grey) pointer.

In addition to the slider, please use the comment section if:
« You know precisely when one practice starts and ends, e.g., a specific date and/or month of the year that you marked on the slider.

« The slider does not accommodate the start and end of a practice, e.g., a practice started and ended before 2006.
« You have other remarks that you wish to add.

Comment

Never Don't Betors.
s " T e e o I B BT T

Face-to-face meeting®

Self-organizing cross
functional team©@

On-site customer

Pair prcgramminge

Planning game/ sprint
planning meeting®

Tracking progress @

Refactoring®

Iteration reviews/
Retrospective®

Short iterations &
frequent releases @

Simple Design®

Time-boxing/ Sprint/ Iteration

Stand up meeting©®

Metaphors & stories O

Test-driven/ test-first
development'

Continuous integration ©

Coding standards©®

Collective ownership©

EERE EEREEREE BEEEBE BER

32 Indira Nurdiani et al.

0 From this point onwards, we will refer to Agile that you in tion 1, as this rii

2. In this experience, did/do you find the ion of Agile ices to be ?

3. In this experience, what is/was the measure of success?

4. In this what the of Agile ices in this p way or order? (If any. Optional)

5. In this why the Agile in this p: way or order?

6. In this experience, why were some (If any. O

|

7. If you have other remarks or comments that you would like to add to your answer, please kindly put them here (Optional).

Back Next

w

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results 3

Context (Page 2 of 2)

In this section we would like to gather some i i ining to this i that you i in Page 1.

8. This experience is/was

" Past experience from my past employment

9. Please select the role(s) that you in this

[Project/Program Manager

[Systems Analyst

" Quality Assurance

[Scrum Master

[Consultant

" C - Level Manager (CEO, CIO, etc.,)

10. How many years you been d in the where the experience takes/took place?

) 1-3years

 6-10years

11. In this experience, approximately, how many team N ffi by the of Agile p ?

50— 249 people

" More than 5000 people

12. In this experience, which of the g best describe the distribution of team b ffi d by the Agile ices?
Distributed means that teams are distri across multiple locations

) This i il multiple dt teams that are collocated at a single location

) This i i multiple teams that are located at multiple locations

34 Indira Nurdiani et al.

13. In this experience, how was/is the the of Agile d?
" Each the
" I don'tknow
2

14. What is/was the main development type(s) in this experience?

" Market driven for large open market of potential customers

" Maintenance

15. Which v do best the context of this experience?

| Financial Services

" Healthcare/Medical

" Manufacturing

" Research & Development

) Other

16. Which type(s) of system(s) do best describe the context of this experience?

[Sy ftware (e.g., operating syst rking/ icati ti-virus, database/email/ftp server, integrated devel i t, etc.)

[~ Computation dominant software (e.g., operation signal pi ing, image/vi editor, rc

‘Back Next

Usage, Retention, and Abandonment of Agile Practices: A Survey and Interviews Results

35

17. Would you like to be informed regarding the results survey and be contacted for further inquiries (e.g., interviews)?

Yes, please send me the results of the survey and | may be contacted for further inquiries

Yes, please send me the results of the survey
No

18. Please kindly state your name! (Optional)

19. Email address (Optional)

20. What else would you like to share with us?

Back

Next

Appendix C. Survey thoroughness assessment

Calculating thoroughness score. We summed up the weights for every criterion that was fulfilled
by this survey (total score). Then, we divided the obtained total score by the total weight of all
criteria. For more details on survey thorough assessment, see [29].

Table C.1. Survey thoroughness assessment based on [29]

Criteria Weight Score Criteria Weight Score
Objectives 1 1 Questionnaire evaluation 3 3
Sponsorship 1 0 Questionnaire 3 3
Survey method 4 4 Media 1 1
Conceptual model 4 4 Execution time 1 1
Target population 4 4 Response burden 1 0
Sampling frame 5 5 Follow-up procedures 2 0
Sampling method 5 5 Responses 3 3
Sample size 5 5 Response rate 5 5
Data collection method 3 3 Assessment of trustworthiness) 0
Questionnaire design 4 4 Discussions of validity threats 3 3
Provisions for securing trustwor- 3 3

thiness

Total weight: 66

Total score: 57

e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 37-62, DOI 10.5277/e-Inf190102

Do Software Firms Collaborate or Compete?
A Model of Coopetition in Community-initiated
OSS Projects

Anh Nguyen-Duc*, Daniela S. Cruzes**, Snarby Terje**, Pekka Abrahamsson****

* Business school, University of South Eastern Norway
**Sintef Digital
“**Genus AS
ex Undversity of Jyvdaskyld
Anh .Nguyen.Duc@usn.no, daniela.s.cruzes@sintef.no, terjesnarby@gmail.com,
pekka.abrahamsson@jyu.fi

Abstract

Background: An increasing number of commercial firms are participating in Open Source Software
(OSS) projects to reduce their development cost and increase technical innovativeness. When
collaborating with other firms whose sought values are conflicts of interests, firms may behave
uncooperatively leading to harmful impacts on the common goal.

Aim: This study explores how software firms both collaborate and compete in OSS projects.
Method: We adopted a mixed research method on three OSS projects.

Result: We found that commercial firms participating in community-initiated OSS projects
collaborate in various ways across the organizational boundaries. While most of firms contribute
little, a small number of firms that are very active and account for large proportions of contributions.
We proposed a conceptual model to explain for coopetition among software firms in OSS projects.
The model shows two aspects of coopetition can be managed at the same time based on firm
gatekeepers.

Conclusion: Firms need to operationalize their coopetition strategies to maximize value gained
from participating in OSS projects.

Keywords: COSS, coopetition, collaboration, competition, open source software, case

study

1. Introduction

Increasingly, software products are no longer
developed solely in-house, but in a distributed
setting, where developers collaborate with “dis-
tributed collaborators” beyond their firms’
boundary [1, 2]. This phenomenon includes open
source software (OSS) communities, crowd-sourc-
ing, and software ecosystems (SECO). This
differs from traditional outsourcing techniques
in that initiating actors do not necessarily
own the software developed by contributing ac-
tors and do not hire the contributing actors.
Community-initiated OSS projects are an ex-

Submitted: 1 May 2018; Revised: 24 June 2018;

Accepted: 31 July 2018;

ample of the context in which actors coexist and
coevolve.

From firms’ perspective, it is beneficial for the
development of software products whose scopes
exceeds their own capabilities by leveraging ex-
ternal resources, exploring opportunities to enter
new markets [3], performing an inside-out pro-
cess [4], and employing strategic recruitments
[5]. From communities’ perspective, the partic-
ipation in such environment probably causes
firms to open up its successful products and
product lines for functional extensions by ex-
ternal developers [1]. Instead of being exclusive
and localizing product development, firms are

Available online: 1 October 2018

38

Anh Nguyen-Duc et al.

exploring different ways to invite contributions
from external actors without revealing core tech-
nology, business value and customer relation-
ships [6].

Before the full potential advantages of open
sourcing are leveraged, commercial firms need
to consider several concerns. At the organiza-
tional level, the firm’s benefit and the commu-
nity goals are not always the same [7]. Partici-
pation of commercial firms in OSS projects with
their diverse motivations and business strate-
gies might introduce variance, and sometimes
conflicts in project evolution [3]. Existing re-
search on OSS highlights the role of collabo-
ration with extensive research on communica-
tion and coordination practices, patterns and
lessons learnt from OSS communities [8-11]. How-
ever, there seems to be far less research concerns
about the conflicts among firms regarding to
their strategic development. Firms attempt to
gain competitive advantages from their partic-
ipation in OSS projects [12]. When there oc-
cur mismatches in term of interests and objec-
tives, firms may behave uncooperatively in or-
der to prevent others from achieving their goals
[13]. The conflict occurs not only at the man-
agerial level, such as project governance [14],
but also at the operational level, such as code
contribution, bug fixes, and requirement elicita-
tion [3, 15-17].

Coopetition, as a business phenomenon, is
about collaborating and handling a firm’s com-
petitive advantages when participating in OSS
projects [18, 19]. In a coopetitive environment,
firms cooperate with each other to reach a higher
value creation compared to the value created
without the interaction. The basic assumption
for coopetitive relationships is that all activities
should aim at the establishment of a beneficial
partnership with other firms, including partners
who may be considered as a kind of competi-
tor [20]. Since coopetition applies to inter-firm
relationships, OSS project offers an ideal con-
text for understanding the phenomenon among
firms that develop and utilize a common software
codebase [16].

Empirical research on coopetition is scarce,
especially studies in Software Engineering (SE)

and at the organizational level [13]. Research in
this area is probably hidden by the inconsistent
treatment of the cross-disciplinary natures of
cooperation and competition, and their related
constructs. Our research objective is to explore
how firms interact and manage the phenomenon
of coopetition in OSS projects. To best of our
knowledge, there exists only a few studies that
examine the phenomenon of coopetition among
commercial firms in OSS projects [3, 13, 15, 17].
Research questions (RQs) were derived from this
research objective. Firstly, we aimed at under-
standing the basic foundation on firm participa-
tion in OSS projects. Based on this knowledge,
we explored further theoretical elements of coope-
tition. We use here the word “coopetitively” as
an adverb of coopetition:
— RQ1: How do commercial firms participate
in community-initiated OSS projects?
- RQ2: How do commercial firms manage
coopetition with other firms in such context?
Our contributions are two folds, firstly we por-
trayed the situations where both competition
and collaboration occurs in OSS projects. Con-
sidering the body of knowledge about firm partic-
ipation in OSS projects, our work confirms some
patterns and also extends them by exploring the
firm awareness, coopetition and their antecedent
factors. Adopting a mixed-method research, we
quantitatively examine organizational interac-
tion patterns and qualitatively explore how firms
perceive and employ coopetition strategies. Sec-
ondly, we theorize constructs of coopetition by
proposing a Coopetition in Open Source Software
(COSS) model. Previous studies that mention the
term “coopetition” [3, 15], do not investigate the
constructs under this phenomenon. Hence, to our
best knowledge, this is among the first studies
in SE investigating this concept. The proposed
model reveals building blocks of coopetition in
OSS firms network and its relationship to conse-
quent factors.

The study is organized as follows: Section 2
presents a background about coopetition and
firm participation in OSS projects. Section 3
describes our research methodology, Section 4
presents our findings, and Section 5 discusses the
findings. Finally, Section 6 concludes the paper.

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 39

2. Background and related work

2.1. The phenomenon of coopetition

The origin of coopetition is from business re-
search when investigating buyer and seller rela-
tionships within a business network [18, 19]. The
trade-off between cooperation and competition
is emphasized as a mean of creating a progress
among actors involved in long-term relation-
ships. Coopetition conceptualizes the interaction
among firms in relation to their strategic devel-
opment [18, 19]. Dagnino et al. defined coope-
tition as “a kind of inter-firm strategy which
consents the competing firms involved to manage
a partially convergent interest and goal structure
and to create value by means of coopetitive ad-
vantage” [21]. The authors proposed two forms
of coopetition, a dyadic coopetition (concerns
among two-firm relationships) and a network
coopetition (involving more than two firms, i.e.
value chain) [21]. Bengtsson argued that a dyadic
relationship is a paradox that emerges when two
firms cooperate in some activities, such as in
a strategic alliance, and at the same time com-
pete with each other in other activities [19]. It
means that actors within a firm need to be di-
vided to take charge of either collaboration or
competition.

Coopetition can occur in a more complex
form, with a network of firms. The coopeti-
tion strategy can be applied at a micro level
(among functional and divisional departments
in a firm), a meso level (among firms in the
same industry, between vendor and supplier)
and a macro level (among cluster of firms or
firms across industries) [21]. Literature also dis-
cusses some antecedent factors relating to coope-
tition at the micro level, such as shared vi-
sion, perceived trust and perceived benefits [22].
A study points out some possible impacts of
coopetition on knowledge sharing and job/task
effectiveness [22]. By selecting a highly inno-
vative OSS project that contributes to firms’
strategic values, we illustrate dependencies be-
tween competitors due to structural conditions,
why and how competitors cooperate.

2.2. Collaboration in OSS projects

Collaboration is an aspect of coopetition that is
much explored in OSS projects. It is common
to look at OSS projects’ archives to reveal com-
munication, collaboration and coordination ap-
proaches, frequency, patterns and best practices
at different level of analysis [2, 23-31]. Early
research has observed an onion-like structure
of contribution in OSS projects [24-27]. At the
center of the onion are the core developers, who
contribute most of the code and take care of
the design and evolution of the project. In the
next ring out are the co-developers who submit
patches (e.g. bug fixes), which are reviewed and
checked in by core developers [28]. Further out
are the active users who do not contribute code
but provide use-cases and bug-reports as well
as testing new releases. The awareness of peo-
ple and activities through OSS social structures
enhances collaboration effectiveness and ensures
that little effort is wasted in duplicate work [30].
A large amount of studies investigates the com-
bination of social and technical aspects of OSS
projects, by analyzing a social network created
by contributors who work and communicate in
the same set of files [32-35]. Bird et al. [34]
showed that a socio-technical network of soft-
ware modules and developers is able to predict
software failure proneness with greater accuracy
than other prediction methods. Wolf et al. [35]
formed a developer-task network to explore the
impact of developer communication on software
build integration fail. A common assumption of
these studies is that developers behave regardless
of their commercial affiliations in OSS projects,
indicating by unweighted analysis approaches
when formulating the social networks. In case
a significant number of developers from firms
contributes to the project, organizational fea-
tures, such as firms’ strategies and governance
mechanism might influence the communication
structures of the OSS projects. In this work, we
will use the social network analysis (SNA) to in-
vestigate interaction patterns, i.e. collaboration
and competition in OSS projects. While we also
form the developer-task-developer network, the

40

Anh Nguyen-Duc et al.

difference is that the relationship is analyzed at
firm level.

2.3. Collaboration in OSS projects

A theoretical model links theoretical elements
in a certain semantic manner, i.e. a causal rela-
tionship, helping to design data collection and
analysis. Literature reveals factors that lead to
the occurrence of collaboration and competition
(antecedent factors), and their impact on firms’
outcomes (consequent factors). It is noted that
we do not aim for model completeness, but for
a foundation of further investigation. The further
investigation would discover which factors valid
in the context of software industry, particularly
OSS projects.

As seen in Figure 1, coopetition is the stud-
ied construct, and it is linked to its antecedent
factors, i.e. structural condition, strategic vision,
trust and perceived benefits [22, 36-41].

Strategic vision: sharing strategic vision is
essential for cooperation at team level [22] [35],
as the vision reflects important agreements of
beliefs and assumptions that consequently bring
internal stability to the cooperative attitude [36].
At the strategic level, vision typically is about the
firm’s value and business development. Shared
vision draws a roadmap for the organization or
firm, setting the priorities for their team plan-
ning and implying its critical determinant role
in lessening malign competition [22]. The vision
can be shared via meetings or workshop with
high-level managers.

Trust: is considered as a relationship of re-
liance among members of a team or an organi-
zation. Trust is defined as “the willingness of
a party to be vulnerable to the actions of an-
other party based on the expectation that the
other will perform a particular action impor-
tant to the trustor, irrespective of the ability to
monitor or control that other party?” [42]. The
importance of trust in the success of interper-
sonal relationships is reported previously in OSS
projects [37, 38]. Moreover, trust is the key of
transforming OSS as a community of individual
developers, to OSS as a community of firms [39].
The cooperation that captures the level of coor-

dinated actions between team members in their
efforts to achieve mutual goals cannot be realized
without trust among the members.

Perceived benefit: on one hand, perceived
benefits are associated with a cooperative at-
titude, involving compatible interests as com-
mon benefits can motivate collaboration, leverage
team or person’s capabilities for obtaining such
benefit [40]. In OSS projects, perceived benefits
of participating in the communities are reduced
development cost, community knowledge, and
reduced maintenance cost. On the other hand,
perceived benefit is also associated with a com-
petitive attitude. Individuals are likely to pur-
sue their own objective at the expense over all
team’s goal [41]. This could be applicable for
organization in an ecosystems or supply chains.
The more benefit a firm perceive for obtaining
a conflicting artifact or resource, the more they
likely to compete over the resource [22].

In our theoretical framework, coopetition is
also associated to its consequent factors, i.e.
knowledge sharing and task effectiveness [22, 43].

Knowledge sharing at organizational lev-
els is seen as sharing of organizational experience
and knowledge, i.e. technical know-how, domain
expertise, work practice, etc. with other collab-
orators, and hence increasing the overall knowl-
edge in the joint project [22]. As knowledge is
a critical source of competitiveness, managing
knowledge sharing among members of an orga-
nization plays a prominent role in sustainable
competitive advantage [43].

Task effectiveness in team collaboration
represents individuals’ perceived capacity of con-
ducting collaborative tasks, whereas knowledge
sharing enhances the ability of collaborator’s
knowledge exchange.

3. Research approach

3.1. Study design

We conducted this work by using a two-phase
multiple-case study design [44]. The phases in
the research occur due to the discrete continua-
tion of our internal research project. Compared

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 41

Structural condition

Strategic vision

Knowledge sharing

Coopetition
Firm-level trust
Task effectiveness
Perceived benefits
Antecedence Construct Consequence

Figure 1. A theoretical framework of coopetition (adapted from [22])

to descriptive and confirmative case studies, ex-
ploratory case studies are suitable for the first
phase research as we would like to discover the
phenomenon of coopetition, whether it exists,
in which form and its relationship to its con-
text setting. This phase was done as a part of
a master thesis. In the second phase, we con-
ducted a descriptive study on describing collab-
oration, competition in the selected cases. In
the third phase, we found another case study
to confirm the qualitative findings. This step
was conducted to validate what we observed
in the first two cases. We followed the guide-
line by Runeson and Host [45] to execute case
study, including case selection, data collection
and analysis.

Case selection is not straightforward. There
are abundant OSS projects available; many
of them are abandoned or individual efforts.
A brainstorm session was conducted among the
paper’s authors to decide case selection criteria
as below:

— Commercial participation: the OSS project
should have multiple commercial firms par-
ticipating in the development. In addition,
there must be an adequate way to identify
them.

— Successful and on-going: the OSS project
must be successful and on-going. This implies
that the project attracts developers and the
development of the software is progressing.

— Active projects with many activities: the OSS
project must have a high level of communica-
tion and code commits in the project, showing
by rich data archive.

By reviewing literature on OSS projects in
SE, we learnt several OSS projects that were com-
monly investigated in SE research, such as Apache,
Mozilla, Eclipse and Linux [46]. The selected cases
should not only satisfy the selection criteria, but
also novel in SE research. We were suggested to
Wireshark by a colleague who participated in the
project. Many reasons contributed to this choice.
Firstly, the contributor list and community activ-
ity revealed high participation and involvement
of commercial companies. Wireshark is a typical
instance of a OSS project. The project uses soft-
ware informalisms for development collaboration,
the developers are a mix of firm-paid developers
and volunteers, and the software is licensed under
the GNU General Public License (GNU GPL).
Wireshark is also a very successful on-going OSS
project, with a high number of contributors and
active users, consistently pushing development
forward. Having selected Wireshark as the first
case, we proceeded to find and select the second
case for our study. To be able to do a literal
replication, the second case should have similar
properties as the first case. After a long period of
searching, we ended up with three promising cases
that matched the specifications: Horde, Samba
and Wine. From the comparison it was evident
that Samba was very similar to Wireshark, i.e.
both projects were licensed under GNU GPL, both
projects had many firms participating, and they
both had a yearly conference where developers
cane together to discuss further development and
socialize. We planned to have the third case to
validate the qualitative findings from Wireshark
and Samba. Among several OSS projects we

42

Anh Nguyen-Duc et al.

First phase:

Prestudy, Exploratory and Descriptive

Second phase:
Confirmative

|

Case study 2

Case study 1

Study design [

t+1

t+5

time
in
t+36 month

»

t+9

} Literature review }Archival data extracting P

P Brainstorming

P Social network analysis P Thematic analysis

>

>

P Thematic analysis

Interview Interview

Figure 2. Overview of the research process

attempted to contact, Bootstrap developers were
the one agreed to participate in the study.

The research process is described in Figure 2.
At the pre-study phase, literature review and
brainstorming with experts were done to come up
with research objective and study design. At the
exploratory and descriptive phase, the first two
cases were investigated for understanding how
commercial firms participated in OSS projects, if
the phenomenon coopetition exists and in which
form. As the explorative nature of this phase,
a wide range of topics was discovered, such as
collaboration patterns, firm awareness, competi-
tion, code practices, etc. The data were extracted
from project archive, i.e mailing lists, bug track-
ing system and code repository. In this phase, we
also collected qualitative data, i.e. interviewing
relevant stakeholders to explore in-depth phe-
nomenon observed from the quantitative data.
At the confirmative phase, we conducted some
interviews to confirm and to validate the obser-
vation from the first two cases.

3.2. Case description

Wireshark! is an OSS toolkit developed by a com-
munity of networking experts around the world
under the GNU General Public License. The
project is officially operated under the Wireshark
name since May 2006. Out of the 802 developers

"https://www.wireshark.org
https://www.samba.org
3http://getbootstrap.com

listed in Wireshark contributor list, 342 were
classified as firm-paid developers (43%). The re-
maining 460 developers (57%) were classified as
volunteering developers. The firm-paid contribu-
tions come from 228 firms.

Samba? is an OSS suite that provides file,
print and authentication services to all clients
using the SMB/CIF'S protocol. Samba is licensed
under the GNU General Public License, and
the Samba project is a member of the Software
Freedom Conservancy. In Samba, 316 developers
were evaluated, where 182 (57%) of them were
classified as firm-paid developers. The contribu-
tions come from 45 firms. Communication and
collaboration between developers in the Wire-
shark and Samba community mainly occur in
two places; the developer mailing list and the
bug tracking system.

Later, a third OSS project was selected as
a more recent project to provide complemen-
tary qualitative data. Bootstrap? is a frontend
Javascript-based framework for developing re-
sponsive, mobile first projects on the web. The
project was released as an OSS project since 2011
under MIT license. Bootstrap were contributed
by large firms, such as Twitter and GitHub. At
the time the research was conducted, Bootstrap
has been the most-starred project on GitHub,
with over 90.000 stars and more than 38.000 forks.
The communication in Bootstrap was done via

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 43

many channels, i.e. StackOverflow, Slack, and
GitHub tracker. Source code and issue manage-
ment was done via GitHub.

3.3. Data collection

3.3.1. Quantitative data

The main source of quantitative data is from
mailing lists, code and issue repositories, as they
are common data sources when studying OSS
[8, 15, 23, 47]. We collected three types of data,
namely developer profile, firm profile and commu-
nication data. The developer profile was found
from project public pages, such as project wiki
and confluence page. Basic information, like de-
velopers’ email addresses and timestamp of file
commits were extracted from JIRA and GIT.
From developers’ profiles, we were also able to
identify the list of firms in a OSS project. An
invitation for interview was sent in a snowballing
manner. After firm-paid developers accepted our
invitation for interview, basic information about
the firm was required by us. Besides, firm infor-
mation was also collected from online sources,
such as company website, and published materi-
als. The communication data was collected from
two main sources, namely issue tracking system
and mailing list. These sources contained detailed
information about events and activities that had
occurred in the communities several years back
in time. Table 1 gives an overview of when the
sources were first used and how many entries
they have today in Wireshark and Samba.

3.3.2. Identification of firm participation

Information whether a participant is a firm-paid
or volunteer developer, is not generally avail-
able in OSS projects. Consequently, we needed
to come up with a classification technique to
identify firms’ participation. The approach has
been successfully used in a previous study [48].
The following information was evaluated in the
process of classifying the developers:

— Current status in the community: active or

not any more.

— Email domain: The email domain used by
a developer can reveal firm association. We
regard it as unlikely that a developer use
a job email to participate in an OSS project
if it is not related to the job as a paid de-
veloper. This measure is the most distinctive
classification entity.

— Email signature: Some developers have their
employment firm name as part of their email
signature, which they use when posting to
the mailing list or bug tracker.

— Personal homepage: Searching for a devel-
oper’s name on the web can give directions
to a personal homepage or blog that might
reveal company association.

— Social networks: Searching for a developer’s
name on social networks like LinkedIn and
other professional pages might reveal firm
affiliation.

— Presentations and conferences: Developers
that give presentations commonly include
name and firm in the presentation slides,
which are easy to find by a web search.
Some issues were faced when identifying con-

tributors’ affiliations. Firstly, there is a different
level of contributions in OSS projects. There is
often a lack of information about what is required
to become a contributor. Moreover, majority of
the participants in the mailing list only posted
one mail, which makes it a waste of time and effort
to identify these participants as the contribution
towards the firm’s interaction and software devel-
opment is minuscule. We decided to exclude devel-
opers with less than ten entries in the mailing list
or bug tracking system. Secondly, matching name,
alias and email address is not always straightfor-
ward. In Wireshark, the spam protection policy
hides the full email address, for instance: “From:
[developer name] <name@xxXXXXXXXXXXX>".
Moreover, entries in the bug tracking system have
email listed, but no name. The code repository
entries in Wireshark does not contain name or
mail of the developer, instead a username or a nick-
name is used. We had to use project wiki pages
and personal contacts with some core developers
of the project to provide mapping of most of the
usernames to the actual developers.

44

Anh Nguyen-Duc et al.

Table 1. Summary of quantitative data from Wireshark and Samba

Project Data source Date of first entry # of entries
Wireshark Mailing list 31.05.2006 27230

Bug tracking system 08.04.2005 7862

Code repository 16.09.1998 42794
Samba Mailing list 03.01.1997 90588

Bug tracking system 24.04.2003 9659

Code repository 04.05.1996 84699

3.3.3. Qualitative data

Regarding to qualitative data, interviews were
selected from a convenient sample consisting of
the firm-paid developers from Wireshark, Samba
and Bootstrap. Ten interviews were conducted as
seen from Table 2. In Wireshark and Samba, we
managed to have interviews from firms in a core
layer and a peripheral layer (detail as shonw in
Figure 6). Due to non-disclosure agreements, we
did not reveal the actual identity of companies
(quantitative data was publicly available, hence
did not have this constraint). We used alias D1
to D10 to represent for such firms.

As we did not know much about the popula-
tion, we aimed for a non-probabilistic sampling
technique using a conjunction of purposive and
snowball sampling. In Wireshark, we used an ex-
isting connection to one of the core contributors
as a starting point, and asked for suggestion of
developers that could be interesting to interview
next. The core contributor pointed out relevant
developers for the research topic, and assisted
in contacting them by posting our interview in-
vitation on the core contributor mailing list. In
Samba, we selected relevant developers in the
OSS project based on the quantitative data and
sent interview invitations to these by email. In
Bootstrap, we had a developer actively contribut-
ing to the project in our personal network. From
him, we got two more interviews with firm-paid
participants in Bootstrap.

The interview guide consisted of both closed
and open questions. The closed questions were
mainly used in the introduction phase of the in-
terview to solicit background information about
the respondent, firm and OSS project context. In
addition, the closed questions were used to confirm
or attribute statements given by other developers.

The open questions were used to collect informa-
tion about: (1) work process/bridge engineer role,
(2) firm awareness/organizational boundary and
(3) position in the community /contributions. The
interview guide and interview questions is publicly
available. The interviews were conducted in En-
glish, except for one in Norwegian. The duration of
the interviews ranged from 45 minutes to 72 min-
utes. All the interviews were recorded to facilitate
subsequent analysis and minimize potential data
loss due to note-taking. These recordings were
thereafter transcribed verbatim. Transcribing
audio records resulted in 55 pages of rich text.

3.4. Data analysis

3.4.1. Social network analysis (SNA)

SNA is a common approach to investigate com-
munication and collaboration patterns based on
data from mailing lists or issue tracking systems

[32-35, 49]. This has been extensively used for

constructing a developer-task network and mea-

suring different network features [32-35]. We
adopted this approach in firm level, to under-
stand the collaboration pattern among firms via
communication networks. Consequently, we used
the firms as nodes and the interaction between
firms as edges. Interaction among firms is repre-
sented by communication via either a mailing list
or comments on an issue tracking system. The

SNA was done in four steps:

— Step 1: Construct discussion trees from a mail-
ing list and an issue tracking system. A dis-
cussion tree consists of an identifier node,
a source node and a set of responder nodes
(which can range from none to many). The
developer that initiates a discussion is re-
garded as the source, and the developers that

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 45

Table 2. Summary of interview profiles

Alias Domain Firm type Firm size 0OSSs

D1 Telecommunication Corp. 10000+ Wireshark
D2 Wireless networking services SME 18568 Wireshark
D3 Messaging system SME 11 to 50 Wireshark
D4 Telecommunication Corp. 10000+ Wireshark
D5 IT security services Corp. 51 to 200 Samba
D6 Server and OS development Corp. 10000+ Samba
D7 Telecommunication Corp. 10000+ Samba,
D8 Social media Startup 43374 Bootstrap
D9 Hosting and file sharing SME 51 to 200 Bootstrap
D10 Social media Startup 43374 Bootstrap

Discussion tree

Social network

Source Responder 1 Responder 2 —

O
4

Figure 3. Constructing SNA from a discussion tree

follow-up on a discussion is regarded as re-
sponders.

— Step 2: Filter the discussion trees to remove
messages with noises (irrelevant information).
As shown in Figure 3, we convert a discussion
tree to an undirected graph.

— Step 3: Give firm’s affiliation to nodes in
the graph, so that the interaction could be
grouped at a firm level, rather than at indi-
vidual level.

— Step 4: Build the social network by using
NodeXL tool.

We were interested in the position of a firm within

the context of the entire network, leading to the

adoption of metrics, i.e. degree centrality, be-

tweenness and closeness [49]:

— Degree of centrality is a measure of the num-
ber of links incident upon a firm, i.e. how
many other firms that a firm is connected to.

— Betweenness centrality is a measure of the
number of a shortest path between two firms
that a firm lies on, quantifying the degree to
which an individual in a network mediates
information flow.

— Closeness centrality measures the distance
from a firm to all other firms in the network.
Lower values indicate that the component is
farther away from all other nodes.

3.4.2. Qualitative analysis

The analysis of the qualitative data was under-
taken following a guideline for thematic synthesis
[50]. Thematic analysis allows main themes in
the text to be systematically summarized and
is also familiar by the first two authors of the
paper. The process of how quantitative data from
Section 3.4.1 facilitates the qualitative analysis
and the use of the theoretical model to guide
the analysis is shown in Figure 4. The interviews
were prepared for analysis by manual transcrip-
tion of the audio recordings to text documents,
and the email responses were refined to tran-
scripts of the same disposition. This resulted in
55 pages of rich text. Segments of text about
firms’ interaction, i.e. activities, attitudes about
communication, collaboration and competition
were identified and labeled. Data from the Boot-

46

Anh Nguyen-Duc et al.

Create a new empirical model

A

Structural condition -->
Public communication

Gate keeping

?

Break down
existing elements

Create a new
element

?

Look at the theoretical model ‘ ‘

Model in Fig. 1 ‘

f

"l tend to participate in discussions where |
feel | have a useful technical contribution to
make"

Interview
transcripts

" Yes, | act as abridge between [Firm Name]
and Samba and forward bugs/errors to the

community ..."

[

Select firms for interviewing ‘ ‘

*

‘ | Quantitatively analyze OSS projects for firm identification ‘ ‘

Figure 4. Steps of qualitative analysis and examples

strap case showed a level of data saturation,
as there was not much new information from
the case. After two rounds of reviews of the
data, we ended up with 84 codes. The follow-
ing step of the thematic analysis was to merge
the codes and the corresponding text segments
into themes. A theme in this context is essen-
tially a code in itself, however, a theme is an
increased distanciation from the text, and thus
an increased level of abstraction. There are two
scenarios with a theme, the first one is that iden-
tified text relates to an element in our theoret-
ical model (as in Figure 1). The red arrow in
Figure 4 describes such scenario. The second
scenario is the theme could be interpreted as
a new concept. The green arrow in Figure 4
describes such scenario. By grounded from ex-
isting elements and new ones, we are able to
come up with an empirical model describing
the concept of coopetition in three OSS projects
(Section 5).

4. RQ1. How do commercial firms
participate in community-initiated
OSS projects?

In Section 4 we present the results of the collabo-
ration pattern analysis. Two elements from each
OSS project are presented: (1) significance of
firms’ contribution to OSS projects (Section 4.1),
and (2) the social network structure of firms
(Section 4.2).

4.1. The significance of firm’s
contribution

Regards to Wireshark project, from the 342
firm-paid developers, 228 unique commercial
firms were identified, constituting 43% of total
number of contributors. There are only 8% of
the firms having three or more developers partic-
ipating in the community. Firms with the largest
number of participating developers are Cisco,

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects

47

Ericsson and Siemen. Whereas, 78% of the firms
have only one developer participating. The code
repository log contained 21927 entries, where
12053 of them were committed by firm-paid de-
velopers. Regards to Samba project, there are
182 firm-paid developers representing 90 different
commercial firms, constituting of 58% of total
number of contributors. In comparison to Wire-
shark project, Samba is more dominated by firms’
contributions. Nine percent of total number of
firms have three or more developers participating
in the community, and 84% of the firms has only
one developer participating. The top ten firms
participating in the community with regard to
number of developers is presented in Table 3.

4.2. The social network structure
of firms

We illustrate the constructed SNA based on data
from issue tracking systems in Wireshark, as
shown in Figure 5. The node represents for a firm
and the link between nodes represents for a com-
munication link between them. The node degree
was counted, including both in-degree (number of
interaction received) and out-degree (number of
sent interaction). By looking at the social network
of Wireshark, a firm can belong to one of three
contribution layers: (1) a core layer with high
centrality degree, representing firms that actively
communicate with others (for instance, Thales
and Ericsson), (2) a peripheral layer with mod-
erate centrality degree, representing firms with
a medium number of messages to other firms (for

instance, Tieto and Novell) and (3) a passive layer
with low centrality degree, representing firms with
small amount of message sending in and out (for
instance, Broadcom and Motorola). The contribu-
tion from commercial firms in the issue tracking
systems conforms to the same pattern as in the
mailing list; significant, but highly diversified. In
total, the issue activity by commercial firms consti-
tute 39% in Wireshark and 66% in Samba. Figure 5
reveals that a small number of firms stay in the core
layer and most of the firms locate in the passive
layer. The similar network structure was observed
in case of Samba project. We do not present the
SNA figure for Samba due to limited space.

The collection of identified commercial firms
constitutes a large fraction of the activity in
the mailing list in both projects, approximately
27% in Wireshark and 47% in Samba. However,
the individual firm contribution ranges from low
to very high. Table 4 presents the number of
messages and centrality degree of top 10 active
firms in mailing list. In Wireshark project, the
maximum value of centrality degree of Philips
is 48, meaning that they are in contact with 48
other firms. In Samba project, the maximum
value of centrality degree of Red Hat is 71, show-
ing that they are in contact with 71 other firms.
The top three firms account for 60% and 56% of
the mails in Wireshark and Samba, respectively.
We interviewed two firms in these lists (D1 and
D5) for answering RQ2 (Section 5).

Figure 6 presents the map of our interviewed
cases in the social structure of OSS projects. The
selection process ensured that interviewees par-

Table 3. Summary of interview profiles

Wireshark Samba,
Firm # of developers Firm # of developers
Cisco 16 IBM 17
Ericsson 11 Red Hat 14
Siemens 8 SerNet 8
Netapp 6 SUSE 8
Citrix 5 EMC 4
Lucent 5 SGI 4
MXTelecom 5 Exanet 3
Nokia 5 HP 3
Axis 4 Cisco 3
Harman 4 Canonical 2

48

Anh Nguyen-Duc et al.

* a b
copadala riad i ®
. . ® E
! nuovasystems
Oragvm nextiraone ymblan Cise p .
symbian Cisco o cinlerion bmw-carit
a ™ ascolab
mitre tieto L] .
. . lischka-barlin Nokia o
Iemens ac
acale 5
q . * , ° ra .
oVe [}
boeing nqge
.
. ADwin
citrix o ® o
cis-infoservices | . axis broadcom
. lelecomitalia
alcatel
L] P L] .
: . niper omicron
ot delica endace Al HP junip
utstar A | .
* N WiV
3 - .
. RedHat S Thales™ Ipaccass
- candelalech =~ e
hilscher Ericsson ; b ™
o - P 4 ™ s exegin
alcatel-lucent
. SUSE intracom.~ & R~ *
] magic
sequans nsn blue-cable F’h:lps .
b shin
beckhoff
L
csI p
. gearé .
nverp
emerson varoed .
* . lycon
- 8mec Trihedral » 4
hirschmann .
e openwave US
. o wanadoo ™
® netapp de .1.u axxcelera -
isilon . e . x2e
molorola smhs o cronsull elcconnect

arange-figroup

Figure 5. The social network of Wireshark via issue tracking system

ticipated in the projects for a sufficient duration.
We can see that the interviewees come from dif-
ferent layer of the projects, hence, representing
for the whole projects.

5. RQ2: How do commercial firms
manage coopetition with other
firms in such context?

By investigating communication patterns among
firms in OSS projects and analyzing interview
transcripts via the thematic analysis, we pro-
posed a Coopetition in Open Source Software
(COSS). The model is grounded from thematic
concepts that extends our research presented
in Section 2.3. The COSS captures the un-
derlying phenomenon of firm participation in
OSS projects from coopetition perspective. The
main concepts representing the underlying phe-
nomenon have been grouped together to form
high level categories, as seen in Figure 7. The
model is centralized around the concept of coope-

tition. Beyond the concept of coopetition in busi-
ness research that consists of competition and col-
laboration, we identify two additional dimensions
of the concept, which are gatekeeping and firm
awareness. Coopetition activities are visible with
the recognition of firm boundary in the projects
and implemented via gatekeeping mechanisms,
which are synchronizing code, strategic filter-
ing and navigating information flow. Antecedent
factors that influents coopetition concepts in-
clude structural condition, trust, perceived ben-
efit, and strategic vision. Structural condition
includes two sub concepts, public communication
and direct communication. Consequent factors
of coopetition include organizational learning,
knowledge sharing and task effectiveness. Fol-
lowing sub-sections below describe the grounded
evidence for each model’s elements.

5.1. Public communication

The public communication channels used in our
OSS projects were the mailing list and bug track-

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects

49

Table 4. Summary of interview profiles

Wireshark Samba
Firm Entries Degree Firm Entries Degree
Philips 1195 48 Red Hat 4480 71
Ericsson (D1) 1322 39 Sernet 3765 66
AT&T 756 34 Google 1835 57
Trihedral 222 21 IBM (D5) 1701 48
Thales 548 19 HP 1408 44
Mxtelecom 149 19 Eurocoopter 874 35
Gtech 165 13 SGI 335 29
Detica 64 10 Padl 82 29
Csr 67 10 Zylog 159 28
Sequans 31 10 Nokia 104 28

Core
contributors

Peripheral
contributors,

Figure 6. Social positions of interviewees in OSS projects

Public communication

Private communication
Firm-

level
trust
Strategic vision

Perceived benefits

Antecedence

L

A

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
r

Coopetition | |Collaboration

\ Organisational learning

Knowledge sharing

Gatekeeping)

1
Firm awareness ! Task effectiveness
Construct Consequence

Figure 7. The model of Coopetition in Open Source Software (COSS)

ing systems. In both projects, the distribution of
public communication is highly right-skewed, as
shown in Figure 8. In Samba project, Sernet has
contributed almost 35% of total number of mes-
sage via mailing list. The top three firms account

for 60% and 56% of the mails in Wireshark and

Samba, respectively.

Developers mentioned several incentives for
using such channels, for instance, they use
the public channels for discussing, participat-

50

Anh Nguyen-Duc et al.

40 %
35%
30 %
25 %
20 %
15 %
10%

0%

Figure 8. Distribution of number of mails per firm in Samba

ing and/or influencing the ongoing development.
D4 mentioned that he publicly asked questions,
discussed ideas and found collaboration via pub-
lic channels: “Basically, the times when I need
guidance or I have a problem, or answering other
people’s questions, whether it is other developers
or users or whatever. Or if I have an idea about
something. (...) I made a suggestion ‘hey maybe
we should do something to catch this problem
automatically in the build-bots rather than...’
Anyway, just making suggestions and putting
them out basically.” D6 considered mailing lists
as a traceable information storage that is useful
for his job: “Usually all discussions are done on
the mailing list (...) this way we have a history
of all discussions. I participate in discussion ei-
ther to help someone with Samba or to make my
point in area of my interest at the moment.” In-
fluencing project features by participation is one
incentive expressed by D1: “If they are working
on something that I see as usable for us internally,
we find it interesting. It is smart to participate
in the discussions when they are doing the de-
velopment, and not come in afterwards. That is
because while they are doing the changes and the
development, they are more open for suggestions
for changes and improvements.”

Asking for guidance and support on mailing
lists is common, however some developers un-
derlined that they did not ask for solutions to
their problems here. Rather, they would ask for

useful advices and a push in the right direction.
D3 stated that “Sometimes I have sent emails
to the development list and said that I am con-
fused by this, can someone shed some light on
it.” Developer D4 expressed a similar approach
in: “More often I will ask people ‘OK, I have this
problem and I am trying to solve it. I can see two
ways to solve it, does anybody have an opinion
on which way is the better way?’” By this way,
technical issues within a firm can be discussed
and supported by external people.

D2, D3 and D4 said that they asked ques-
tions about architectural decisions in the public
channels. Posting features requests or interesting
ideas is also common, and some of the inter-
viewed developers find it motivating to describe
their ideas and approach to the other community
members. By this way the feature expectation
is communicated and other developers can come
with suggestions and even join the development.
D5 and D6 stated: “I tend to participate in dis-
cussions where I feel I have a useful technical
contribution to make.” (D5) and “I participate
in discussion either to help someone with Samba
or to make my point in area of my interest at
the moment.” (D6).

5.2. Private communication

Firms use private communication for many pur-
poses, including both cooperative and competi-

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects ol

tive manners. Developers mentioned that they
had used direct and/or private communication
channels for asking for help from the domain
experts in the project. Communication channels
used are e-mail and instant messaging, Skype and
telephone. D3 said: “I have done it [contacted
developers directly] some times in the past. Not
just as a general I am stuck, can you help, but
because it would be an area I knew the other guy
was working on.” The private communication is
usually the result from a gradual establishment
via public communication, as mentioned by D6:
“Usually I tend to do R & D tasks myself. I often
seek for reviews of my work. When I need the
assistance, I will go directly to a developer in the
community.”

Comparing to public channels, D8 consid-
ered private communication as a way to establish
high-quality contact points and potential collab-
oration for further projects. He mentioned that
a fork from project mainstream should proba-
bly include best developers in the community
who are not necessarily the guy in the “onion
core”. It is also stated that a private channel
is a quick and efficient communication medium.
D9 explained that he used instant messaging for
contacting developers in the community when
he wanted a quick feedback. Private communi-
cation seems to be in favor comparing to public
communication. D9 mentioned: “We try to ad-
dress as much as we can the issues that come
to us (...) Normally if we get a private message
about an issue, we will take it with higher prior-
ity” D5 mentioned that when discussing legal or
security sensitive issues, he used a private com-
munication channel. The nature of such issues
invokes the use of private channels as posting
it in the public channels may result in security
breaches or similarly bad situations. Although
none of the other developers said anything about
the use of direct channels for such issues, we
believe that it is a common procedure in most
OSS projects.

5.3. Trust

Trust is one of the fundamental traits of a success-
ful collaborative environment [29, 51-53]. Ray-

mond stated that “open-source culture has an
elaborate set of customs?[which] regulate who
can modify software, the circumstances under
which it can be modified, and (especially) who
has the right to redistribute modified versions
back to the community” [54]. In our cases, inter-
viewee stated that the success of OSS projects
is meaningful to them. For instance, with the
advance of the Wireshark tool, D4 can use it
to serve for his daily work. Based on trust, de-
velopers can collaborate for the sake of their
OSS project. D3 said that they have contacted
trustable developers directly to avoid asking silly
or dumb questions in public: “I got relationships
with other developers and sometimes we don’t
want to ask in mailing list causes it is a really
stupid question and you do not want to ask the
whole mailing list, so you just ask the guy you
trust”. When a developer needs help to design
a code or fix a bug, other developers would be
willing to assist. By helping one another, devel-
opers demonstrate their skills and knowledge,
which develops a positive expectation of com-
petence and reliability. Level of trust is related
to the status of the developers in OSS projects,
which is evident in the following section. The
observation is aligned with previous research on
the role of trust in successful interpersonal rela-
tionships [37, 38].

5.4. Perceived benefits

Despite the risks associated with competitors,
many firms decided to be open in sharing and
synchronizing their source code with OSS com-
munities. Source code can be synchronized with
upstream development in OSS projects, for in-
stance, described by D5: “In general, our phi-
losophy is to develop upstream first and then
back-port changes that have been approved by
the upstream community into our products. We
stay very involved in the communities and try
to keep the differences between our packaged
software and upstream software to the minimum
necessary.” Firms perceive benefits with such in-
volvement as avoiding maintenance and merging
issues when combining public parts of private
parts of source codes. D10 illustrated for this

52

Anh Nguyen-Duc et al.

Synchronize

Navigate
informatign flow

Firm X

@

codebase

Strategic

/ filtering

S8 project

upstream

Stakeholder

Figure 9. The role of gatekeeper in a commercial firm

idea: “...if you are to make a change in the

core, and you want to keep it private, you will
have to fork the project and maintain it yourself.
(...) I believe, in the general case, that you gain
more from contributing to the development, that
retaining your code from the community”. D1
mentioned that “We do not have to maintain
our own code base and synchronize it. We just
commit code to the source and have it there. If
we had not had the commit access as easy as I do,
we could have had our own version of Wireshark
and the sources, but then we would have to do
more work in merging our version with the new
releases of Wireshark.”

Firms also concern about their social posi-
tions in the projects. It is apparent that a central
position in the community is closely related to
being a core developer in most cases. Two bene-
fits mentioned by the interviewees are: (1) easier
code inclusion and thereby avoid the need of hav-
ing a private code repository, and (2) receiving
more help from other community members. D4
highlights the importance of social position in
OSS community: “I think it [having a position]
helps a lot. I think there is a difference if, lets
say, D2 asks for help, then I will help him if
I can. But if [Developer Name| from I have never
really heard of, is asking for help then my level
of effort is usually lower. And part of that is
because I know D2 personally, and part of that
is because I know that he does a tremendous
amount of work. My view is that if he needs help
he deserves the help. And I think it goes the
other way too, if people are more likely to help
me because of the contributions I have made
and they know that I have been contributing for
a long time. I think it helps to have some sort of
status within the community.”

5.5. Strategic vision

The role of strategic vision on firm participation
is somewhat vague in our cases. Firm’s strategy
could be how a firm develops and deploy their
product, i.e. how external resources are used to
reduce development and maintenance cost. The
vision of firm’s strategy needs to be aligned at
not only managerial but also operational levels.
The transfer of strategic visions is not clearly
evidenced in our cases. For instance, a developer
D4 mentioned he spent significant office work
hours as well as spare time on contributing to
Wireshark. He acknowledged the benefits other
developers in his firm received from his partici-
pation in the OSS project and the fact that he
freely participated in Wireshark: “It is not an
official part of my job, but a lot of the develop-
ers, testers and the customer support people use
Wireshark extensively.” However, his firm lacked
formal strategies to decide how developers shall
participate and develop the OSS, what code that
shall be contributed back to official sources, and
how to maintain the OSS knowledge base within
in the firm.

5.6. Gatekeeping

The perceptions of a gatekeeper, who navigates
information flows between his/her firm and exter-
nal actors, were acknowledged by all interviewees.
While firms might have different needs and work
practices, gatekeepers are the ones stay in be-
tween the firm and the OSS project in some
way, as shown in Figure 9. D1 stated that when
his coworkers found issues with the third party
components, they informed D1, but not project
managers. D7 expressed a similar perception:

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 53

“Yes, I act as a bridge between [Company Name]
and Samba and forward bugs/errors to the com-
munity.” The gatekeeper is often an active actor
in contributing to the community, as mentioned
by D2: “Many of our core developers are working
for smaller companies, and have a responsibil-
ity for the internal protocols that their company
needs. (...) I think most developers work individ-
ually, and have the role of providing Wireshark
functionality to the other developers in the firm.”

In a cooperative manner, the gatekeeper is the
hub of information and issues that can be reached
by different developers across the organizations,
as stated by D4: “Yes, everybody definitely knows
that I am the Wireshark guy. All the developers,
testers and customer support people know that
they can come to me if they have Wireshark
issues (...)". In firms with multiple developers
active in upstream development, i.e. commit-
ting to OSS projects, there is often a recognized
gatekeeper role among them. D5 mentioned: “In
general when it comes to contributing patches
upstream each developer in [Company Name]
is independent and can directly approach the
upstream project? The [Company Name| Samba
package maintainer usually has a task of being
the gatekeeper for those bugs that have been
reported against [Company Name| products by
the customers or the support teams (...)" In this
case, while code is contributed independently by
individuals in the firm, the bugs is managed by
a gatekeeper who submits bug reports on behalf
of the firm into the OSS project’s bug tracking
system.

In a competitive manner, gatekeepers would
make sure that not all private source code be
revealed to public. Firms might contribute code
that relate to core components of OSS products,
or utility functions. In a typical scenario, firms
maintain their private repositories, where many
components are parts of firms’ core values. Such
components should not be revealed, as mentioned
by D4: “The majority of the stuff I have written
for Wireshark has been pushed up? But you sort
of draw a line in the stuff that is obscure enough
to not push. The only people who should be look-
ing at our proprietary protocol should be us?”.
Some of the code is regarded as proprietary and is

retained in the firm’s private code repository, due
to technical specific, or legal and authorization
issues D2 mentioned: “Mainly protocol dissectors
for protocols used in our equipment, if the proto-
col is based on open protocol descriptions from
3GPP, ITU or IETF (RFC) it is considered OK
to make an individual contribution to OSS (...)"
Code which is not relevant, sensitive or poorly
written would be filtered out by gatekeepers, as
mentioned by D4: “The stuff we do not send in is
stuff that is not of interest to anybody except us
(...) And the other part is that I do not think
the company would be thrilled by a publication
of these protocols. In order to push those things
to Wireshark I would need to get authorization”.

5.7. Firm awareness

Several interviewees acknowledged the presence
of at least another firm in the community (D1,
D2, D3, D8, D9, D10). However, developers re-
mark that it is not the knowledge of what other
firms work for that is valuable, rather it is the
knowledge of what business domain they are
working within. D2 replied when was asked about
other firm awareness: “Yes, but I do not know
that much about the firms of the other developers.
They typically say that they work for Firm X,
and that is it. What firm they are working for
is not that important to me.” D3 emphasized
the potential value of having the firm awareness:
“(...) I know that D2 may have some role as
a contact for Firm X (...) I know that D2 may
be someone who is good at getting log files for
specific things. In the past when I was working
with voice over IP, I thought sometimes he was
able to give me some log files from within his
company, but I did not really think of him as the
company representative. I think of him as a com-
pany person who may be able to get logs for me,
like he does.” In Bootstrap, developers expressed
the concern on how other firms were doing related
to the web technology, in order to draw lessons
learnt for their product vision. D8 mentioned:
“We care about if other company are using this
technology in their products, so we can learn
from them (...) We do not care if some guys
just want to play with the technology (...)” Ad-

54

Anh Nguyen-Duc et al.

ditionally, the interviewees were asked if they con-
sidered that their contributions could be used by
other firms to gain competitive advantage. The
majority dismissed this perception, for example:
“As Firm X does not directly control Wireshark,
I guess we have to be a bit careful when we are
in contact with other developers (...) I believe,
in the general case, that you gain more from con-
tributing to the development, that retaining your
code from the community”, stated by D2. A final
remark by D5 about the competitiveness is: “Al-
though there may be some competition between
companies, as engineers we seek collaboration
for mutual benefit. We already know any ad-
vancement will be used by everybody, that is not
a problem, we get back as much as we give out.”

5.8. Collaboration

Although collaboration within an OSS commu-
nity is typically informal and not planned, there
are matters that have to be decided upon. For
instance, when there is a new post in a mailing
list, a developer has to decide whether to engage
in the discussion with the others or not (essen-
tially collaborating with them). The awareness
of other firms in this aspect may prosper the
collaboration. Firm- paid developers with similar
needs and interests can collaborate and draw
on each other’s abilities. Knowing that a devel-
oper works for a certain firm, and that he can
provide certain code artifacts also influences the
collaboration. Establishing relationships to such
valuable developers through collaboration is key.
There is a strong desire to return favors and
honor developer’s positions by assisting them
when they need help.

Many commercial firms adopt OSS, but do
not participate nor contribute back to the OSS
communities. Some of these firms collaborate di-
rectly with others to develop OSS-based products
further, with or without participating in the OSS
community. How to perform the collaboration
is an aspect firms have to decide. As described
above, the collaboration can take place within the
0SS community using public or private communi-
cation channels, or outside the community using
private channels and private code repositories.

5.9. Awareness of competition

Firms working within the same business domain
are often competitors in the market, and thus
it is interesting to see how influential the firm
awareness is when firms come together in com-
munity based OSS projects to develop software
collectively. Surprisingly, firm-paid developers
said that they perceived other developers as part-
ners and/or friends rather than competitors. D5
pointed out that he had met many developers
at the OSS developer conference, and considered
many of them as friends. D1 explained that he
did not make any distinction between a firm-paid
developer and a volunteering developer: “I think
of them as developers, and not about which firms
they represent.” D7 said that he would perceive
others as partners. D6 mentioned: “I have al-
ways thought of others as partners. Even more —
I think about them as colleagues.” D4, D8 and
D9 shared similar thoughts, and dismissed the
perception of other firm-paid developers as com-
petitors: “I guess as things have evolved we do
actually compete in some aspects with some of
these people at this point. But that hasn’t re-
ally occurred to me much? I have noticed more
people who tend to be customers of ours, rather
than true competitors. We might be competi-
tors within some areas, but I have never really
thought about it I guess”, stated by D9.

The issue of competition from a firm from
somewhere else in the world might not be sig-
nificant for a startup and a SME who focus on
having their product released as fast as possible.
Without a clear vision on how their market or
technical advantages are influenced by sharing
and using OSS source code, the concern of com-
petition is not much relevant. D8 also mentioned:
“You think about other firms as your competitors,
but I do not think that really comes in to my
interactions really. They have their own users
somewhere around the world (...) I have some-
times seen contributions from their developers,
but I think that is good (...)”. Consequently, the
coopetition concept in these OSS projects might
be very much cooperation-dominant.

Another observation is that the firm’s social
position is not used by any firms to dominate

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 99

OSS development. D6 mentioned: “Before work-
ing on Samba I used to think that big companies
may have big influence in OSS project simply by
‘buying’ core developers. Now, that I know most
of the people working on Samba, I know that
this is not feasible.” Hence, having a position, or
’buying’ one, is not the way firms relate to nor
influence the OSS development.

5.10. Consequent factors

Interviewees acknowledged the benefits of par-
ticipating in OSS projects, including knowledge
sharing, organizational learning and task effec-
tiveness. D2 mentioned that many best practices
found in reviewing code and proper comments on
commits. He also appreciated the activeness level
of the project with fast feedbacks. The practices
are acknowledged and brought into considera-
tion for improvement at his team. Maintaining
an awareness of the other developers and what
they are currently working on is also recognized
and is promoted by D6 in his firms for avoiding
duplicated code across the whole codebase. Or-
ganizational learning also occurs at the project
level. When a firm observes the participation and
interaction of core firms in the OSS projects, they
can infer strategic focus areas from, i.e. feature
requests and application cases.

In our cases, in-house product development
depends on the OSS projects by (1) using tools
as outcomes of the projects or (2) integrating
and building their products on top OSS com-
ponents. The dependence infers that a task
that relates to OSS codes is collective per-
formed and the task scope is beyond the OSS
project. In a cooperative-dominated environ-
ment, the task will be done in an easier way.
In a competitive-dominated environment, the
awareness of competitors might be harmful for
jointly completing the task. However, this is not
directly evident from our cases.

6. Discussions

Table 5 summarizes our findings in the compari-
son with existing literature. While many findings

confirm existing knowledge, they also provide
some novel findings. This section will discuss our
findings based on four topics: centralized com-
munication structure in community-lead OSS
projects (Section 6.1), modelling coopetition in
the context of OSS projects (Section 6.2), the
role of a gatekeeper in implementing coopetition
strategies (Section 6.3) and firm contribution
strategy in OSS projects (Section 6.4). Each sec-
tion will discuss our findings with related work.
The final section presents our actions to address
threats to validities (Section 6.5).

6.1. Centralized communication
structure in community-lead OSS
projects

Commercial firms participating in commu-
nity-based OSS projects collaborate in various
ways across the organizational boundaries. Crow-
ston et al. stated that communications structure
of a project is an important element in under-
standing project’s practices [28]. In our cases,
the majority of the activity in OSS projects is
generated by a small subset of the firms, and that
the remaining firms participate with little to none
contribution. Wireshark and Samba demonstrate
a communications centralization structure as in
the onion-like social structure model [28]. Oezbek
et al. [60] investigated eleven OSS projects and
revealed that the role of a developer in the core
layer might be more important than the fact that
they do (commit code, fix bug, answer emails,
etc) more. Our quantitative analysis of Wireshark
and Samba confirmed these results by showing
the dominant contributions of developers and
firms in the core layer. Our qualitative data re-
vealed possible importance of these developers in
implementing firms’ strategies, i.e. collaboration
or competition. Dewan et al. [57] showed that
the heterogeneity, which exists between firm-paid
developers and voluntary developers shapes the
evolution of OSS community and its product.
In our case, we showed that even firm-paid de-
velopers have significant contributions to code
commits and communication, it is not signifi-
cantly different between firm-paid and voluntary
developers. From communication structure, this

56

Anh Nguyen-Duc et al.

Table 5. Summary of findings

Findings Type Current knowledge

OSS infrastructure as foundation for both Confirmation Structures as those in OSS enables the inte-

public and private communication among gration of external resources [55].

firms

Firms activities are visible in OSS projects Confirmation Heterogeneity exists between firm-paid de-
velopers and voluntary developers [56, 57].

Some firms in the core positions, most of New Onion-like structure at developers level

firms contribute little [27, 28].

Coopetition exists among firms Confirmation Strong explicit governance approaches can
directly affect other firm’s benefits [58].

Cooperation-dominated coopetition among Confirmation Competition for the same revenue model

firms at code and issue levels does not mnecessary affect collaboration
within OSS projects [15-17, 59].

Gatekeepers provide a mechanism to per- Contradict Developers within a firm need to be divided

form coopetition to take charge of either collaboration or com-
petition [19].

Trust is the foundation of establishing com- Confirmation Trust as a success factors in collaboration

munication, collaboration and also competi- in OSS projects [38, 42].

tion

Strategic vision is not significant at develop- New Sharing strategic vision is also critical for

ers’ level collaboration at team level.

Firms gain social position in OSS projects, New Perceived benefit is associated with both

avoid merging and bug fixes, impact on in-
fluencing development and get supported

cooperative and competitive attitudes [22,
40, 41].

reveals a different finding from Dahlander’s work
[56].

6.2. Modelling coopetition in the context
of OSS projects

Business literature mentions the difficulty of iden-
tifying coopetition in a real world context [21].
Dagnino et al. [21] highlighted that coopetition
does not simply emerge from joining competition
and collaboration, but they mix together to form
a new kind of strategic interdependence between
firms. We agree and illustrate for this view by
showing that in OSS projects, commercial firms
focus on activities that create a common value
with an awareness of not sharing their technical
and legal sensitive information. From our cases,
COSS validates at the meso level of strategic
collaboration, where firms within the same or
similar domain collaborate. Among antecedent
factors from literature, we highlight the role of
a structural condition via public and private
communication infrastructures. The transparent
and effective communication infrastructure pro-

vides a mechanism for coopetition. Our study
describes a competition-dominated type of coope-
tition. Even when firms are aware of their com-
petitors, the attitude of collaboration is still over-
whelming. Valenca et al. raise a question whether
firms are collaborators or competitors in software
ecosystems [3]. At the requirement engineering
level, the authors found several significant chal-
lenges among firms within the same collaborative
network [3]. OSS projects and firms might have
divergent interests but firms can manage to dis-
cover areas of convergent interest and be able
to adapt their organizing practices to collabo-
rate [7]. In our case, this is clearly observable at
the operational level. The finding also matches
with observations by Lindker [15].

6.3. The role of a gatekeeper in
implementing coopetition strategies

Bengtsson et al. argued that individuals within
a firm could only act in accordance with one of
the two logics of interaction at a time, i.e. either
to compete or to collaborate [19]. Our observa-

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 57

tion on a gatekeeper role gives an alternative
explanation on how firms manage such scenario.
The firm’s strategy can be flexible, for example
fully open core sourcing at one time, and filtering
of shared code at another time. The implementa-
tion of such strategies is done via the firm gate-
keeper, who does actual technical contribution
to the community. Therefore, in contrast with
Bengtsson’s findings, we find that it is possible to
implement a firm-level dynamic interaction via in-
dividuals in software projects. The role of a gate-
keeper is discussed in the context of commer-
cial distributed software teams [61, 62]. Marczak
et al. found the role of knowledge brokers who
would have a significant impact on information
flow in requirement-interdependent teams [62]. In
a context of firm-to-firm interaction, we showed
that a gatekeeper could navigate the information
flow beyond firm’s boundaries. Nguyen-Duc et al.
showed four common tasks of a gatekeeper: task
negotiation, conflict resolution, task- related in-
formation navigation and boundary object setups
[61]. While the authors investigated gatekeepers
in a software firm and a OSS project separately,
this work focuses on boundary spanning activities
between the OSS communities and software firms.
By influencing the gatekeepers, managing code
flows and information flows, firms can implement
competing or collaborating strategies.

6.4. Firm contribution strategy
in OSS projects

There exist some studies capturing the phe-
nomenon of commercial firms contributing to
OSS projects. Linaker et al. investigated con-
tribution strategies of firms when participating
in OSS projects [63]. The authors proposed the
Contribution Acceptance Process (CAP) model
to determine if source code or any types of con-
tributions can be contributed or not. The CAP
model bases on two dimensions: (1) the bene-
fits company can receive and (2) the knowledge
behind the contributions to acquire and control
[63]. While these two dimensions are similar to
our model’s elements: perceived benefits (Section
5.4) and gatekeeping (Section 5.6), our model
also explore other factors that impact the ways

firms contribute to the OSS communities and col-
laborate with other firms. Munir et al. discussed
how the openness of software firms might help
them to gain benefits from OSS communities
from four dimensions: (1) strategy, (2) triggers,
(3) outcomes, and (4) level of openness. The
model is similar with some elements in our COSS
model, i.e. strategic vision, communication, gate-
keeping and consequent factors. However, these
models do not capture the competition strategy
that firms might adopt in OSS projects. Unlike
the previous work, our COSS model proposed
a comprehensive view on factors that impact the
strategy of collaboration and competition.

6.5. Threats to validity

6.5.1. Construct validity

Threats to construct validity consider the rela-
tionship between theory and observation, in case
the measured variables do not provide a good
measure of the actual factors [45]. In a quali-
tative study, construct validity can be thought
of a “labeling” issue, as we might find the con-
struct of the outcomes that we believe we are
trying to capture. A main assumption in our
study lies in the way we identify coopetition
among commercial firms. As the coopetition con-
cept comes from economic and business research,
we did not have a direct map from how the
concept operationalize in SE research. Previous
studies that mention term “coopetition” [3, 15],
do not provide the construct of this concept.
Hence, to our best knowledge, this is the first
study in SE attempt to operationalize this con-
cept. We reduced this risk by a detail review and
the identification of characteristics of coopeti-
tion, the exploration of the context where the
construct is investigated. Both quantitative and
qualitative data was collected in concept’s ele-
ments and summarized in the end to describe
the model. We also include discussion with co-au-
thors and an expert in the entrepreneurship in
validate our observation.

The phenomenon is operationalized based on
public and private communication among de-
velopers participated in OSS projects. We were

58

Anh Nguyen-Duc et al.

aware of other communication channels, such as
private messaging, telephone and Skype, however,
we do not have a feasible way to quantify this. We
limited the investigation in public collaboration
where developers responsed to the same mailing
list or comment on the same issue. Regarding to
the identification of firm participation, we used
SNA with density metrics, such as degree cen-
trality and closeness [49]. Other network-based
measures for the same construct (e.g. transitiv-
ity, compactness, and connectedness) could be
considered for enhancing the rigor of this re-
search. We also used an unweight approach to
perform SNA, which ignored the firms’ charac-
teristics, such as firm size, and business strategy
towards the OSS community. This could be con-
sidered in future work, especially in firm-based
OSS projects.

The risk of operationalization is reduced by
using a mixed method research, including both
quantitative and qualitative data. The intervie-
wees were conducted with firms from different
social position in OSS projects, which increase
the credibility in the observation of phenomenon.
The data is limited at ten interviews. However,
we had reached data saturation [45] when in-
terviewing Bootstrap case. Although, intervie-
wees were selected from different types of OSS
projects, different company profiles, we found
that their responses were consistent, which in-
crease our confidence in the trustworthiness
of the data.

6.5.2. External validity

This threat considers the ability to generalize
our findings. The goal of this study is not to
achieve statistical generalization, but rather an
analytical generalization. This is particularly im-
portant when studying a complex phenomenon,
in our case is coopetition in OSS projects. To
avoid the bias on findings from a single case, we
analyzed two OSS projects. Qualitative data was
further collected from the third OSS project to
improve the generalization. With the in-depth
investigation in both community and firms’ sides
of the projects, we are confident about the ex-
planation power of the COSS model for sim-

ilar contexts. Our OSS projects produce a li-
brary, a framework and an application, employ-
ing GPL and MIT licenses. Our cases represent
for a community-initiated OSS projects, that are
initiated and lead by the community. Further
research should replicate our method on other
types of OSS projects to explore other collabo-
ration and competition scenarios. They are also
popular OSS projects with years of operation,
hence the products and collaboration process
have been stable. The findings might not be di-
rectly applicable to emerging OSS projects, or
projects initiated by firms. Research on projects
with different types of OSS licenses might lead
to a variety in our model.

6.5.3. Reliability

This threat concerns about the level to which the
operational aspects of the study, such as data
collection and analysis procedures, are repeatable
with the same results. The main data collection
was done as a part of a master thesis. All inter-
views were recorded and transcribed verbatim
in order to make sure that no data reduction
occurred prematurely. The transcription of the
interviews was reviewed and interpreted by the
other author. In case of vague statements, one
author is responsible for follow-up discussions
with interviewees for clarification. We used both
quantitative data about communication among
firms in the project and qualitative data from
interviews of firms from different contribution
layers. The data triangulation allows our find-
ings represent the true situation of investigated
projects. Moreover, the paper has gone through
proof-read from several senior researchers in the
domain. Their feedbacks help us to improve the
paper significantly since the first draft.

7. Conclusions

Coopetition is an important topic in economics
and business research [19, 21|, but it is over-
looked in other domains. In modern software
industry, the popularity of developing software
products beyond firm’s boundary makes coopeti-

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects 59

tion a relevant theme. In this paper, we used
both qualitative and quantitative data to in-
vestigate coopetition in OSS projects. Firstly,
we found that commercial firms participating
in community-initiated OSS projects collabo-
rate in various ways across the organizational
boundaries. While most of firms contribute lit-
tle, a small number of firms are very active and
account for large proportions of contribution. It
is also evident that firms interact across their
boundaries in OSS projects. Secondly, we pro-
posed an empirical model COSS to explain for
root causes of coopetition in OSS projects. The
COSS model shows that coopetition is based
on the firm awareness, structural condition of
the OSS projects and operated by gatekeepers.
The coopetition is cooperation-dominated even
among firms working in the same business do-
main with similar business models.

The findings have implications for research.
We offer a descriptive explanation of how coope-
tition occurs and impacts in OSS projects.
We observe that software firms emphasize the
co-creation of common value and partly react to
the potential competitiveness in OSS projects.
The highlight of our findings is the COSS model,
which argues that competition and collaboration
can both be handled by gatekeepers. The role
of gatekeepers in crossing organizational bound-
aries is still an interesting research topic. For
SE with abundant research on OSS collabora-
tion and communication, the study on inter-firm
coopetition is a novel way of looking at the same
data sources and infrastructures.

The study also has implications for practi-
tioners. We offer software firms insights about
different coopetition strategies observed in a com-
munity-driven OSS project. For instance, not all
communication goes through the public channels
in OSS projects. Legal and security sensitive
issues commonly go through private or closed
channels because of their natures. Furthermore,
firms should consider a gatekeeper as an impor-
tant role when they plan to participate and gain
benefit from OSS projects.

For future work, the next step would be
to validate the COSS model with a larger set
of cases. Our research here only uses three

community-driven OSS projects, which limits
the generalization of findings. Moreover, a longi-
tudinal observation on how coopetition evolves
among firms can provides knowledge that goes
beyond cross-sectional observations. Last but not
least, further investigation about employing the
role of gatekeepers for coopetition is needed to
provide actionable guideline for successful opera-
tion of inter-firm coopetition. Future work can
also investigate OSS project settings that affect
firm collaboration, i.e. OSS license, and feature
request mechanism. It would be interested to see
how these factors could play a role in our model.

References

[1] D.G. Messerschmitt and C. Szyperski, Soft-
ware Ecosystem: Understanding an Indispensable
Technology and Industry. Cambridge, MA, USA:
MIT Press, 2003.

[2] S. Jansen, A. Finkelstein, and S. Brinkkemper,
“A sense of community: A research agenda for
software ecosystems,” in 31st International Con-
ference on Software Engineering — Companion
Volume, 2009, pp. 187-190.

[3] G. Valenga, C. Alves, V. Heimann, S. Jansen,
and S. Brinkkemper, “Competition and collabo-
ration in requirements engineering: A case study
of an emerging software ecosystem,” in 22nd
International Requirements Engineering Confer-
ence (RE), 2014, pp. 384-393.

[4] J.F. Lorraine Morgann and P. Finnegan, “Explor-
ing inner source as a form of intra-organisational
open innovation,” in 19th Furopean Conference
on Information Systems, 2011.

[5] K. Manikas, “Revisiting software ecosystems re-
search: A longitudinal literature study,” Jour-
nal of Systems and Software, Vol. 117, 2016,
pp. 84-103.

[6] H.H. Olsson and J. Bosch, “Ecosystem-driven
software development: A case study on the
emerging challenges in inter-organizational
R&D,” in Software Business. Towards Continu-
ous Value Delivery, C. Lassenius and K. Smolan-
der, Eds. Springer International Publishing,
2014, pp. 16-26.

[7] S. O'Mahony and B.A. Bechky, “Boundary orga-
nizations: Enabling collaboration among unex-
pected allies,” Administrative Science Quarterly,
Vol. 53, No. 3, 2008, pp. 422-459.

60

Anh Nguyen-Duc et al.

8]

[10]

[11]

[12]

[16]

[17]

B. Andrea and R. Cristina, “Comparing moti-
vations of individual programmers and firms to
take part in the open source movement: From
community to business,” Knowledge, Technology
& Policy, Vol. 18, No. 4, 2006, pp. 40-64.

A_H. Ghapanchi, C. Wohlin, and A. Aurum, “Re-
sources contributing to gaining competitive ad-
vantage for open source software projects: An
application of resource-based theory,” Interna-
tional Journal of Project Management, Vol. 32,
No. 1, 2014, pp. 139-152.

A_H. Ghapanchi, “Rallying competencies in vir-
tual communities: A study of core processes and
user interest in open source software projects,”
Information and Organization, Vol. 23, No. 2,
2013, pp. 129-148.

R. Riehle, “The single-vendor commercial open
course business model,” Information Systems
and e-Business Management, Vol. 10, No. 1, 2012,
pp. 5-17.

A H. Ghapanchi, C. Wohlin, and A. Aurum, “Re-
sources contributing to gaining competitive ad-
vantage for open source software projects: An
application of resource-based theory,” Interna-
tional Journal of Project Management, Vol. 32,
No. 1, 2014, pp. 139-152. [Online]. http://www.
sciencedirect.com/science/article/pii/S0263786
313000380

S. Ghobadi and J. D’Ambra, “Coopetitive re-
lationships in cross-functional software devel-
opment teams: How to model and measure?”
Journal of Systems and Software, Vol. 85, No. 5,
2012, pp- 1096-1104.

K. Manikas and K.M. Hansen, “Software ecosys-
tems? A systematic literature review,” Journal
of Systems and Software, Vol. 86, No. 5, 2013,
pp. 1294-1306. [Online]. http://www.sciencedirec
t.com/science/article/pii/S016412121200338X
L. Johan, R. Patrick, R. Bjorn, and P. Méder,
“How firms adapt and interact in open source
ecosystems: Analyzing stakeholder influence
and collaboration patterns,” in Requirements
Engineering: Foundation for Software Quality.
Cham: Springer International Publishing, 2016,
pp. 63-81.

J. Teixeira, “Understanding collaboration in the
open-source arena: The cases of WebKit and
OpenStack,” in Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment
in Software Engineering, 2014, pp. 52:1-52:5.

J. Teixeira, S. Mian, and U. Hytti, “Cooperation
among competitors in the open-source arena:
The case of OpenStack,” in International Con-
ference on Information Systems (ICIS), 2016.

[18]

[19]

[23]

A M. Brandenburger and B.J. Nalebuff., Co-ope-
tition. New York, USA: Doubleday, 1996.

M. Bengtsson and S. Kock, “‘Coopetition’ in
business networks? To cooperate and compete
simultaneously,” Industrial Marketing Manage-
ment, Vol. 29, No. 5, 2000, pp. 411-426.

M. Zineldin, “Co-opetition: The organisation of
the future,” Marketing Intelligence € Planning,
Vol. 22, No. 7, 2004, pp. 780-790.

G.B. Dagnino and G. Padula, “Coopetition strat-
egy, a new kind of inter firm dynamics for value
creation,” in The 2nd conference on Furopean
Academy of Management, 2002.

C.P. Lin, Y.J. Wang, Y.H. Tsai, and Y.F. Hsu,
“Perceived job effectiveness in coopetition: A sur-
vey of virtual teams within business organiza-
tions,” Computers in Human Behavior, Vol. 26,
No. 6, 2010, pp. 1598-1606. [Online]. http:
//www.sciencedirect.com/science/article/pi
i/S0747563210001792

W. Scacchi, “Free/Open Source software devel-
opment: Recent research results and emerging
opportunities,” in The 6th Joint Meeting on
European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering: Companion Pa-
pers, ESEC-FSE companion ’07. New York, NY,
USA: ACM, 2007, pp. 459-468.

J.Y. Moon and L. Sproull, “Essence of dis-
tributed work: The case of the Linux kernel,”
First Monday, No. 11, 2000. [Online]. http:
//www firstmonday.dk/ojs/index.php/fm/a
rticle/view/801/710

A. Mockus, R.T. Fielding, and J.D. Herbsleb,
“Two case studies of Open Source Software de-
velopment: Apache and Mozilla,” ACM Transac-
tions on Software Engineering and Methodology,
Vol. 11, No. 3, 2002, pp. 309-346.

G.K. Lee and R.E. Cole, “From a firm-based
to a community-based model of knowledge cre-
ation: The case of the Linux kernel develop-
ment,” Organization Science, Vol. 14, No. 6,
2003, pp. 633-649.

J. Xu, Y. Gao, S. Christley, and G. Madey,
“A topological analysis of the Open Souce Soft-
ware development community,” in Proceedings
of the 38th Annual Hawaii International Confer-
ence on System Sciences, 2005, p. 198a.

K. Crowston and J. Howison, “The social struc-
ture of Free and Open Source Software develop-
ment,” First Monday, Vol. 10, 2005.

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb,
“Social coding in GitHub: Transparency and col-
laboration in an open software repository,” in

Do Software Firms Collaborate or Compete? A Model of Coopetition in Community-initiated OSS Projects

61

[30]

[31]

[32]

[35]

Proceedings of the ACM Conference on Com-
puter Supported Cooperative Work, CSCW ’12.
New York, NY, USA: ACM, 2012, pp. 1277-1286.
C. Gutwin, R. Penner, and K. Schneider, “Group
awareness in distributed software development,”
in Proceedings of the ACM Conference on Com-
puter Supported Cooperative Work, CSCW ’04.
New York, NY, USA: ACM, 2004, pp. 72-81.
W. Scacchi, Free/Open Source Software Devel-
opment: Recent Research Results and Methods.
Elsevier, 2007, Vol. 69, pp. 243-295. [Online].
http://www.sciencedirect.com/science/article/
pii/S0065245806690050

R. Abreu and R. Premraj, “How developer
communication frequency relates to bug in-
troducing changes,” in Proceedings of the
Joint International and Annual ERCIM Work-
shops on Principles of Software Evolution (IW-
PSE) and Software Evolution (Evol) Workshops,
IWPSE-Evol '09. New York, NY, USA: ACM,
2009, pp. 153-158.

T. Zimmermann, R. Premraj, N. Bettenburg,
S. Just, A. Schroter, and C. Weiss, “What
makes a good bug report?” IEEE Transactions
on Software Engineering, Vol. 36, No. 5, 2010,
pp. 618-643.

C. Bird, N. Nagappan, H. Gall, B. Murphy,
and P. Devanbu, “Putting it all together: Us-
ing socio-technical networks to predict failures,”
in 20th International Symposium on Software
Reliability Engineering, 2009, pp. 109-119.

T. Wolf, A. Schroter, D. Damian, and T. Nguyen,
“Predicting build failures using social network
analysis on developer communication,” in Pro-
ceedings of the 31st International Conference
on Software Engineering, ICSE ’09. Washing-
ton, DC, USA: IEEE Computer Society, 2009,
pp. 1-11.

C. Ferioli and P. Migliarese, “Supporting orga-
nizational relations through information tech-
nology in innovative organizational forms,” Eu-
ropean Journal of Information Systems, Vol. 5,
No. 3, 1996, pp. 196-207.

M. Antikainen, T. Aaltonen, and J. Vaisanen,
“The role of trust in OSS communities? Case
linux kernel community,” in Open Source De-
velopment, Adoption and Innovation, J. Feller,
B. Fitzgerald, W. Scacchi, and A. Sillitti, Eds.
Springer, 2007, pp. 223-228.

S.Y. Ho and A. Richardson, “Trust and distrust
in Open Source Software development,” Journal
of Computer Information Systems, Vol. 54, No. 1,
2013, pp. 84-93.

P.J. Agerfalk and B. Fitzgerald, “Outsourcing to
an unknown workforce: Exploring opensourcing

[40]

[49]

[50]

[51]

[52]

as a global sourcing strategy,” MIS Quarterly,
Vol. 32, No. 2, 2008, pp. 385-409.

M. Bengtsson and S. Kock, “Cooperation and
competition in relationships between competi-
tors in business networks,” Journal of Business
& Industrial Marketing, Vol. 14, No. 3, 1999,
pp. 178-194.

D. Tjosvold, Team organization: An enduring
competitive advantage. Wiley-Blackwell, 1991,
ch. Forging Synergy, pp. 219-233.

R.C. Mayer, J.H. Davis, and F.D. Schoorman,
“An integrative model of organizational trust,”
The Academy of Management Review, Vol. 20,
No. 3, 1995, pp. 709-734. [Online]. http://www.
jstor.org/stable/258792

M. Levy, C. Loebbecke, and P. Powell, “SMEs,
co-opetition and knowledge sharing: The role of
information systems,” European Journal of Infor-
mation Systems, Vol. 12, No. 1, 2003, pp. 3-17.
R.K. Yin, Case Study Research: Design and
Methods (Applied Social Research Methods).
USA: SAGE Publications, Inc., 2014.

M.J. Gallivan, “Striking a balance between trust
and control in a virtual organization: A content
analysis of open source software case studies,’
Information Systems Journal, Vol. 11, No. 4,
2001, pp. 277-304.

H. Wang and C. Wang, “Open source soft-
ware adoption: a status report,” IEEE Software,
Vol. 18, No. 2, 2001, pp. 90-95.

M. Cataldo and J.D. Herbsleb, “Architecting in
software ecosystems: Interface translucence as an
enabler for scalable collaboration,” in Proceed-
ings of the Fourth Furopean Conference on Soft-
ware Architecture: Companion Volume, ECSA
"10. New York, NY, USA: ACM, 2010, pp. 65-72.
QE A with the founder of Wireshark and Ethereal,
2008. [Online]. http://protocog.com/gerald_c
ombs_ interview.html

L. Freeman, The Development of Social Network
Analysis. Canada: Empirical Press, 2006.

D.S. Cruzes and T. Dyba, “Recommended steps
for thematic synthesis in software engineer-
ing,” in International Symposium on Empirical
Software Engineering and Measurement, 2011,
pp. 275-284.

K.J. Stewart and S. Gosain, “The impact of
ideology on effectiveness in open source software
development teams,” MIS Quarterly, Vol. 30,
No. 2, 2006, pp. 291-314.

P.B. M. S. Lane, G. Vyver and S. Howard,
“Inter-preventative insights into interpersonal
trust and effectiveness of virtual communities of
open source software (OSS) developers,” Open
Source Systems: Towards Robust Practices, 2004.

)

62

Anh Nguyen-Duc et al.

[53]

P.B. de Laat, “How can contributors to
open-source communities be trusted? on the as-
sumption, inference, and substitution of trust,”
Ethics and Information Technology, Vol. 12,
No. 4, 2010, pp. 327-341.

E.S. Raymond, The Cathedral and the Bazaar.
Sebastopol, CA, USA: O’Reilly & Associates,
Inc., 1999.

S. Grand, G. von Krogh, D. Leonard, and W. Swap,
“Resource allocation beyond firm boundaries: A
multi-level model for open source innovation,”
Long Range Planning, Vol. 37, No. 6, 2004,
pp. 591-610. [Online]. http://www.sciencedirect.
com/science/article/pii/S0024630104001177

L. Dahlander and M.W. Wallin, “A man on the
inside: Unlocking communities as complemen-
tary assets,” Research Policy, Vol. 35, No. §,
2006, pp. 1243-1259. [Online]. http://www.scie
ncedirect.com/science/article/pii/S004873330
6001387

A. Mehra, R. Dewan, and M. Freimer, “Firms
as incubators of open-source software,” Infor-
mation Systems Research, Vol. 22, No. 1, 2011,
pp. 22-38.

M.J. Gallivan, “Striking a balance between trust
and control in a virtual organization: a content
analysis of open source software case studies,”
Information Systems Journal, Vol. 11, No. 4,
2001, pp. 277-304.

J. Teixeira, G. Robles, and J.M. Gonzélez-Bara-
hona, “Lessons learned from applying social net-

[61]

work analysis on an industrial Free/Libre/Open
Source Software ecosystem,” Journal of Internet
Services and Applications, Vol. 6, No. 1, 2015,
p- 14.

C. Oezbek, L. Prechelt, and F. Thiel, “The onion
has cancer: Some social network analysis visual-
izations of open source project communication,”
in Proceedings of the 3rd International Workshop
on Emerging Trends in Free/Libre/Open Source
Software Research and Development, FLOSS ’10.
New York, NY, USA: ACM, 2010, pp. 5-10.

S. Marczak, D. Damian, U. Stege, and
A. Schréter, “Information brokers in require-
ment-dependency social networks,” in 16th IEEE
International Requirements Engineering Confer-
ence, 2008, pp. 53—62.

A. Nguyen-Duc, D.S. Cruzes, and R. Conradi,
“On the role of boundary spanners as team co-
ordination mechanisms in organizationally dis-
tributed projects,” in 9th International Con-
ference on Global Software Engineering, 2014,
pp. 125-134.

J. Linaker, H. Munir, K. Wnuk, and C.E. Mols,
“Motivating the contributions: An open inno-
vation perspective on what to share as open
source software,” Journal of Systems and Soft-
ware, Vol. 135, 2018, pp. 17-36. [Online]. http:
//www.sciencedirect.com/science/article/pii/
S0164121217302169

e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 63-103, DOI 10.5277/e-Inf190103

Representation of UML Class Diagrams in OWL 2

on the Background of Domain Ontologies

Matgorzata Sadowska*, Zbigniew Huzar*
* Faculty of Computer Science and Management, Wroclaw University of Science and Technology

m.sadowska@pwr.edu.pl, zbigniew.huzar@pwr.edu.pl

Abstract

Background: UML class diagrams can be automatically validated if they are compliant with
a domain knowledge specified in a selected OWL 2 domain ontology. The method requires
translation of the diagrams into their OWL 2 representation.

Aim: The aim of this paper is to present transformation and verification rules of UML class
diagrams to their OWL 2 representation.

Method: The analysis of the results of the systematic literature review on the topic of transfor-
mation rules between elements of UML class diagrams and OWL 2 constructs. The purpose of the
analysis is to present the extent to which state-of-the-art transformation rules cover the semantics
expressed in class diagrams. On the basis of the analysis, new transformation rules expressing the
semantics not yet covered but expected from the point of view of domain modelling pragmatics
have been defined.

Results: The first result is the revision and extension of the transformation rules identified in
the literature. The second original result is a proposition of verification rules necessary to check if
a UML class diagram is compliant with the OWL 2 domain ontology.

Conclusion: The proposed transformations can be used for automatic validation of compliance

of UML class diagrams with respect to OWL 2 domain ontologies.

Keywords: UML, OWL 2, transformation rules, verification rules

1. Introduction

In [1], we presented an idea of a method for se-
mantic validation of Unified Modeling Language
(UML) class diagrams [2] with the use of OWL 2
Web Ontology Language (OWL 2) [3] domain
ontologies. While UML has been known for many
years, OWL is a much younger formalism and its
main purpose is to represent knowledge in the
Semantic Internet. The choice of OWL is justified
by the fact that knowledge, and in particular on-
tologies collected on the Internet, will be increas-
ingly used in business modelling as the first stage
of software development. The proposed approach
[1] requires a transformation of an UML class
diagram constructed by a modeller into its seman-
tically equivalent OWL 2 representation. Despite

Submitted: 6 June 2018; Revised: 7 October 2018;

Accepted: 7 November 2018;

the fact that there are many publications which
define some UML to OWL 2 transformations, to
the best of the authors’ knowledge, no study has
investigated a complete mapping covering all di-
agram elements emphasized by pragmatic needs.
This paper seeks to contribute in this field with
a special focus on providing a full transformation
of elements of an UML class diagram which are
commonly used in business and conceptual mod-
elling. All the transformations described in this
paper and the method of validation explained
in [1], have been implemented in a tool whose
prototype was presented in [4]. On the basis of
the proposed UML-OWL transformations, the
tool has been further extended. Currently, the
tool offers validation of the modified diagram,
and can automatically suggest how the diagram

Available online: 14 December 2018

64

Malgorzata Sadowska, Zbigniew Huzar

should be corrected on the basis of the ontology.
A necessary requirement before the UML class
diagram can be validated with the use of OWL
domain ontology is that the diagram and the
ontology must follow one agreed domain vocab-
ulary. Moreover, the domain ontology must be
consistent because it is the knowledge base for
the area.

Our research is limited to the static elements
of UML class diagrams — the behavioural aspect
represented by class operations is omitted. This
is due to the fact that the semantics of UML op-
erations cannot be effectively expressed with the
use of OWL 2 constructs, which do not represent
behaviour. In order to identify which transforma-
tion rules of UML class diagrams into OWL con-
structs have already been proposed, we have per-
formed a systematic review of literature. The ex-
tracted rules have been analysed, compared and
extended. The resulting findings of how to con-
duct the transformation of UML class diagram to
its OWL 2 representation are described further
in this paper. In the rest of this paper, OWL
always means OWL 2, if not stated otherwise.

Besides the transformation rules, the method
of semantic validation of UML class diagrams re-
quires the so called verification rules. This aspect
is an original element of this research. Transform-
ing the UML elements to OWL may introduce
some new properties that may be in conflict with
the ontology. The verification rules are specified
in the form of either OWL verification axioms or
verification queries.

It is then checked that the verification axioms
are not present in the domain ontology because,
if they are included, the diagram is contradictory
to the domain knowledge. In other words, we
can say that the verification axioms detect if the
semantics of the diagram transformation is com-
pliant with the axioms included in the domain
ontology. Considering the inverse transformation
(from the ontology to the diagram), the presence
of the verification axioms in the domain ontol-
ogy means that the reengineering transformation
would remain in conflict with the semantics of
the UML class diagram. In [1], we presented some
examples of the consequences of a reengineering

transformation of OWL to UML which does not
take into account the verification rules.

Verification queries are used for extracting
information from a domain ontology, the kind of
information that could not be provided through
inspecting the class diagram itself. The domain
ontology can have more information regarding
the elements of a UML class diagram, which is not
explicitly expressed on the diagram. For example,
the ontology can contain information about indi-
viduals. To give a more detailed perspective, the
verification queries are used for: (a) checking if
the classes denoted as abstract in the UML class
diagram do not have any individuals assigned
in the OWL domain ontology, (b) verifying if
the multiplicity (of both the attributes and the
association ends) is not violated on the side of the
OWL domain ontology, and (c) checking if the
user-defined list of literals of the specified enu-
merations on the UML class diagram is compliant
with those defined in the OWL domain ontology.
Technically, all verification queries are defined
with the use of SPARQL! language.

The verification of UML class diagrams with
the use of the proposed method is possible thanks
to the initial normalization of the domain ontol-
ogy and the normalization of the transformation
axioms. The concept of OWL ontology normal-
ization is our proposition [5]. Any input OWL 2
DL ontology after normalization is presented in
a new but semantically equivalent form because
the normalization rules only change the structure
but do not affect the semantics of axioms or ex-
pressions in the OWL 2 ontology. The normalized
OWL 2 DL ontologies have a unified structure of
axioms so that they can be algorithmically com-
pared without the need to conduct additional
complex calculations. The extensive details of
conducting the transformation of OWL 2 ontolo-
gies to their normalized form are described in [5].
In the rest of the paper OWL domain ontology is
understood as OWL domain ontology after nor-
malization (it should be done only once). Before
comparison of axioms, all transformation axioms
are also normalized (tool automatically saves
transformation axioms also in the normalized
form so that no additional delay is needed in

!SPARQL Query Language: https://www.w3.org/ TR /sparqll1-overview/

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 65

the verification algorithm). For the purpose of
being compliant with the literature and for the
potential use of transformation axioms for other
purposes, all transformation axioms presented
in this paper are not normalized. On the other
hand, due to the fact that verification axioms are
our proposition preliminary designed to support
verification of UML class diagrams, some rules
for verification axioms are already defined in the
normalized form in order to reduce the number
of unnecessary redundant verifications, the rest
rules for verification axioms are not yet normal-
ized for the purpose of clarity for readers but
the tool also automatically saves the verification
axioms directly as normalized.

In practical use of UML to OWL transforma-
tion, the initial phase involving modeller’s atten-
tion is required. The modeller has to assure that
all class attributes and association end names in
one UML class are uniquely named. Otherwise,
the transformation rules may generate repeating
OWL axioms which may lead to inconsistencies
or may be semantically incorrect.

The remainder of this article is organized
as follows. Section 2 summarizes related works.
Section 3 outlines which elements of UML class
diagrams are commonly used in business and
conceptual modelling. Section 4 describes the
process and the results of the conducted sys-
tematic literature review which was focused on
identifying the state-of-the-art transformation
rules for translating UML class diagrams into
their OWL representation. Section 5 presents
the revised and extended transformation rules
and proposes the verification rules. Section 6
summarises some important differences between
OWL 2 and UML languages and their impact on
transformation. Section 7 illustrates application
of transformation and verification rules to exam-
ple UML class diagrams. Section 8 is dedicated
to the tool that implements the transformations.
Finally, Section 9 concludes the paper.

2. Class diagrams in business
and conceptual modelling

The UML specification [2] does not strictly spec-
ify which elements of UML class diagrams should

or should not be included in the specific diagrams

and this decision is always left to modellers. How-

ever, not all model elements are equally useful in
the practice of business and conceptual modelling
with UML class diagrams.

In [6], it is suggested that a full variety of
UML constructs is not needed until the imple-
mentation phase and it is practiced that a subset
of diagram elements useful for conceptual mod-
elling in the business context is selected. The
following static elements of UML class diagrams
are suggested in literature as the most important
in business and conceptual modelling [7, 8]:
named classes,

— attributes of classes with types (either primi-
tive or structured datatypes),

— associations between the classes (including
aggregation) with the specified multiplicity
of the association ends,

— generalization relationships.

Modelling a complex business requires using
several views, each of which focuses on a partic-
ular aspect of business. Following [7], there are
four commonly used Business Views: Business
Vision View, Business Process View, Business
Structure View and Business Behaviour View.
The UML class diagrams are identified as useful
[7] in Business Vision View and Business Struc-
ture View.

The UML class diagrams in a Business Vi-
sion View [7] are used to create conceptual mod-
els which establish a common vocabulary and
demonstrate relationships among different con-
cepts used in business. The important elements of
UML class diagrams in the conceptual modelling
are named classes and associations between the
classes as they define concepts. The classes can
have attributes as well as a textual explanation
which together constitute a catalogue of terms.
The textual descriptions may not be necessar-
ily visible on the UML diagram but should be
retrievable with the help of modelling tools. In
the conceptual modelling with UML, attributes
and operations of classes are not so much im-
portant [7] (can be defined only if needed) but
relationships among the classes should be already
correctly captured in models.

The UML class diagrams in a Business Struc-
ture View [7] are focused on presenting a struc-

66

Malgorzata Sadowska, Zbigniew Huzar

ture of resources, products, services and infor-
mation regarding the business including the or-
ganization of the company. The class diagrams
in this view often include classes containing at-
tributes with types and operations, as well as
generalizations and associations with the speci-
fied multiplicity.

In [8], modelling business processes with UML
class, activity and state machine diagrams is sug-
gested. UML class diagrams with a number of
predefined classes are used to describe process en-
tity representatives (activities, agents, resources
and artefacts). The examples in [8] present a busi-
ness process at the level of the UML class dia-
gram as consisting of classes with attributes, class
generalizations, associations between the classes
(including aggregation) with a specified multiplic-
ity of the association ends. The class attributes
are typed with either primitive or structured
datatypes.

We have not found further recommendations
for using additional static UML class diagram
elements in the context of business or conceptual
modelling in other reviewed literature positions.
If the selected UML class diagram is compliant
with the domain, it is reasonable to examine
the diagram further. For example, the question
outside the scope of this research is about the role
of OCL? in business and conceptual modelling
with UML class diagrams. Some other works
investigate this aspect, e.g. in [9] an approach to
translate OCL invariants into OWL 2 DL axioms
can be found.

3. Review process

Kitchenham and Charters in [10] provide guide-
lines for performing systematic literature review
(SLR) in software engineering. Following [10],
a systematic literature review is a means of eval-
uating and interpreting all available research
relevant to a particular research question, and
aims at presenting a fair evaluation of a re-
search topic by using a rigorous methodology.
This section describes the carried out review
aimed at identifying studies describing mappings

of UML class diagrams to their OWL represen-
tations.

3.1. Research question

The research question is:

RQ: “What transformation rules between ele-
ments of UML class diagrams and OWL con-
structs have already been proposed?”

3.2. Data sources and search queries

In order to make the process repeatable, the de-
tails of our search strategy are documented below.
The search was conducted in the following online
databases: IEEE Xplore Digital Library, Springer
Link, ACM Digital Library and Science Direct.
These electronic databases were chosen because
they are commonly used for searching literature
in the field of Software Engineering. Additional
searches with the same queries were conducted
through ResearchGate and Google scholar in or-
der to discover more relevant publications. These
publication channels were searched to find pa-
pers published in all the available years until
May 2018. The earliest primary study actually
included was published in 2006.

For conducting the search, the following key-
words were selected: “transformation”, “trans-
forming”, “mapping”, “translation”, “OWL”,
“UML” and “class diagram”. The keywords are
alternate words and synonyms for the terms used
in the research question, which aimed to mini-
mize the effect of differences in terminologies. Pilot
searches showed that the above keywords were too
general and the results were too broad. Therefore,
in order to obtain more relevant results, the search
queries were based on the Boolean AND to join
terms:

— “transformation” AND “OWL” AND “UML”,

— ‘“transforming” AND “OWL” AND “UML”,

— ‘“mapping” AND “OWL” AND “UML”,

— “translation” AND “OWL” AND “UML”,

— ‘“transformation” AND “OWL” AND “class
diagram”,

— “transforming” AND “OWL” AND “class di-

7
agram”,

2Object Constraint Language (OCL): http://www.omg.org/spec/OCL/

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 67

— “mapping” AND “OWL” AND “class dia-
gram”,

— ‘“translation” AND “OWL” AND “class dia-
gram”.

3.3. Inclusion and exclusion criteria

The main inclusion criterion was that a paper pro-
vides some transformation rules between UML
class diagrams and OWL constructs. Addition-
ally, the study had to be written in English and
be fully accessible through the selected online
libraries. Additionally, there was a criterion for
excluding a paper from the review results if the
study described transformation rules between
other types of UML diagrams to OWL represen-
tation or described transformation rules to other
ontological languages.

3.4. Study quality assessment

The final acceptance of the literature was done
by applying the quality criteria. The criteria were
assigned a binary “yes”/“no” answer. In order
for a work to be selected, it needed to provide

“yes” answer to both questions from the checklist:

1. Are the transformation rules explicitly de-
fined? For example, a paper could be excluded
if it only reported on a possibility of specify-
ing transformation rules for the selected UML
elements, but such transformations were not
provided.

2. Do the proposed transformation rules pre-
serve the semantics of the UML elements?
For example, a paper (or some selected trans-
formation rules within the paper) could be
excluded if the proposed rules in the trans-
formation to OWL 2 did not preserve the
semantics of the UML elements.

3.5. Study selection

During the search, the candidate papers for full
text reading were identified by evaluating their
titles and abstracts. The literature was included
or excluded based on the selection criteria. The
goal was to obtain the literature that answered
the research question. The candidate papers, af-

ter eliminating duplicates, were fully read. After
positive assessment of the quality of the litera-
ture items, they were added to the results of the
systematic literature review.

Next, if the paper was included, its reference
list was additionally scanned in order to iden-
tify potential further relevant papers (backward
search). Later, the paper selection has addition-
ally been extended by forward search related to
works citing the included papers. In both back-
ward search and forward search the papers for
full text reading were identified based on reading
title and abstract.

3.6. Threats to validity

We have identified threats to the validity of the
conducted SLR, grouped in accordance with the
categories presented in [11]. Wherever applica-
ble, we included the applied mitigating factors
corresponding to the identified threats.

Construct Validity: The specified search
queries may not be able to completely cover all ad-
equate search terms related to the research topic.
As a mitigating factor, we used alternate words
and synonyms for the terms used in the research
question.

Internal Validity: The identified treats to inter-
nal validity relate to search strategy and further
steps of conducting the SLR, such as selection
strategy and quality assessment:

1. A threat to validity was caused by lack of
assurance that all papers relevant to answer-
ing the research question were actually found.
A mitigating factor to this threat was conduct-
ing a search with several search queries and
analyzing the references of the primary studies
with the aim of identifying further relevant
studies.

2. Another threat was posed by the selected re-
search databases. The threat was reduced by
conducting the search with the use of six dif-
ferent electronic databases.

3. A threat was caused by the fact that one re-
searcher conducted SLR. A mitigating factor
to the search process and the study selection
process was that the whole search process was
twice reconducted in April 2018 and May 2018.

68

Malgorzata Sadowska, Zbigniew Huzar

The additional procedures did not change the

identified studies.

FExternal Validity: External validity concen-
trates on the generalization of findings derived
from the primary studies. The carried search was
aimed at identifying transformation rules of ele-
ments of UML class diagram to their OWL 2 rep-
resentation. Some transformation rules could be
formulated analogically in some other ontological
languages, e.g. DAML4-OIL, etc. Similarly, some
transformation rules could be formulated analog-
ically in some modelling languages or notations
different then UML class diagrams, e.g. in En-
tity Relationship Diagram (ERD), EXPRESS-G
graphical notation for information models, etc.
A generalization of findings is out of scope of this
research.

Conclusion Validity: The search process was
twice reconducted and the obtained results have
not changed. However, non-determinism of some
database search engines is a threat to the re-
liability of this and any other systematic re-
view because the literature collected through
non-deterministic search engines might not be
repeatable by other researchers with exactly the
same results. In particular it applies to the re-
sults obtained with the use of Google scholar and
ResearchGate.

4. Related work

4.1. Search results

In total, the systematic literature review identi-
fied 18 studies. 14 literature positions were found
during the search: [12-26]. Additional 30 studies
were excluded based on the quality assessment
exclusion criterion.

Additional 3 studies were obtained through
the analysis of the references of the identified
studies (the backward search): [27-29].

The forward search has not resulted in any
paper included. The majority of papers had al-
ready been examined during the main search and
had already been either previously included or
excluded. In the forward search, three papers de-
scribing transformation rules have been excluded
because they were not related to UML. Most

other papers have been excluded because they
have not described transformation rules. Two
papers have been excluded because the transfor-
mation rules were only mentioned but not defined.
A relatively large number (approximately 20%)
of articles has been excluded based on the lan-
guage criterion — they had not been written in
English (the examples of the observed repetitive
languages: Russian, French, Turkish, Chinese, and
Spanish).

The results of the search with respect to data
sources are as follows (data source — number
of selected studies): ResearchGate — 6; Springer
Link — 3; IEEE Xplore Digital Library — 2;
Google Scholar — 2; ACM Digital Library — 1;
Science Direct — 1. In order to eliminate dupli-
cates that were found in more than one electronic
database, the place where a paper was first found
was recorded.

Table 1. Search results versus years of publication

Year of publication Resulting papers

2006 23]

2008 [14, 16, 21, 27]
2009 [13]

2010 [26]

2012 [12, 17, 20, 22, 25]
2013 [19, 24, 28]

2014 [29]

2015 [18]

2016 [15]

To summarize, the identified studies include:
3 book chapters, 8 papers published in journals,
5 papers published in the proceedings of confer-
ences, 1 paper published in the proceedings of
a workshop and 1 technical report. The identified
primary studies were published in the years be-
tween 2006-2016 (see Table 1). What can be ob-
served is that the topic has been gaining greater
attention since 2008. It should not be a surprise
because OWL became a formal W3C recommen-
dation in 2004.

4.2. Summary of identified literature

Most of the identified studies described just a few
commonly used diagram elements (i.e. UML class,
binary association and generalization between

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 69

the classes or associations) while some other di-
agram elements obtained less attention in the
literature (i.e. multiplicity of attributes, n-ary
association or generalization sets). For some class
diagram elements the literature offers incom-
plete transformations. Some of the transforma-
tion rules defined in the selected papers are ex-
cluded from the findings based on the quality cri-
teria defined in Section 3.4. The state-of-the-art
transformation rules were revised and extended.
Section 5 contains detailed references to the lit-
erature related to relevant transformations. The
following is a short description of the included
studies:

The work presented in [18] transforms into
OWL some selected elements of UML models
containing multiple UML class, object and state-
chart diagrams in order to analyze consistency
of the models. A similar approach is presented in
[19], which is focused on detecting inconsistency
in models containing UML class and statechart
diagrams.

The papers [15, 17, 29] investigate the differ-
ences and similarities between UML and OWL
in order to present transformations of selected
(and identified as useful) elements of UML class
diagram. In [29], the need for UML-OWL trans-
formation is additionally motivated by not re-
peating the modelling independently in both lan-
guages.

In [14], a possible translation of few selected
elements of several UML diagrams to OWL is
presented. The paper takes into account a set
of UML diagrams: use case, package, class, ob-
ject, timing, sequence, interaction overview and
component. The behavioural elements in UML
diagrams in [14] are proposed to be translated
to OWL with annotations.

The work of [26] focuses on representing
UML and MOF-like metamodels with the use of
OWL 2 language. The approach includes propo-
sition of transforming Classes and Properties.

The paper [27] compares OWL abstract syn-
tax elements to the equivalent UML features
and appropriate OCL statements. The analysis
is conducted in the direction from OWL to UML.
For every OWL construct its UML interpretation
is proposed.

The article [20] describes transformation rules
for UML data types and class stereotypes se-
lected from UML profile defined in ISO 19103.
A full transformation for three stereotypes is
proposed. The article describes also some addi-
tional OWL-UML mappings. The focus of [28] is
narrowed to transformation of data types only.

Some works are focused on UML-OWL trans-
formations against the single application domain.
The paper [21] depicts the applicability of OWL
and UML in the modelling of disaster manage-
ment processes. In [16], transportation data mod-
els are outlined and the translation of UML
model into its OWL representation is conducted
for the purpose of reasoning.

The works presented in [12, 13, 23] are
focused on extracting ontological knowledge
from UML class diagrams and describe some
UML-OWL mappings with the aim to reuse the
existing UML models and stream the building
of OWL domain ontologies. The paper [12] from
2012 extends and enhances the conference pa-
per [13] from 2009. Both papers were analysed
during the process of collecting the data in case
of detection of any significant differences in the
description of transformation rules.

In [22], UML classes are translated into OWL.
Finally, [24, 25] present a few transformations of
class diagram elements to OWL.

5. UML class diagram and its OWL 2
representation

This section presents transformation rules
(TR) which seek to transform the elements of
UML class diagrams to their equivalent repre-
sentations expressed in OWL 2. Some of the
transformation rules come from the literature
identified in the review (e.g. TR1 in Table 2).
Another group of rules have their archetypes
in the state-of-the-art transformation rules but
we have refined them in order to clarify their
contexts of use (e.g. TR A, TR in Section 6.2),
or extend their application to a broader scope
(e.g. TR1 in Table 5). The remaining transfor-
mation rules are our new propositions (e.g. TR5
in Table 7).

70

Malgorzata Sadowska, Zbigniew Huzar

In contrast to the approaches available in
the literature, together with the transformation
rules we define the verification rules (VR) for
all elements of a UML class diagram wherever
applicable. The need for specifying verification
rules results from the fact that we would like to
check the compliance of the OWL representation
of UML class diagram with the OWL domain
ontology. The role of verification rules is to de-
tect if the semantics of a diagram is not in con-
flict with the knowledge included in the domain
ontology.

All the transformation and verification rules
are presented in Tables 2-21. We took into con-
sideration all the static elements of UML class
diagrams, which are important from the point of
view of pragmatics (see Section 2). To summarize
the results, most of the UML elements which are
recommended [7, 8] in business or conceptual
modelling with UML class diagrams are fully
transformable to OWL 2 constructs:

— Class (Table 2),

— attributes of the Class (Table 4),

— multiplicity of the attributes (Table 5),

— binary Association — both between two differ-
ent Classes (Table 6) as well as from a Class

to itself (Table 7),

— multiplicity of the Association ends (Table 9),
— Generalization between Classes (Table 12),
— Integer, Boolean and UnlimitedNatural prim-

itive types (Table 18),

— structured DataType (Table 19),
— Enumeration (Table 20),
— Comments to the Class (Table 21),

We additionally fully translated into OWL 2
the following UML elements which have not been
identified among recommended for business or
conceptual modelling but can be used in further
stages of software development:

— Generalization between Associations (Ta-

ble 13),

— GeneralizationSet with constraints (Tables

14-17),

— AssociationClass (Table 10 and Table 11),

The UML and OWL languages have different
expressing power. We consider also the partial
transformation, which is possible for:

— String and Real primitive types because
they have only similar but not equivalent
to OWL 2 types (Table 18),

— aggregation and composition can be trans-
formed only as simple associations (Tables 6
and 7),

— n-ary Association — OWL 2 offers only binary
relations, a pattern to mitigate the problem of
transforming n-ary Association is presented
(Table 8),

— AbstractClass — OWL 2 does not offer any
axiom for specifying that a class must not
contain any individuals. Although, it is im-
possible to confirm that the UML abstract
class is correctly defined with respect to the
OWL 2 domain ontology, it can be detected
if it is not (Table 3).

The tables below present for each UML ele-
ment its short description, a graphical symbol,
transformation rules, verification rules, expla-
nations or comments, limitations of the trans-
formations (if any) and the works related for
the transformation rules (if any). Additionally,
some tables include references to Section 7, where
examples of UML-OWL transformations are pre-
sented.

The convention for transformation and veri-
fication rules presentation is semi-formal, simi-
lar to the convention used in other publication
presenting transformation rules, e.g. [17, 20]. It
seems to be more readable than a strict formal
presentation. However, a formal presentation is
implicitly defined in the programming tool which
transforms any UML class diagram into a set of
OWL axioms.

All OWL 2 constructs are written with the
use of a functional-style syntax [30]. Additionally,
the following convention is used:

— C - indicates an OWL class;

— CE (possibly with an index) — indicates
a class expression;

— OPE (possibly with an index) — indicates an
object property expression;

— DPE (possibly with an index) — indicates
a data property expression;

— «a = 8 — means textual identity of o and 3
OWL 2 constructs;

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 71

— « # B — means textual difference of o and 3
OWL 2 constructs;

— The elements of UML meta-model, UML
model, and OWL entities or literals named
in the UML model are written with the use

of italic font;

— The OWL 2 constructs (axioms, expressions
and datatypes) and SPARQL queries are writ-

ten in bold.

PREFIX rdf: <http://www.w3.0rg/1999/02/22-
rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/

owl#>
PREFIX xsd: <http://www.w3.org/2001/
XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/
rdf-schema#>
PREFIX : <http://...selected ontology>

All presented SPARQL queries use the fol-

lowing prefixes:

5.1. Transformation of UML classes with attributes

Table 2. Classes and the defined rules

UML element

Class

Description of UML
element

Symbol of UML

element

Transformation rules
Verification rules

Comments to the rules

Related works

Example

In UML, a Class [2] is purposed to specify a classification of objects.

ClassMame

TR1: Specify declaration axiom for UML Class as OWL Class:

Declaration(Class(:ClassName))
VR1: Check if : ClassName class has the HasKey axiom defined in the domain
ontology. HasKey(:ClassName(OPE;.. OPE,,) (DPE;.. DPE,))
1. Regarding VR1: The OWL HasKey axiom assures [30, 31] that if two
named instances of a class expression contain the same values of all object and
data property expressions, then these two instances are the same. This axiom is
in contradiction with the semantics of UML class because UML specification
allows for creating different objects with exactly the same properties.
In [12-23, 25-27], UML class is transformed to OWL with the use of TR1
axiom.
Section 7 example 1, 2 and 3

Table 3. Abstract classes and the defined rules

UML element

Abstract Class

Description of UML
element

Symbol of UML

element

Transformation rules

Verification rules

In UML, an abstract Class [2] cannot have any instances and only its subclasses
can be instantiated.
AbstractClass

Not possible. The UML abstract classes cannot be translated into OWL
because OWL does not offer any axiom for specifying that a class must not
contain any individuals.
VRI1: Check if the domain ontology contains any individual specified for the
:AbstractClass.

SELECT (COUNT (DISTINCT ?ind) as ?count)

WHERE {?ind rdf:type :AbstractClass}

72

Malgorzata Sadowska, Zbigniew Huzar

Comments to the rule

Related works

If the : AbstractClass does not contain any individual specified in the domain
ontology, the SPARQL query returns zero:

"0" " <http://www.w3.0org/2001/XMLSchema#integer>
OWL follows the Open World Assumption [30], therefore, even if the ontology
does not contain any instances for a specific class, it is unknown whether the
class has any instances. We cannot confirm that the UML abstract class is
correctly defined with respect to the OWL domain ontology, but we can detect if
it is not (VR checks if the class specified as abstract in the UML class diagram
is indeed abstract in the domain ontology).
In [17, 20, 29], UML abstract class is stated as not transformable into OWL. In
[17, 20], it is proposed that DisjointUnion is used as an axiom which covers
some semantics of UML abstract class. However, UML specification does not
require an abstract class to be a union of disjoint classes, and the
DisjointUnion axiom does not prohibit creating members of the abstract
superclass, therefore, it is insufficient.

Table 4. Attributes and the defined rules

UML element

Attributes

Description of UML
element

Symbol of UML
element

Transformation rules

Verification rules

The UML attributes [2] are Properties that are owned by a Classifier, e.g. Class.

Student
name : FullName
index : Sfring
year : Integer
faculty : Faculty

TR1: Specify declaration axiom(s) for attribute(s) as OWL data or object
properties respectively
Declaration(ObjectProperty(:name))
Declaration(DataProperty(:indez))
Declaration(DataProperty(:year))
Declaration(ObjectProperty(:faculty))
TR2: Specify data (or object) property domains for attribute(s)
ObjectPropertyDomain(:name :Student)
DataPropertyDomain(:index :Student)
DataPropertyDomain(:year :Student)
ObjectPropertyDomain(:faculty :Student)
TR3: Specify data (or object) property ranges for attribute(s) (for
transformation of UML Primitive Types refer to Table 18, for transformation of
UML structure Data Types to Table 19)
ObjectPropertyRange(:name :FullName)
DataPropertyRange(:indez xsd:string)
DataPropertyRange(:year xsd:integer)
ObjectPropertyRange(:faculty : Faculty)
VR1: Check if the domain ontology contains ObjectPropertyDomain (or
DataPropertyDomain) axiom specified for OPE (or DPE) where CE is
specified for a different than given UML Class (here :Student)
ObjectPropertyDomain(:name CE), where CE # :Student
DataPropertyDomain(:index CE), where CE # :Student
DataPropertyDomain(:year CE), where CE # :Student
ObjectPropertyDomain(:faculty CE), where CE # :Student
VR2: Check if the domain ontology contains ObjectPropertyRange (or
DataPropertyRange) axiom specified for OPE (or DPE) where CE is

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 73

specified for a different than given UML structure Data Type (or DR is specified
for a different than given UML Primitive Type)
ObjectPropertyRange(:faculty CE), where CE # : Faculty
DataPropertyRange(:index DR), where DR # xsd:string
DataPropertyRange(:year DR), where DR # xsd:integer
ObjectPropertyRange(:name CE), where CE # : FullName
Comments to the rules 1. Both UML attributes and associations are represented by one meta-model
element — Property. OWL also allows one to define properties. A transformation
of UML attribute to OWL data property or OWL object property bases on its
type. If the type of the attribute is Primitive Type it should be transformed into
OWL DataProperty. However, if the type of the attribute is a structured
Data Type,it should be transformed into an OWL ObjectProperty.
2. VR1 checks whether or not the object properties (or respectively data
properties) indicate that the UML attributes are specified for given UML Class.
3. VR2 checks whether or not the object properties (or respectively data
properties) indicate that the UML attributes of the specified UML Class have
specified given types, either PrimitiveTypes or structured DataTypes.

Related works TR1-TR3 are proposed in [15-17, 20]. In [12-14, 18, 19, 21-24], all UML
attributes are translated into data properties only.
Example Section 7 example 2 and 3

Table 5. Multiplicity of attributes and the defined rules

UML element Multiplicity of attributes

Description of UML In [2], multiplicity bounds of MultiplicityElement are specified in the form of

element <lower-bound> “.” <upper-bound>. The lower-bound is of a non-negative
Integer type and the upper-bound is of an UnlimitedNatural type. The strictly
compliant specification of UML in version 2.5 defines only a single value range
for MultiplicityFElement. However, in practical examples it is sometimes useful
not limit oneself to a single interval. Therefore, the below UML to OWL
mapping covers a wider case — a possibility of specifying more value ranges for
a multiplicity element. Nevertheless, if the reader would like to strictly follow the
current UML specification, the particular single lower..upper bound interval is
therein also comprised.
In comparison to UML, the OWL specification [30] defines three class
expressions ObjectMinCardinality, ObjectMaxCardinality and
ObjectExactCardinality for specifying the individuals that are connected by
an object property to at least, at most or exactly to a given number
(non-negative integer) of instances of the specified class expression. Analogically,
DataMinCardinality, DataMaxCardinality and DataExactCardinality
class expressions are used for data properties.

ScrumTeam
Symb01 of UML scrumhdaster | Employee[1]
element developer | Employee]3..9]

Transformation rules TRI1: If UML attribute is specified with the use of OWL ObjectProperty, its
multiplicity should be specified analogously to TR1 from Table 9 (multiplicity
of association ends). If UML attribute is specified with the use of OWL
DataProperty, its multiplicity should be specified with the use of axiom:
SubClassOf(: ClassName multiplicityExpression)

We define multiplicityFxpression as one of class expressions: A, B, C or D:

A. a DataExactCardinality class expression if UML MultiplicityElement has
lower-bound equal to its upper-bound, e.g. “1..1”, which is semantically
equivalent to “1”.

74

Malgorzata Sadowska, Zbigniew Huzar

Verification rules

Comments to the rules

B. a DataMinCardinality class expression if UML MultiplicityFElement has
lower-bound of Integer type and upper-bound of unlimited upper-bound,

e.g. “2.%7,

C. an ObjectIntersectionOf class expression consisting of
DataMinCardinality and DataMaxCardinality class expressions if UML
MultiplicityElement has lower-bound of Integer type and upper-bound of Integer
type, e.g. “4..6".

D. an ObjectUnionOf class expression consisting of a combination of
ObjectIntersectionOf class expressions (if needed) or
DataExactCardinality class expressions (if needed) or one
DataMinCardinality class expression (if the last range has unlimited
upper-bound), if UML MultiplicityElement has more value ranges specified, e.g.
“2,4..6, 8.9, 15..%".

The following is the result of application of TR1 to the above diagram:

SubClassOf(:ScrumTeam
ObjectExactCardinality(1 :scrumMaster : Employee))

SubClassOf(:ScrumTeam ObjectIntersectionOf(
ObjectMinCardinality(3 :developer : Employee)
ObjectMaxCardinality(9 :developer :Employee)))

VRI1: Regardless of whether or not the UML attribute is specified with the use
of OWL DataProperty or ObjectProperty, the verification rule is defined
with the use of the SPARQL query (only applicable for multiplicities with
maximal upper-bound not equal “*7).

SELECT ?violnd (count (?range) as 7n)

WHERE {?violInd :leaf range } GROUP BY ?vioInd

HAVING (?n > mazUpperBoundValue)

where mazUpperBoundValue is a maximal upper-bound value of the multiplicity
range. If the query returns a number greater than 0, it means that UML
multiplicity is in contradiction with the domain ontology (?vioInd lists
individuals that cause the violation).

The following is the result of definition of VR1 to the above diagram:
mazxUpperBound Value for scrumMaster: 1

SPARQL query for scrumMaster:

SELECT ?vioIlnd (count (?range) as 7n)

WHERE { ?violnd : scrumMaster range } GROUP BY ?violnd

HAVING (n > 1)

mazxUpperBound Value for developer: 9
SPARQL query for developer:

SELECT ?violnd (count (?range) as 7n)

WHERE { ?violnd : developer 7range } GROUP BY ?violnd

HAVING (Tn > 9)

VR2: Check if the domain ontology contains SubClassOf axiom, which
specifies CE with different multiplicity of attributes than it is derived from the
UML class diagram.

SubClassOf(:ScrumTeam CE)

1.1t should be noted that upper-bound of UML MultiplicityElement can be
specified as unlimited: “*”. In OWL, cardinality expressions serve to restrict the
number of individuals that are connected by an object property expression to
a given number of instances of a specified class expression [30]. Therefore, UML
unlimited upper-bound does not add any information to OWL ontology, hence
it is not transformed.

2. Regarding TR1: the rule relies on the SubClassOf(CE; CE,) axiom,
which restricts CE; to necessarily inherit all the characteristics of CEo, but not
the other way around. The difference of using EquivalentClasses(CE; CE;)

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 75

Related works

Example

axiom is that the relationship is implied to go in both directions (and the
reasoner would infer in both directions).

3. Regarding VR1: As motivated in [17], reasoners that base on Open World
Assumption can detect a violation of an upper limit of the cardinality
restrictions only. This is caused by the fact that in Open World Assumption it is
assumed that there might be other individuals beyond those that are already
presented in the ontology. The verification rules for the cardinality expressions
are defined with the use of SPARQL queries, which are aimed to verify whether
or not the domain ontology does have any individuals that are contradictory to
TR1 axiom. Therefore, the VR verifies the existence of individuals that are
connected to the selected object property a number of times that is greater than
the specified UML multiplicity.

4. The rule VR2 verifies if the ontology contains axioms which describe
multiplicity of Attributes different than the multiplicity specified in the UML
class diagram.

The related works present only partial solutions for multiplicity of attributes.
In [29], a solution for a single value interval is proposed. In [17], multiplicity
associated with class attributes is transformed to a single expression of exact,
maximum or minimum cardinality. In [24], multiplicity is transformed only into
maximum or minimum cardinality.

Section 7 example 2

5.2. Transformation of UML associations

Table 6. Binary Associations between two different Classes and the defined rules

UML element

Binary Association (between two different Classes)

Description of UML
element

Symbol of UML

element

Transformation rules

Following [2], a binary Association specifies a semantic relationship between two
memberEnds represented by Properties. Please note that in accordance with
specification [2], the association end names are not obligatory. In the method of
validation and the prototype tool we followed the same convention which is
adopted for all metamodel diagrams throughout the specification ([2, page 61]):
If an association end is unlabeled, the default name for that end is the name of
the class to which the end is attached, modified such that the first letter is

a lowercase letter. Due to the fact that our method of transformation requires
additionally unique names, either the modeller has to rename the names, or the
tool in such cases automatically adds subsequent numbers to the names.

For transformation of UML multiplicity of the association ends, refer to Table 9.

Player goalie team Taam

TR1: Specify declaration axiom(s) for object properties
Declaration(ObjectProperty(:team))
Declaration(ObjectProperty(:goalie))
TR2: Specify object property domains for association ends (note: if the
association contains an AssociationClass, the domains should be transformed in
accordance with TR1 from Table 10)
ObjectPropertyDomain(:team :Player)
ObjectPropertyDomain(:goalie : Team)
TR3: Specify object property ranges for association ends
ObjectPropertyRange(:team : Team)
ObjectPropertyRange(:goalie : Player)

76

Malgorzata Sadowska, Zbigniew Huzar

Verification rules

Comments to the rules

Limitations of the
mapping

Related works

Example

TRA4: Specify InverseObjectProperties axiom for the association
InverseObjectProperties(:team :goalie)
VR1: Check if AsymmetricObjectProperty axiom is specified for any of
UML association ends.
AsymmetricObjectProperty(:goalic)
AsymmetricObjectProperty(:team)
VR2: Check if the domain ontology contains ObjectPropertyDomain
specified for the same OPE but different CE than it is derived from the UML
class diagram.
ObjectPropertyDomain(:team CE), where CE # : Player
ObjectPropertyDomain(:goalie CE), where CE % : Team
VR3: Check if the domain ontology contains ObjectPropertyRange axiom
specified for the given OPE but different CE than it is derived from the UML
class diagram.
ObjectPropertyRange(:team CE), where CE # : Team
ObjectPropertyRange(:goalie CE), where CE # : Player
1. TRA is specified to state that both resulting object properties are part of one
UML Association.
2. Regarding VR1: A binary Association between two different Classes may not
be asymmetric. Please refer to Table 7 for explanation of asymmetric binary
Association from a Class to itself.
3. Regarding VR2: If the domain ontology contains ObjectPropertyDomain
specified for the same OPE but different CE than it is derived from the UML
class diagram, the Association is defined in the ontology but between different
Classes.
4. Regarding VR3: If the domain ontology contains ObjectPropertyRange
axiom specified for the given OPE but different CE than it is derived from the
UML class diagram, the Association is defined in the ontology but between
different Classes.
1. UML Association has two important aspects. The first is related to its
existence and it can be transformed to OWL. It should be noted that UML
introduces an additional notation related to communication between objects.
The second one concerns navigability of the association ends which is
untranslatable because OWL does not offer any equivalent concept.
2. Both UML aggregation and composition can be only transformed to OWL as
regular Associations. This approach loses the specific semantics related to the
composition or aggregation, which is untranslatable to OWL.
In [14-22, 25, 27], TR1-TR3 rules for the transformation of UML binary
association to object property domain and range are proposed. In [15, 20, 26],
TRA4 rule is additionally proposed.
In [17, 20], a unidirectional association is transformed into one object property
and a bi-directional association into two object properties (one for each
direction). This interpretation does not seem to be sufficient because if an
association end is not navigable in UML 2.5, access from the other end may be
possible, but it might not be efficient ([2, page 198]).
Section 7 example 1 and 3

Table 7. Binary Association from the Class to itself and the defined rules

UML element
Description of UML
element

Binary Association from a Class to itself
A binary Association [2] contains two memberEnds represented by Properties.
For transformation of multiplicity of the association ends, refer to Table 9.

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 77

Symbol of UML

element

Transformation rules

Verification rules

Comments to the rules

Limitations of the

mapping
Related works

Example

isDividedinto | 0_*
ProductCategory | 0.1
isPartOf

TR1-TR4: The same as TR1-TR4 from Table 6. TR5: Specify
AsymmetricObjectProperty axiom for each UML association end
AsymmetricObjectProperty(:isPartOf)
AsymmetricObjectProperty(:isDividedInto)
VRI1 is the same as VR2 from Table 6.
VR2 is the same as VR3 from 6.
1. In TR2 domain and range of binary association is the same UML class. VR4
checks if the domain ontology does not specify a different domain or range for
the Association.
2. In TR5 object property OPE is defined as asymmetric. In OWL, if an
individual x is connected by OPE to an individually, then y cannot be connected
by OPE to x.
The same as presented in Table 6.

For TR1-TRA4 related works are analogous as in Table 6, while TR5 is our
new proposition. In [15], the UML binary association from the Class to itself is
converted to OWL with the use of two ReflexiveObjectProperty axioms. We
do not share this approach because a specific association may be reflexive but in
the general case it is not true. The ReflexiveObjectProperty axiom states
that each individual is connected by OPE to itself. In consequence, it would
mean that every object of the class should be connected to itself. The UML
binary Association has a different meaning where the association ends have
different roles.

Section 7 example 2

Table 8. N-ary associations and the defined rules

UML element
Description of UML
element

Symbol of UML

element

Transformation rules

N-ary Association

UML n-ary Association [2] specifies the relationship between three or more
memberEnds represented by Properties. For transformation of UML multiplicity
of the association ends refer to Table 9.

Course

Student Lecturer

Not possible to directly represent UML n-ary associations in OWL 2. The
following is a partial transformation based on the pattern presented in [32]. The
pattern requires creating a new class and N new properties to represent the n-ary
association. The figure below shows the corresponding classes and properties.

Schedule

stude coulrse turer

Student Course Lecturer

78

Malgorzata Sadowska, Zbigniew Huzar

Verification rules
Limitations of the

mapping

Related works

TR1: Specify declaration axiom for the new class which represent the n-ary
association (declaration axioms for other classes are added following Table 2)
Declaration(Class(:Schedule))
TR2: Specify declaration axiom(s) for object properties
Declaration(ObjectProperty(:student))
Declaration(ObjectProperty(:course))
Declaration(ObjectProperty(:lecturer))
TR3: Specify object property domains for association ends
ObjectPropertyDomain(:student :Student)
ObjectPropertyDomain(:course :Course)
ObjectPropertyDomain(:lecturer : Lecturer)
TRA4: Specify object property ranges for association ends
ObjectPropertyRange(:student :Schedule)
ObjectPropertyRange(:course :Schedule)
ObjectPropertyRange(:lecturer :Schedule)
TR5: Specify SubClassOf(CE;ObjectSomeValuesFrom(OPE CE;))
axioms, where CE; is a newly added class, OPE are properties representing the
UML Association and CE5 are corresponding UML Classes
SubClassOf(:Schedule ObjectSomeValuesFrom(:student :Student))
SubClassOf(:Schedule ObjectSomeValuesFrom(:course : Course))
SubClassOf(:Schedule ObjectSomeValuesFrom(:lecturer : Lecturer))
None
Properties in OWL 2 are only binary relations. Three solutions to represent an
n-ary relation in OWL are presented in W3C Working Group Note [32] in a form
of ontology patterns. Among the proposed solutions for n-ary association, we
selected one the most appropriate to UML and we supplemented it by adding
unlimited “*” multiplicity at every association end of the UML n-ary association.
The transformation rules (TR1, TR2, TR5) of a n-ary association base on the
pattern proposed in [32]. TR3, TR4 complement the rules, analogically as it is
in binary associations. In [15], a partial transformation for n-ary association is
proposed, but one rule should be modified because an object property expression
is used in the place of a class expression.

Table 9. Multiplicity of association ends and the defined rules

UML element
Description of UML

element

Symbol of UML
element

Transformation rules

Multiplicity of Association ends

Description of multiplicity is presented in Table 5 (multiplicity of attributes). If
no multiplicity of association end is defined, the UML specification implies

a multiplicity of 1.

Flower 1 2,4.8 Leaf

flower leaf

Wk

TR1: For each association end with the multiplicity different than specify
axiom:

SubClassOf(: ClassName multiplicityExpression)
We define multiplicityFExpression as one of class expressions: A, B, C or D:
A. an ObjectExactCardinality if UML MultiplicityElement has lower-bound
equal to its upper-bound, e.g. “1..1”, which is semantically equivalent to “1”.
B. an ObjectMinCardinality class expression if UML MultiplicityElement
has lower-bound of Integer type and upper-bound of unlimited upper-bound,
e.g. “2.%7,
C. an ObjectIntersectionOf consisting of ObjectMinCardinality and
ObjectMaxCardinality class expressions if UML MultiplicityElement has
lower-bound of Integer type and upper-bound of Integer type, e.g. “4..6”.

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 79

Verification rules

Comments to the rules

D. an ObjectUnionOf consisting of a combination of ObjectIntersectionOf
class expressions (if needed) OR ObjectExactCardinality class expressions
(if needed) OR one ObjectMinCardinality class expression (if the last range
has an unlimited upper-bound), if UML MultiplicityElement has more value
ranges specified, e.g. “2, 4..6, 8..9, 15..*”,

The following is a result of application of TR1 to the above diagram:
SubClassOf(: Leaf ObjectExactCardinality(1 :flower :Flower))
SubClassOf(: Flower ObjectUnionOf(

ObjectExactCardinality(2 :leaf :Leaf)
ObjectIntersectionOf(ObjectMinCardinality(4 :leaf : Leaf)
ObjectMaxCardinality(6 :leaf :Leaf))))
TR2: Specify FunctionalObjectProperty axiom if a multiplicity of the
association end equals 1.
FunctionalObjectProperty(:flower)

VR1: The rule is defined with the use of the SPARQL query (only applicable

for multiplicities with maximal upper-bound not equal “*7).
SELECT ?violnd (count (?range) as 7n)

WHERE { ?violnd :leaf 7range } GROUP BY ?violnd
HAVING (?n > mazUpperBoundValue)

where maxUpperBoundValue is a maximal upper-bound value of the multiplicity

range. If the query returns a number greater than 0, it means that UML

multiplicity is in contradiction with the domain ontology (?vioInd lists
individuals that cause the violation).

The following is a result of application of VR1 to the above diagram:

maxUpperBound Value for flower: 1

SPARQL query for flower:
SELECT ?vioIlnd (count (?range) as 7n)
WHERE { ?violnd :flower “range } GROUP BY ?violnd
HAVING (Tn > 1)

mazUpperBound Value for leaf: 6

SPARQL query for leaf:
SELECT ?vioIlnd (count (?range) as 7n)
WHERE { ?violnd :leaf 7range } GROUP BY ?violnd
HAVING (n > 6)

VR2: Check if the domain ontology contains SubClassOf axiom, which

specifies CE with different multiplicity of association ends than is derived from

the UML class diagram.
SubClassOf(:Leaf CE)
SubClassOf(: Flower CE)

1. The TR1, TR2 and VR1 rules are explained in Table 5.

2. Regarding TR2: The FunctionalObjectProperty axiom states that each

individual can have a maximum of one outgoing connection of the specified

object property expression.

3. The rule VR2 verifies whether or not the ontology contains axioms, which

describe multiplicity of association ends different than multiplicity specified in

the UML class diagram.

4. We have considered one additional validation rule for checking if the domain

ontology contains FunctionalObjectProperty axiom specified for the

association end which multiplicity is different from 1:
FunctionalObjectProperty/(:leaf)

However, after analyzing of this rule, it would never be triggered. This is caused

by the fact that the violation of cardinality is checked by TR1 rule. And

specifying FunctionalObjectProperty axiom in the ontology along with the
transformation axiom describing cardinality different than 1, makes the ontology
inconsistent.

80

Maltgorzata Sadowska, Zbigniew Huzar

Related works

Example

The related works present partial solutions for multiplicity of association ends.
In [14, 18, 19, 26], the multiplicity of an association end is mapped to
SubClassOf axiom containing a single ObjectMinCardinality or
ObjectMaxCardinality class expression. In [17], ObjectExactCardinality
expression is also considered and TR2 rule is additionally proposed. In

[12, 13, 15, 21, 22, 24], multiplicity is only suggested to be transformed into
OWL cardinality restrictions.

Section 7 example 1, 2 and 3

Table 10. Association class (the association is between two different classes) and the defined rules

UML element
Description of UML
element

Symbol of UML
element

Transformation rules

Verification rules

AssociationClass (the Association is between two different Classes)
AssociationClass [2] is both an Association and a Class, and preserves the
semantics of both. Table 11 presents AssociationClass in the case when
association is from a UML Class to itself.

Person g 1.* [Company
person | Company

Job
salary : Salary

The binary association between Person and Company UML classes should be
transformed to OWL in accordance with the transformations TR1, TR3—TR4
from Table 6. The object property ranges should be specified in accordance with
TR2 from Table 6. The transformation of object property domains between
Person and Company UML classes should be transformed with TR1 rule below.
Transformation of multiplicity of the association ends are specified in Table 9.
The attributes of the UML association class :Job should be specified in
accordance with the transformation rules presented in Table 4. If multiplicity of
attributes is specified, it should be transformed in accordance with the guidelines
from Table 5. TR1: Specify object property domains for Association ends
ObjectPropertyDomain(:person ObjectUnionOf(: Company :Job))
ObjectPropertyDomain(:company ObjectUnionOf(: Person :Job))
TR2: Specify declaration axiom for UML association class as OWL Class:
Declaration(Class(:Job))
TR3: Specify declaration axiom for object property of UML AssociationClass
Declaration(ObjectProperty(:job))
TRA4: Specify object property domain for UML AssociationClass
ObjectPropertyDomain(:job ObjectUnionOf(: Person :Company))
TRS5: Specify object property range for UML association class
ObjectPropertyRange(:job :Job)
VR1: Check if :Job class has the HasKey axiom defined in the domain
ontology.
HasKey(:Job (OPE; ...OPE,,) (DPE;...DPE,))
VR2: Check if the domain ontology contains ObjectPropertyDomain axiom
specified for a given OPE (from Association ends and AssociationClass) but
different CE than is derived from the UML class diagram.
ObjectPropertyDomain(:personCE),
where CE # ObjectUnionOf(: Company :Job),
ObjectPropertyDomain(:company CE),
where CE # ObjectUnionOf(: Person :Job)
ObjectPropertyDomain(:job CE),
where CE # ObjectUnionOf(: Person :Company)

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 81

Comments to the rules

Related works

Example

VR3: Check if the domain ontology contains ObjectPropertyRange axiom
specified for the same object property of UML association class but different CE
than it is derived from the UML class diagram.

ObjectPropertyRange(:job CE), where CE # :Job
1. The proposed transformation of UML association class covers both the
semantics of the UML class (TR1-TR2, plus the transformation of attributes
possibly with multiplicity), as well as UML Association (TR3—TRS5, plus the
transformation of multiplicity of Association ends).
2. Regarding TR1 and TR3: The domain of the specified property is restricted
to those individuals that belong to the union of two classes.
3. Explanation of VR1 is analogous to VR1 from Table 2.
4. VR2 checks if the UML Association and AssociationClass is specified
correctly with respect to the domain ontology. VR3 checks if the domain
ontology does not specify a different range for the AssociationClass.
TR1, TR3—-TRS5 transformation rules of the UML association class to OWL
are original propositions and the proposed transformations to OWL cover full
semantics of the UML AssociationClass.
The literature [14, 15, 25] present only partial solutions for transforming UML
association classes. In [14], it is only suggested that UML AssociationClass be
transformed with the use of the named class (here: Job) and two functional
properties that demonstrate associations (here: Job—Person and Job—Company).
In [15, 25] some rules are with an unclear notation, more precisely
AssociationClass is transformed to OWL with the use of TR2 rule and a set of
mappings which base on a specific naming convention.
Section 7 example 3

Table 11. Association class (the Association is from a UML Class to itself) and the defined rules

UML element
Description of UML
element

Symbol of UML

element

Transformation rules

Verification rules

AssociationClass (the Association is from a UML Class to itself)
AssociationClass [2] is both an Association and a Class, and preserves the
semantics of both. Table 10 presents AssociationClass in the case when
association is between two different classes.

Employment

Job 0.

worker

All comments presented in Table 10 in TR section are applicable also for
AssociationClass where association is from a UML Class to itself. Additionally,
TR5 from Table 7 has to be specified.
Transformation rules TR1, TR2, TR3 and TR5 are the same as TR1, TR2,
TR3 and TRS5 from Table 10. Except for TR4, which has form:
TRA4: Specify object property domain for UML AssociationClass
ObjectPropertyDomain(:employment :Job)
VR1 and VR3: The same as VR1 and VR3 from Table 10.
VR2: Check if the domain ontology contains ObjectPropertyDomain axiom
specified for a given OPE (from Association ends and AssociationClass)
but different CE than is derived from the UML class diagram.
ObjectPropertyDomain(:boss CE),
where CE # ObjectUnionOf(:Job : Employment),
ObjectPropertyDomain(:worker CE),
where CE # ObjectUnionOf(:Job : Employment)
ObjectPropertyDomain(:employment CE), where CE # :Job

82

Maltgorzata Sadowska, Zbigniew Huzar

Comments to the rules
Related works

The same as presented in Table 10.
The same as presented in Table 10.

5.3. Transformation of UML generalization relationship

Table 12. Generalization between classes and the defined rules

UML element
Description of UML
element

Symbol of UML

element

Transformation rules

Verification rules

Related works

Example

Generalization between Classes

Generalization [2] defines specialization relationship between Classifiers. In case
of UML classes it relates a more specific Class to a more general Class.

Employee Manager

TR1: Specify SubClassOf(CE; CE;) axiom for the generalization between
UML classes, where CE; represents a more specific and CE5 a more general
UML Class.
SubClassOf(: Manager : Employee)
VR1: Check if the domain ontology contains SubClassOf(CE; CE;) axiom
specified for classes, which take part in the generalization relationship, where
CE; represents a more specific and CEs a more general UML Class.
SubClassOf(: Employee : Manager)
In [15, 17-19, 21-23, 25-27, 29] TR1 is specified. In [12, 13], generalizations are
only suggested to be transformed to OWL with the use of SubClassOf axiom.
Section 7 example 1 and 2.

Table 13. Generalization between associations and the defined rules

UML element
Description of UML

element

Symbol of UML

element

Transformation rules

Verification rules

Related works

Example

Generalization between Associations

Generalization [2] defines specialization relationship between Classifiers. In case
of the UML associations it relates a more specific Association to more general
Association.

Company |works employee Person
o.r iF
0.* |manages boss | 1

TR1: Specify two SubObjectPropertyOf(OPE; OPE;) axioms for the
generalization between UML Association, where OPE; represents a more specific
and OPE, a more general association end connected to the same UML Class.
SubObjectPropertyOf(:manages :works)
SubObjectPropertyOf(:boss :employee)
VR1: Check if the domain ontology contains SubObjectProperty Of(OPE,
OPE;) axiom specified for associations, which take part in the generalization
relationship, where OPE; represents a more specific and OPE; a more general
UML association end connected to the same UML Class.
SubObjectPropertyOf(:works :manages)
SubObjectProperty Of(:employee :boss)
In [15, 17, 18, 26, 27, 29], TR1 rule is proposed additionally with two
InverseObjectProperties axioms (one for each association). This table does
not add a transformation rule for InverseObjectPropertie axioms because
the axioms were already added while transforming binary associations (see
Tables 6, 7.
Section 7 example 1

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 83

Table 14. GeneralizationSet with {incomplete, disjoint} constraints and the defined rules

UML element
Description of UML
element

Symbol of UML
element

Transformation rules

Verification rules

Comments to the rules

Related works

GeneralizationSet with {incomplete, disjoint} constraints

UML GeneralizationSet [2] groups generalizations; incomplete and disjoint
constraints indicate that the set is not complete and its specific Classes have no
common instances.

Pat
{incomplete, disjoint}
Dog Cat

TR1: Specify DisjointClasses axiom for every pair of more specific Classes in
the Generalization.

DisjointClasses(:Dog : Cat)
VR1: Check if the domain ontology contains any of SubClassOf(CE; CE;)
or SubClassOf(CE, CE;) axioms specified for any pair of more specific
Classes in the Generalization.

SubClassOf(:Dog : Cat)

SubClassOf(: Cat :Dog)
1. TR and VR for Generalization between UML Classes are specified in
Table 12.
2. Regarding TR1: the DisjointClasses(CE; CE;) axiom states that no
individual can be at the same time an instance of both CE; and CE, for CE; #
CEs.
In [15, 17, 29], TR1 rule is proposed.

Table 15. GeneralizationSet with {complete, disjoint} constraints and the defined rules

UML element
Description of UML
element

Symbol of UML
element

Transformation rules

Verification rules

GeneralizationSet with {complete, disjoint} constraints

UML GeneralizationSet [2] is used to group generalizations; complete and
disjoint constraints indicate that the generalization set is complete and its
specific Classes have no common instances.

Person
{complete, disjoint)
Man Woman

TR1: Specify DisjointUnion axiom for UML Classes within the
GeneralizationSet.

DisjointUnion(: Person :Man : Woman)
VR1: Check if the domain ontology contains SubClassOf(CE; CE;) or
SubClassOf(CE; CE;) axioms specified for any pair of more specific Classes
in the Generalization.

SubClassOf(:Man : Woman)

SubClassOf(: Woman :Man)
VR2: Check if the domain ontology contains DisjointUnion(C CE;.. CEy)
axiom specified for the given more general UML Class (here : Person) and at
least one more specific UML Class different than those specified on the UML
class diagram.

84

Maltgorzata Sadowska, Zbigniew Huzar

Comments to the rules

Related works
Example

DisjointUnion(: Person CE;.. CEy)
1.TR and VR for Generalization between UML Classes are specified in
Table 12.
2. VR2 checks if the GeneralizationSet with {complete, disjoint} constraints is
defined correctly with respect to domain ontology.
In [15, 17, 29], TR1 is proposed.
Section 7 example 2

Table 16. GeneralizationSet with {incomplete, overlapping} constraints and the defined rules

UML element
Description of UML
element

Symbol of UML
element

Transformation rules
Verification rules

Comments to the rules

Related works

GeneralizationSet with {incomplete, overlapping} constraints

UML GeneralizationSet [2] is used to group generalizations; incomplete and
overlapping constraints indicate that the generalization set is not complete and
its specific Classes do share common instances. If no constraints of
GeneralizationSet are specified, {incomplete, overlapping} are assigned as default
values ([2, p. 119]).

Movie

[inc% plete, overdapping}

ActionMovie HorrorMovie

None

VR1: Check if the domain ontology contains DisjointClasses(CE; CE;)

axiom specified for any pair of more specific Classes in the Generalization.
DisjointClasses(: ActionMovie : HorrorMouvie)

1. TR and VR for Generalization between UML Classes are specified in

Table 12.

2. OWL follows Open World Assumption and by default incomplete knowledge

is assumed, hence the UML incomplete and overlapping constraints of

GeneralizationSet do not add any new knowledge to the ontology, so no TR are

specified.

3. UML overlapping constraint states that specific UML Classes in the

Generalization do share common instances. Therefore, the DisjointClasses

axiom is a verification rule VR1 for the constraint (the axiom assures that no

individual can be at the same time an instance of both classes).

None

Table 17. GeneralizationSet with {complete, overlapping} constraints and the defined rules

UML element
Description of UML
element

GeneralizationSet with {complete, overlapping} constraints

UML GeneralizationSet [2] is used to group generalizations; complete and
overlapping constraints indicate that the generalization set is complete and its
specific Classes do share common instances.

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 85

Symbol of UML

element

Transformation rules

Verification rules

Comments to the rules

Related works

User
[GC)EDIDIC. overlapping}
Root RegularUser

TR1: Specify EquivalentClasses axiom for UML Classes within the
GeneralizationSet.
EquivalentClasses(: User ObjectUnionOf(: Root : RegularUser))
VR1: Check if the domain ontology contains DisjointClasses(CE; CE;)
axiom specified for any pair of more specific Classes in the Generalization.
DisjointClasses(:Root : RegularUser)
VR2: Check if the domain ontology contains EquivalentClasses axiom
specified for the given more general UML Class (here : User) and
ObjectUnionOf containing at least one UML Class different than specified on
the UML class diagram for the more specific classes.
EquivalentClasses(: User ObjectUnionOf(CE;..CEy)), where
ObjectUnionOf(CE;..CEy) # ObjectUnionOf(: Root : RegularUser)
1. TR and VR for Generalization between UML Classes are specified in
Table 12.
2. Explanation for VR1 is presented in Table 16.
3. VR2 checks if the GeneralizationSet with {complete, overlapping} constraint
is compliant with the domain ontology.
In [15], TR1 rule is defined with additional DisjointClasses(:Dog :Cat)
axiom. However, the DisjointClasses axiom should not be specified for the
UML Classes which may share common instances.

5.4. Transformation of UML data types

Table 18. Primitive types and the defined rules

UML element
Description of UML
element

Symbol of UML

element

Transformation rules

Primitive Type

The UML Primitive Type [2] defines a predefined Data Type without any

substructure. The UML specification [2] predefines five primitive types: String,

Integer, Boolean, UnlimitedNatural and Real.

<<primitives:>
Integar

It is impossible to define unambiguously the transformation of UML String and
UML Real type, therefore, the decision on the final transformation is left to the
modeller. The proposed transformations for the two types base on their
similarity in UML 2.5 and OWL 2 languages.

The transformation between UML predefined primitive types and OWL 2
datatypes:

TR1: UML String has only a similar OWL 2 type: xsd:string

String types in the sense of UML and OWL are countable sets. It is possible to
define an infinite number of equivalence functions, which is left to the user,
wherein, the UML is imprecise as to what the accepted characters are.

TR2: UML Integer has an equivalent OWL 2 type: xsd:integer

TR3: UML Boolean has an equivalent OWL 2 type: xsd:boolean

TR4: UML Real has two similar OWL 2 types: xsd:float and xsd:double
Both UML and OWL 2 languages describe types that are subsets of the set of

86

Malgorzata Sadowska, Zbigniew Huzar

Verification rules
Comments to the rules

Related works

Example

real numbers. The subsets are countable. If one accepts a 32 or 64-bit precision
of UML Real type, they will obtain an appropriate compatibility with OWL 2
xsd:float or xsd:double types.
TRS5: UML UnlimitedNatural can be explicitly defined in OWL 2 as:
DatatypeDefinition(: Unlimited Natural
DataUnionOf(xsd:nonNegativelnteger
DataOneOf(""" xsd:string)))
None
The UML specification [2] on page 717 defines the semantics of five predefined
Primitive Types. The specification of OWL 2 [30] also offers predefined datatypes
(many more than UML).
TR1: An instance of UML String [2] defines a sequence of characters. Character
sets may include non-Roman alphabets. On the other hand, OWL 2 supports
xsd:string defined in XML Schema [33]. The value space of xsd:string [33] is
a set of finite-length sequences of zero or more characters that match the Char
production from XML, where Char is any Unicode character, excluding the
surrogate blocks, FFFE, and FFFF. The cardinality of xsd:string is defined as
countably infinite. Due to the fact that the ranges of characters differ, UML
String and OWL 2 xsd:string are only similar datatypes.
TR2: An instance of UML Integer [2] is a value in the infinite set of integers
(...,—2,-1,0,1,2,...). OWL 2 supports xsd:integer defined in XML Schema
[33]. The value space of xsd:integer is an infinite set {...,—2,—-1,0,1,2,...}.
The cardinality is defined as countably infinite. The UML Integer and OWL 2
xsd:integer types can be seen as equivalent.
TR3: An instance of UML Boolean [2] is one of the predefined values: true and
false. OWL 2 supports xsd:boolean defined in XML Schema [33], which
represents the values of two-valued logic :{true, false}. The lexical space of
xsd:boolean is a set of four literals: ‘true’, ‘false’, ‘1’ and ‘0’ but the lexical
mapping for xsd:boolean returns true for ‘true’ or ‘1’, and false for ‘false’ or ‘0’.
Therefore the UML Boolean and xsd:boolean types can be seen as equivalent.
TRA4: An instance of UML Real [2] is a value in the infinite set of real numbers.
Typically [2] an implementation will internally represent Real numbers using
a floating point standard such as ISO/IEC/IEEE 60559:2011, whose content is
identical [2] to the predecessor IEEE 754 standard. On the other hand, OWL 2
supports xsd:float and xsd:double, which are defined in XML Schema [33].
The xsd:float [33] is patterned after the IEEE single-precision 32-bit floating
point datatype IEEE 754-2008 and the xsd:double [33] after the IEEE
double-precision 64-bit floating point datatype IEEE 754-2008. The value space
contains the non-zero numbers m x 2¢, where m is an integer whose absolute
value is less than 2°% for xsd:double (or less than 224 for xsd:float), and e is
an integer between —1074 and 971 for xsd:double (or between —149 and 104
for xsd:float), inclusive. Due to the fact that the value spaces differ, UML Real
and OWL 2 xsd:double (or xsd:float) are only similar datatypes.
TRS5: An instance of UML UnlimitedNatural [2] is a value in the infinite set of
natural numbers (0, 1, 2...) plus unlimited. The value of unlimited is shown
using an asterisk (‘“*’). UnlimitedNatural values are typically used [2] to denote
the upper-bound of a range, such as a multiplicity; unlimited is used whenever
the range is specified as having no upper-bound. The UML UnlimitedNatural can
be defined in OWL and added to the ontology as a new datatype (TR5).
The related works are not precise with respect to the transformation of primitive
types. In [17, 27-29], some mappings of UML and OWL types are only
mentioned.
Section 7 example 2

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 87

Table 19. Structured data types and the defined rules

UML element
Description of UML
element

Symbol of UML
element

Transformation rules

Verification rules

Comments to the rules

Limitations of the
mapping

Related works

Structured Data Type
The UML structured DataType [2] has attributes and is used to define complex
data types.

==dataType>=
FullMame
firstName : String
second Name | String

TR1: Specify declaration axiom for UML data type as OWL class:
Declaration(Class(:FullName))
TR2: Specify declaration axiom(s) for attributes — as OWL data or object
properties respectively (see Table 4 for more information regarding attributes)
Declaration(DataProperty(:firstName))
Declaration(DataProperty(:secondName))
TR3: Specify data (or object) property domains for attributes
DataPropertyDomain(:firstName :FullName)
DataPropertyDomain(:secondName :FullName)
TRA: Specify data (or object) property ranges for attributes (OWL 2 datatypes
for UML primitive types are defined in Table 18)
DataPropertyRange(:firstName xsd:string)
DataPropertyRange(:secondName xsd:string)
TR5: Specify HasKey axiom for the UML data type expressed in OWL with
the use of a class uniquely identified by the data and/or object properties.
HasKey(:FullName () (:firstName :secondName))
VR1: Check if the domain ontology contains DataPropertyDomain axiom
specified for DPE where CE is different than given UML structured DataType
DataPropertyDomain(:firstName CE), where CE # : FullName
DataPropertyDomain(:secondName CE),
where CE # : FullName
VR2: Check if the domain ontology contains DataPropertyRange axiom
specified for DPE where CE is different than given UML Primitive Type
DataPropertyRange(:firstName DR), where DR # xsd:string
DataPropertyRange(:secondName DR),
where DR # xsd:string
1. UML DataType [2] is a kind of Classifier, whose instances are identified only
by their values. All instances of a UML DataType with the same value are
considered to be equal [2]. A similar meaning can be assured in OWL with the
use of HasKey axiom. The HasKey axiom [30] assures that each instance of
the class expression is uniquely identified by the object and/or data property
expressions.
2. VR1 checks whether the data properties indicate that the UML attributes
are correct for the specified UML structured DataType.
3. VR2 checks whether the data properties indicate that the UML attributes of
the specified UML structured DataType have correctly specified Primitive Types.
Due to the fact that we define the UML structure DataType as an OWL Class
and not as an OWL Datatype (see Section 6.3 for further explanation), the
presented transformation results in some consequences. A limitation is posed by
the fact that the instances of the UML DataType are identified only by their
value [2], while the TR1 rule opens a possibility
of explicitly defining the named instances for the Entity in OWL.
In [28, 29] TR1-TRS5 rules and in [15] TR2—TRS5 rules are proposed for the
transformation of UML structured DataType. In [17], it is only noted that UML
DataTypes can be defined in OWL with the use of DatatypeDefinition axiom

88

Maltgorzata Sadowska, Zbigniew Huzar

Example

but no example is provided. The related works specify exclusively the data
properties as attributes of the structured data types in TR2. We extend the
state-of-the-art TR2 transformation rule by the possibility of defining also
object properties, wherever needed (see Table 4).

Section 7 example 2

Table 20. Enumeration and the defined rules

UML element
Description of UML

element

Symbol of UML
element

Transformation rules

Verification rule

Limitations of the
mapping

Related works

Enumeration
UML Enumerations [2] are kinds of DataTypes, whose values correspond to one
of user-defined literals.

<<gnumeration=>
VisibilityKind

public

private

protected

package

TRI1: Specify declaration axiom for UML Enumeration as OWL Datatype:
Declaration(Datatype(: VisibilityKind))
TR2: Specify DatatypeDefinition axiom including the named Datatype
(here : VisibilityKind) with a data range in a form of a predefined enumeration of
literals (DataOneOf).
DatatypeDefinition(: VisibilityKind
DataOneOf(“public”” “private” * protected ”’ “package’))
VR1: Check if the list of user-defined literals in the Enumeration on the class
diagram is correct and complete with respect to the OWL datatype definition for
:VisibilityKind included in the domain ontology.
The SPARQL query:
SELECT ?literal { : VisibilityKind owl:equivalentClass ?dt.
?7dt a rdfs:Datatype ;
owl:oneOf/rdf:restx/rdf:first ?literal }
returns a list of literals of the enumeration from the domain ontology. The list of
literals should be compared with the list of user-defined literals on the class
diagram if the UML Enumeration includes a correct and complete list of literals.
Enumerations [2] in UML are specializations of a Classifier and therefore can
participate in generalization relationships. OWL has no construct allowing for
generalization of datatypes. See Section 6.3 for further explanation.
In [17, 20, 28, 29], UML Enumeration is transformed to OWL with the use of
TR1-TR2 rules.

5.5. Transformation of UML comments

Table 21. Comment and the defined rules

UML element
Description of UML
element

Comment to the Class

In accordance with [2], every kind of UML Element may own Comments which
add no semantics but may represent information useful to the reader. In OWL it
is possible to define the annotation axiom for OWL Class, Datatype,
ObjectProperty, DataProperty, AnnotationProperty and
NamedIndividual. The textual explanation added to UML Class is identified
as useful for conceptual modelling [7], therefore the Comments that are
connected to UML Classes are taken into consideration in the transformation.

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 89

Symbol of UML
element

Class

Class
- - - description

Transformation rules

TR1: Specify annotation axiom for UML Comment

AnnotationAssertion(rdfs:comment

: Class
Verification rule Not applicable

Comments to the rule

* Class description

" Mxsd:string)

As UML Comments add no semantics, they are not used in any method of

semantic validation [1]. In OWL the AnnotationAssertion [30] axiom does
not add any semantics either, and it only improves readability.

Related works

The transformation of UML Comments in the context of mapping to OWL has
not been found in literature.

6. Influence of UML-OWL differences
on transformations

Obviously, OWL 2 and UML 2.5 languages differ
from each other.

In general, notice that OWL ontologies are
based on the Open World Assumption while
UML class diagrams are based on Closed World
Assumption. We can compare a UML class dia-
gram to a given OWL ontology assuming that
this ontology is in a given state. Examining that
the UML class diagram conforms to the OWL on-
tology we transform the diagram into equivalent
OWL representation and check if this representa-
tion forms a subset of the ontology. So, the notion
of semantic equivalence relates only to the UML
class diagram and its OWL representation.

The further part of the section focuses exclu-
sively on two selected differences which influence
the form of transformations.

6.1. Instances

OWL 2 defines several kinds of axioms: declara-
tions, axioms about classes, axioms about objects
and data properties, datatype definitions, keys,
assertions (used to state that individuals are
instances of, e.g. class expressions) and axioms
about annotations. What can be observed is that
the information about classes and their instances
(in OWL called individuals) coexists within a sin-
gle ontology.

On the other hand, in UML two different
kinds of diagrams are used in order to present the
classes and objects. UML defines object diagrams
which represent instances of class diagrams at

a certain moment in time. The object diagrams
focus on presenting attributes of objects and
relationships between objects.

Despite the fact that information about the
objects is not present in UML class diagrams,
verification rules in the form of SPARQL queries
take advantage of the knowledge about individu-
als in the domain ontology. The rules are useful in
validation of class diagrams against the selected
domain ontologies as they can check, for exam-
ple, if an abstract class is indeed abstract (does
not have any direct instances in ontology) or if
multiplicity restrictions are specified correctly.

6.2. Disjointness in OWL 2 and UML

In OWL 2 an individual can be an instance of
several classes [34]. It is also possible to state
that no individual can be an instance of selected
classes, which is called class disjointness. The
information that some specific classes are dis-
joint is part of domain knowledge which serves
a purpose of reasoning.

OWL specification emphasises [34]: In prac-
tice, disjointness statements are often forgotten
or neglected. The arguable reason for this could
be that intuitively, classes are considered dis-
joint unless there is other evidence. By omitting
disjointness statements, many potentially useful
consequences can get lost.

What can be observed in typical existing
OWL ontologies, axioms of disjointness (Dis-
jointClasses, DisjointObjectProperties and
DisjointDataProperties) are stated for classes,
object properties or data properties only for the
most evident situations. If disjointness is not

90

Malgorzata Sadowska, Zbigniew Huzar

specified, the semantics of OWL states that the

ontology does not contain enough information

that disjointness takes place. For example, it is
possible that the information is actually true but
it has not been included in the ontology.

On the other hand, in a UML class diagram
every pair of UML classes (which are not within
one generalization set with an overlapping con-
straint) is disjoint, where disjointness is under-
stood in the way that the classes have no common
instances. This aspect of UML semantics could be
mapped to OWL with the use of an extensive set
of additional transformations. The transforma-
tions would not be intuitive from the perspective
of OWL and should add a lot of unnecessary
information which might never be useful due to
the fact that, e.g. one should consider every pair
of classes on the diagram and add additional
axioms for it.

For the purpose of completeness of our revi-
sion, below we present transformation rules also
for disjointness:

— Transformation rule for disjointness of UML
classes (TR): Specify DisjointClasses ax-
iom for every pair of UML Classes: CEq,
CEs where CE; # CEo and the pair is
not in the generalization relation or within
one generalization set with an overlap-
ping constraint. Comment: The TR rule
for classes within a generalization relation-
ship was originally proposed in [17, 18,
20]. We have refined the rule in order to
cover only the pairs of classes which are
not only in a direct generalization rela-
tion but also not within one Generaliza-
tionSet with an overlapping constraint. This
is caused by the fact that the Generaliza-
tionSet with the overlapping constraint (see
Tables 16 and 17) defines specific Classes,
which do share common instances. Please
note that UML GeneralizationSet with dis-
joint constraint adds DisjointClasses ax-
ioms — either directly or indirectly through
DisjointUnion axiom (see Tables 14 and
15).

— Transformation rule for disjointness of UML
attributes (TRp): Specify DisjointObject-

Properties axiom for every pair OPEq,
OPEs where OPE; # OPE; of object prop-
erties within the same UML Class (domain
of both OPE; and OPE5 is the same OWL
Class) and specify DisjointDataProper-
ties axiom for every pair DPE;, DPEs where
DPE; # DPE, of object properties within
the same UML Class (domain of both DPE;
and DPE;y is the same OWL Class).
Comment: The TRg rule is original proposi-
tion.

— Transformation rule for disjointness of UML

associations (TR¢g): Specify DisjointOb-
jectProperties axiom for every pair of asso-
ciation ends OPE; and OPEy where OPE; #
OPE, and OPE; is not generalized by OPE,
and OPEjy is not generalized by OPE; and
domain and range of OPE; and OPE, are
the same classes.
Comment: In [17, 20], it is suggested that
DisjointObjectProperties and Disjoint-
DataProperties axioms for all properties
that are not in a generalization relationship
should be specified. In a general case this
suggestion is not clear, but we have modified
the rule to be applicable for UML associations
which are not in generalization relationship.
Even though the TR, TRp and TR rules
are reasonable from the point of view of cov-
ering semantics of a class diagram to OWL,
they have not been implemented in a tool
for validation of UML class diagram [4] due
to their questionable usefulness from the per-
spective of pragmatics. This is caused by the
fact that including these rules would lead
to a large increase in the number of axioms
in the ontology, which would increase the
computational complexity.

6.3. Concepts of class and datatype
in UML and OWL

OWL 2 allows specifying declaration axioms for
datatypes:
Declaration(Datatype(:DatatypeName))
However, the current specification of OWL 2
[30] does not offer any constructs neither to spec-

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 91

ify the internal structure of the datatypes, nor
the possibility to define generalization relation-
ships between the datatypes. Both are available
in UML 2.5.

Please note that the OWL HasKey, Data-
PropertyDomain and ObjectPropertyDo-
main axioms can only be defined for the class
expressions (not for the data ranges). Therefore
the TR2-TRS5 rules in Table 19 can only be
specified if the UML structured DataType is de-
clared as an OWL Class. This transformation
has its consequences, which are presented in Ta-
ble 19.

If future extensions of the OWL language al-
low one to precisely define the internal structure
of datatypes, by analogy, as it is possible in UML,
the proposed transformation of UML structured
DataType presented in Table 19 should then be
modified. Additionally, if future extensions of the
OWL language allow one to define generalization
relationships between datatypes, the currently
valid limitation of the transformation of UML
Enumeration presented in Table 20 will no longer
be applicable.

7. Examples of UML-OWL
transformations

This section presents some examples of transfor-
mations of UML class diagrams to their equiv-

alent OWL representations. The UML class di-
agram examples are relatively small but cover
a number of different UML elements. For clarity
of reading, the examples include references to
tables from Section 5.

The order of transformations is arbitrary (the
resulting set of axioms will always be the same
despite the order) but we suggest to conduct the
transformations starting from Table 2 to Table 21.
In this way, all the classes with attributes will
be mapped to OWL first, then the associations
and generalization relationships and finally data
types and comments.

Each example includes two tables contain-
ing transformational and verificational part of
UML class diagram (e.g. in Example 1 there
are two tables: 22 and 23). Each verificational
part should be considered in the context of the
selected domain ontology. The Table 23 which
presents verificational part of the diagram from
Example 1 has been supplemented with addi-
tional comments of how each verificational ax-
iom or verificational query should be interpreted.
The comments and the ontological background
presented in Table 23 is also applicable to other
examples.

Example 1
A
B 5 7,10.12 c
b c

cR1 dR1
cR2 ZF‘ dr2

Figure 1. Example 1 of UML class diagram (see Tables 22, 23)

92 Malgorzata Sadowska, Zbigniew Huzar

Table 22. Transformational part of UML class diagram from Example 1

Set of transformation axioms

Transformation rules

Transformation of UML Classes

Declaration(Class(:A))
Declaration(Class(:B))
Declaration(Class(:C'))
Declaration(Class(:D))

Table 2 TR1

Transformation of UML binary Associations between two different Classes

Declaration(ObjectProperty(:b))
Declaration(ObjectProperty(:c))
Declaration(ObjectProperty(:))
Declaration(ObjectProperty(:dR1))
Declaration(ObjectProperty(:))
Declaration(ObjectProperty(:dR2))
ObjectPropertyDomain(:b : C’)
ObjectPropertyDomain(:c
ObjectPropertyDomain(:)
ObjectPropertyDomain(:dR1 :C')
ObjectPropertyDomain(:)
ObjectPropertyDomaln()
ObjectPropertyRange(:b
ObjectPropertyRange(:c
ObjectPropertyRange(cRI :C
ObjectPropertyRange(:
ObjectPropertyRange(:cR2 :C
ObjectPropertyRange(:dR2 :D
InverseObjectProperties(:b :¢)
InverseObjectProperties(:cR1 :dR1)
InverseObjectProperties(:cR2 :dR2)

Table 6 TR1

Table 6 TR2

Table 6 TR3

Table 6 TR4

Transformation of UML multiplicity of Association ends

SubClassOf(:C ObjectExactCardinality(5 :b :B))

SubClassOf(: B ObjectUnionOf(ObjectExactCardinality(7 :c :C')
ObjectIntersectionOf(ObjectMinCardinality(10 :c :C')
ObjectMaxCardinality(12 :¢:C'))))
SubClassOf(:C ObjectExactCardinality
SubClassOf(:D ObjectExactCardinality
SubClassOf(:C ObjectExactCardinality
SubClassOf(:D ObjectExactCardinality
FunctionalObjectProperty(:dR1)
FunctionalObjectProperty(:cR1)
FunctionalObjectProperty(:dR2)
FunctionalObjectProperty(:cR2)

1
1:cR1:C
1
1

A~ N~

Table 9 TR1

Table 9 TR2

Transformation of UML Generalization between Classes

SubClassOf(:B :A)

Table 12 TR1

Transformation of UML Generalization between Associations

SubObjectPropertyOf(:cR2 :cR1)
SubObjectPropertyOf(:dR2 :dR1)

Table 13 TR1

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies

93

Table 23. Verificational part of UML class diagram from Example 1

Verificational part of UML class diagram Verification rules

Transformation of UML Classes

If the domain ontology contains any HasKey axiom with any internal structure Table 2 VR1
(OPEy,..., DPE;...) defined for : A4, :B, :C or :D UML Class, the element should be
UML structured DataType not UML Class.

HasKey(:A (OPE;...OPE,,4) (DPE;...DPE,4))

HasKey(:B (OPE; ...OPE,,5) (DPE;...DPE,))

HasKey(:C (OPE; ...OPE,,c) (DPE;...DPE,¢))

HasKey(:D (OPE; ...OPE,,p) (DPE; ...DPE,p))

Transformation of UML binary Associations between two different Classes

If the domain ontology contains any of below defined AsymmetricObjectProperty Table 6 VR1
axioms, the defined UML Association is incorrect.
AsymmetricObjectProperty(:b)
AsymmetricObjectProperty(:c)
AsymmetricObjectProperty(:cR1)
AsymmetricObjectProperty(:dR1)
AsymmetricObjectProperty(:cR2)
AsymmetricObjectProperty(:dR2)
If the domain ontology contains any of the below-defined ObjectPropertyDomain Table 6 VR2
axioms where class expression is different than the given UML Class, the Association
is defined in the ontology but between different Classes, than it is specified on the
diagram.
ObjectPropertyDomain(:b CE), where CE#:C
ObjectPropertyDomain(:¢c CE), where CE #:B
ObjectPropertyDomain(:cR! CE), where CE #:D
ObjectPropertyDomain(:dR! CE), where CE #:C
ObjectPropertyDomain(:cR2 CE), where CE #:D
ObjectPropertyDomain(:dR2 CE), where CE #:C
If the domain ontology contains any of below-defined ObjectPropertyRange axioms Table 6 VR3
where the class expression is different than the given UML Class, the Association is
defined in the ontology but between different Classes.
ObjectPropertyRange(:b CE), where CE #:B
ObjectPropertyRange(:c CE), where CE#:C
ObjectPropertyRange(:cR! CE), where CE+#:C
ObjectPropertyRange(:dR1 CE), where CE#:D
ObjectPropertyRange(:cR2 CE), where CE#:C
ObjectPropertyRange(:dR2 CE), where CE#:D

Transformation of UML multiplicity of Association ends

If the verification query returns a number greater than 0, it means that UML multiplicity Table 9 VR1
is in contradiction with the domain ontology (?violnd lists individuals that cause the
violation).

SELECT ?violnd (count (?range) as 7n)

WHERE { ?violnd :b ?range } GROUP BY ?vioInd

HAVING (n>5)

SELECT ?violnd (count (?range) as 7n)

WHERE { ?vioInd :c ?range } GROUP BY ?violnd

HAVING (7n > 12)

SELECT ?violnd (count (?range) as ’n)

WHERE { ?violnd :dR1 ?range } GROUP BY ?vioInd

HAVING (> 1)

94 Maltgorzata Sadowska, Zbigniew Huzar

SELECT ?vioInd (count (?range) as n)
WHERE { ?violnd :cRI "range } GROUP BY ?violnd
HAVING (Tn>1)
SELECT ?violnd (count (?range) as ?n)
WHERE { ?violnd :dR2 ‘range } GROUP BY ?violnd
HAVING (n>1)
SELECT ?vioIlnd (count (“range) as 7n)
WHERE { ?violnd :cR2 ’range } GROUP BY ?violnd
HAVING (70> 1)
If the domain ontology contains FunctionalObjectProperty axiom specified for the Table 9 VR2
association end which multiplicity is different from 1, the multiplicity is incorrect.
FunctionalObjectProperty(:b)
FunctionalObjectProperty(:c)
If the domain ontology contains SubClassOf axiom, which specifies class expression Table 9 VR3
with different multiplicity of the association ends than is derived from the UML class
diagram, the multiplicity is incorrect.
SubClassOf(:C CE), where CE # ObjectExactCardinality(5 :b :B)
SubClassOf(:B CE), where
CE # ObjectUnionOf(ObjectExactCardinality(7 :c :C')
ObjectIntersectionOf(ObjectMinCardinality(10 :c :C')
ObjectMaxCardinality(12 :¢ :C')))
SubClassOf(:C CE), where CE # ObjectExactCardinality(1 :
SubClassOf(:D CE), where CE # ObjectExactCardinality(1 :cRI :C
SubClassOf(:C' CE), where CE # ObjectExactCardinality(1 :
SubClassOf(:D CE), where CE # ObjectExactCardinality(1 :

Transformation of UML Generalization between Classes

If the domain ontology contains the defined SubClassOf axiom specified for Classes, Table 12 VR1
which take part in the generalization relationship, the generalization relationship should

be inverted on the diagram.
SubClassOf(:4 :B)

Transformation of UML Generalization between Associations

If the domain ontology contains the defined SubObjectPropertyOf axioms specified Table 13 VR1
for Association, which take part in the generalization relationship, the generalization
relationship should be inverted on the diagram.

SubObjectPropertyOf(:cR1 :cR2)

SubObjectPropertyOf(:dR1 :dR2)

Example 2
<<dataType>=
aR2 T
A t1: String
al: Integer 12 : Boolean
a2:T[2] aRri
{complete,
disjoint} Ja
B c D

Figure 2. Example 2 of UML class diagram (see Tables 24, 25)

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies

95

Table 24. Transformational part of UML class diagram from Example 2

Set of transformation axioms

Transformation rules

Transformation of UML Classes

Declaration(Class(:A4))
Declaration(Class(:B))
Declaration(Class(:C'))
Declaration(Class(:D))

Table 2 TR1

Transformation of UML attributes

Declaration(DataProperty(:al))
Declaration(ObjectProperty(:a2))
DataPropertyDomain(:af :4)
ObjectPropertyDomain(:a2 :A)
DataPropertyRange(:a! xsd:integer)
ObjectPropertyRange(:a2:T)

Table 4 TR1

Table 4 TR2

Table 4 TR3
Table 18 TR2

Transformation of UML multiplicity of attributes

SubClassOf(:A ObjectExactCardinality(2 :a2:T)) Table 5 TR1
Transformation of UML binary Association from the Class to itself

Declaration(ObjectProperty(:aR1))

Declaration(ObjectProperty(:aR2)) Table 7 TR1
ObjectPropertyDomain(:aR1 :A4)

ObjectPropertyDomain(:aR2:A) Table 7 TR2
ObjectPropertyRange(:aR1 :A)

ObjectPropertyRange(:aR2 :A4) Table 7 TR3
InverseObjectProperties(:aR1 :aR2) Table 7 TR4
AsymmetricObjectProperty(:aR1) Table 7 TR5
AsymmetricObjectProperty(:aR2)

Transformation of UML multiplicity of Association ends

SubClassOf(:A ObjectExactCardinality(1 :aR1:A)) Table 9 TR1
SubClassOf(:A ObjectExactCardinality(1 :aR2:A4))

FunctionalObjectProperty(:aR1) Table 9 TR2

FunctionalObjectProperty(:aR2)

Transformation of UML Generalization between Classes

SubClassOf(:B :A)
SubClassOf(:C :A)
SubClassOf(:D :A)

Table 12 TR1

Transformation of UML GeneralizationSet with {complete, disjoint} constraints

DisjointUnion(:A :B:C :D)

Table 15 TR1

Transformation of UML structured DataType

Declaration(Class(: 7))
Declaration(DataProperty(:t1))
Declaration(DataProperty(:t2))
DataPropertyDomain(:t1 :T)
DataPropertyDomain(:t2:7T)
DataPropertyRange(:t1 xsd:string)
DataPropertyRange(:t2 xsd:boolean)

HasKey(:T () (:t1 :t2))

Table 19 TR1
Table 19 TR2

Table 19 TR3

Table 19 TR4
Table 18 TR1
Table 18 TR3
Table 19 TR5

96

Malgorzata Sadowska, Zbigniew Huzar

Table 25. Verificational part of UML class diagram from Example 2

Verificational part of UML class diagram

Verification rules

Transformation of UML Classes

HasKey(:A (OPE; ...OPE,,4) (DPE; ...DPE, 4)) Table 2 VR1
HasKey(:B (OPE; ...OPE,,5) (DPE; ... DPE,))

HasKey(:C (OPE; ...OPE,.c) (DPE; .. DPE,¢))

HasKey(:D (OPE; ...OPE,,p) (DPE;...DPE,p))

Transformation of UML attributes

DataPropertyDomain(:al CE), where CE # A Table 4 VR1
ObjectPropertyDomain(:a2 CE), where CE # A

DataPropertyRange(:al DR), where Table 4 VR2

DR # xsd:integer ObjectPropertyRange(:a2 CE), where
CE#:T

Table 18 TR2

Transformation of UML multiplicity of attributes

SELECT ?vioIlnd (count (“range) as 7n)
WHERE { ?violnd :a2 ?range } GROUP BY ?vioInd
HAVING (7n > 2)
SubClassOf(:A CE), where
CE # ObjectExactCardinality(2 :a2:T)

Table 5 VR1

Table 5 VR2

Transformation of UML binary Association from the Class to itself

ObjectPropertyDomain(:aR! CE), where CE#:4
ObjectPropertyDomain(:aR2 CE), where CE#:A4
ObjectPropertyRange(:aR! CE), where CE #:4
ObjectPropertyRange(:aR2 CE), where CE#:4

Table 7 VR1

Table 7 VR2

Transformation of UML multiplicity of Association ends

SELECT ?vioIlnd (count (“range) as 7n)

WHERE { ?violnd :aR1 ?range } GROUP BY ?vioInd
HAVING (7 > 1)

SELECT ?vioInd (count (?range) as 7n)

WHERE { ?violnd :aR2 ’range } GROUP BY ?vioInd
HAVING ("n > 1)

SubClassOf(:A CE), where CE # ObjectExactCardinality(1 :aR1 :A4)
SubClassOf(:A CE), where CE # ObjectExactCardinality(1 :aR2:A4)

Table 9 VR1

Table 9 VR3

Transformation of UML Generalization between Classes

SubClassOf(:4 :B)
SubClassOf(:A :C')
SubClassOf(:A :D)

Table 12 VR1

Transformation of UML GeneralizationSet with {complete, disjoint} constraints

SubClassOf(:B :C')
SubClassOf(:C :B)
SubClassOf(:C':D)
SubClassOf(:D :C')
SubClassOf(:B :D)
SubClassOf(:D :B)

Table 15 VR1

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies

Transformation of UML structured DataType

Check if the : T class is specified in the domain ontology as a subclass
(SubClassOf axiom) of any class expression, which does not have HasKey

axiom defined.

Table 19 VR1

Example 3

Figure 3. Example 3 of UML class diagram (see Tables 26 and 27)

Table 26. Transformational part of UML class diagram from Example 3

Set of transformation axioms

Transformation rules

Transformation of UML Classes

Declaration(Class(:4)) Table 2 TR1
Declaration(Class(:B))

Transformation of UML attributes

Declaration(ObjectProperty(:d)) Table 4 TR1
ObjectPropertyDomain(:d :C) Table 4 TR2
ObjectPropertyRange(:d :D) Table 4 TR3
Transformation of UML binary Associations between two different Classes

Declaration(ObjectProperty(:a)) Table 6 TR1
Declaration(ObjectProperty(:b))

ObjectPropertyDomain(:a ObjectUnionOf(:B :C')) Table 6 TR2
ObjectPropertyDomain(:b ObjectUnionOf(:4 :C')) Table 10 TR1
ObjectPropertyRange(:a :A) Table 6 TR3
ObjectPropertyRange(:b :B)

InverseObjectProperties(:a :b) Table 6 TR4
Transformation of UML multiplicity of Association ends

SubClassOf(:A ObjectMinCardinality(2 :b :B)) Table 9 TR1

Transformation of UML AssociationClass

Declaration(Class(:C'))

Declaration(ObjectProperty(:c))
ObjectPropertyDomain(:c ObjectUnionOf(:4 :B))
ObjectPropertyRange(:c :C')

Table 10 TR2
Table 10 TR3
Table 10 TR4
Table 10 TR5

98

Malgorzata Sadowska, Zbigniew Huzar

Table 27. Verificational part of UML class diagram from Example 3

Verificational part of UML class diagram

Verification rules

Transformation of UML Classes

HasKey(:4 (OPE,...OPE,,) (DPE,...DPE,)) Table 2 VR1
HasKey(:B (OPE; ...OPE,,) (DPE;...DPE,))

Transformation of UML attributes

ObjectPropertyDomain(:d CE), where CE#:C Table 4 VR1
ObjectPropertyRange(:d CE), where CE #:D Table 4 VR2
Transformation of UML binary Associations between two different Classes
AsymmetricObjectProperty(:a) Table 6 VR1
AsymmetricObjectProperty(:b)

Transformation of UML multiplicity of Association ends

FunctionalObjectProperty(:a) Table 9 VR2
FunctionalObjectProperty(:b)

SubClassOf(:A CE), where CE # ObjectMinCardinality(2 :b :B) Table 9 VR3

SubClassOf(:B CE), where CE = any explicitly specified multiplicity

Transformation of UML AssociationClass

HasKey(:C (OPE; ...OPE,,) (DPE; ...DPE,))
ObjectPropertyDomain(:a CE), where CE # ObjectUnionOf(:B :C
ObjectPropertyDomain(:b CE), where CE # ObjectUnionOf(:A :C')
ObjectPropertyDomain(:¢c CE), where CE # ObjectUnionOf(:A :B
ObjectPropertyRange(:c CE), where CE#:C

Table 10 VR1
) Table 10 VR2

)
Table 10 VR3

8. Tool support for validation
and automatic correction of
UML class diagrams

The transformation and verification rules pre-
sented in Section 5 have been implemented in
a tool. All the defined rules are proved to be fully
implementable. As a result, the tool allows one
to transform any UML class diagram built of dif-
ferent kinds of UML elements (listed in Section 5,
and selected based on their importance from the
perspective of pragmatics) to OWL 2 represen-
tation. In comparison to other available tools
which allow transforming UML class diagrams
to an OWL 2 representation, the range of the
transformed constructions is wider as it benefits
from the results of the conducted systematic
literature review and its analysis, revision and
extension.

Due to the fact that the tool is still under devel-
opment, the following webpage has been created
in which the tool with the installation instructions

will be later accessible: https://sourceforge.net/
projects/uml-class-diagrams-validation/

After the development and experiment phases
are finished, the tool will be made available on-
line.

The tool has been tested with a number of
test cases aimed to determine whether the tool
fully and correctly implemented the transforma-
tion and verification rules, as well as the vali-
dation method. At least one test case has been
prepared for every normalization, transformation
and verification rule. Additionally, a number of
test cases have been prepared to cover popular
assemblies of UML elements, e.g. an association
from a class to itself, an association between two
classes, two associations between two classes, two
associations between three classes, etc. Each rule
has been independently checked if it returns the
expected result. In total, the number of test cases
was as follows:

1. 80 test cases for ontology normalization rules,
2. 40 test cases for transformation rules,

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 99

3. 25 test cases for verification rules.
The tool passed all test cases.

The implementation of the transformation
and verification rules as well as the method of
validation explained in [1], resulted in a function-
ality of the tool allowing for validation if a UML
class diagram is compliant with the selected do-
main ontology. Furthermore, on the basis of the
result of validation, the tool automatically gen-
erates ontology-based suggestions for diagram
corrections. In [4], a few initial suggestions for
diagram corrections have been presented. The
initial list of suggestions has been revised and
extended, and currently the tool automatically
generates suggestions of two kinds:

1. What has to be corrected in the UML class
diagram in order for the diagram not to be

Example 4

contradictory with the selected domain on-
tology (approximately 30 types of sugges-
tions — one for violation of every verification
rules plus one general suggestion listing in-
correct UML elements if a transformation
rule has caused the inconsistency in the do-
main ontology). This list of suggestions is
reported by the tool for the modeller and
strongly advised his or her attention (Exam-
ple 4 and 5).

Based on the domain ontology of what might
be additionally included in the class diagram
(9 types of suggestions). Whether or not to
consider this list of proposed suggestions is
for the modeller to decide. Depending on the
specific requirements, the suggestions may be
incorporated in the diagram (Example 6).

Table 28. Example of what has to be corrected in the diagram based on the ontology:
abstract class verification

Suggestion: the class is not abstract

Axiom(s) in the OWL
domain ontology

Element on the Town
UML class diagram

Result of validation:

Declaration(Class(: Town))
ClassAssertion(: Town :Madrid)

€ validation of the UML class diagram with respect to travel.extended.owl OWL 2 domain ontology

| Incorrect UML elements | Transformation axioms | Summary|

C' List of INCORRECT diagram elements:

?count)
WHERE { ?ind rdf:type :Town }

UML element Reason of incorrectness Comments Suggested solution
Abstract Class: Town SPARQL querry: Individual(s) of the class: [Incorrect element: -
SELECT (COUNT (DISTINCT ?ind) as Madrid Class Town is not abstract

Result of validation: The diagram is CONTRADICTORY

Close

100 Maltgorzata Sadowska, Zbigniew Huzar

Example 5

Table 29. Example of what has to be corrected in the diagram based on the ontology:
enumeration verification

Suggestion: the enumeration is incorrectly defined

Axiom(s) in the OWL DatatypeDefinition(: AccommodationRating
domain ontology DataOneOf(“OneStarRating” “TwoStarRating’”” “ThreeStarRating”
“FourStarRating” ¢ FiveStarRating”))
<<enumeration>=
AccommeodationRating

FourStarRating
Element ou the OneStarRating
UML class diagram ThreeStarRating

TwoStarRating

Unranked
Result of validation:

Q Validation of the UML class diagram with respect to travel.extended.owl OWL 2 domain ontology ﬁ

| Incorrect UML elements | Transformation axioms | Summary|

€' List of INCORRECT diagram elements:

UML element Reason of incorrectness Comments Suggested solution

Enumeration: SPARQL querry: Incorrect list of literals of:|Literal(s) required to be removed: Unranked | »

AccommodationRating SELECT ?literal { \AccommodationRating Literal(s) not included: FiveStarRating
:AccommodationRating Enumeration

owl:equivalentClass ?dt .
?dt a rdfs:Datatype ;
owl:oneOf/rdf:rest™/rdf:first ?literal
3

Result of validation: The diagram is CONTRADICTORY

Close

Example 6

Table 30. Example of what may be incorporated in the diagram based on the ontology:
attribute verification

Suggestion: Insert missing attribute, missing type of attribute or missing multiplicity of attribute

Axiom(s) in the OWL Declaration(Class(: Contact))

domain ontology ObjectPropertyDomain(:person : Contact)
ObjectPropertyRange(:person :FullName)
Declaration(Class(: FullName))
DataPropertyDomain(:firstName : FullName)
DataPropertyRange(:firstName xsd:string)
DataPropertyDomain(:secondName :FullName)
DataPropertyRange(:secondName xsd:string)
HasKey/(:FullName () (:firstName :secondName))
Declaration(DataProperty(:hasEMail))
DataPropertyDomain(:hasEMail : Contact)
DataPropertyRange(:hasEMail xsd:string)

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies

101

Declaration(DataProperty(:hasStreet))
DataPropertyDomain(:hasStreet : Contact)
DataPropertyRange(:hasStreet xsd:string)
Declaration(DataProperty(:hasCity))
DataPropertyDomain(:hasCity : Contact)
DataPropertyRange(:hasCity xsd:string)
Declaration(DataProperty(:lastUpdate))
DataPropertyDomain(:lastUpdate : Contact)
DataPropertyRange(:lastUpdate xsd:dateTime)

SubClassOf(: Contact DataExactCardinality(1 :lastUpdate))

Contact
Element on the -
. person : FullName
UML class diagram hasCity : String

Q Extraction of elements of UML class diagram based on travel.extended.owl OWL 2 domain ontology ﬁ
| Classes I Generalizations | GeneralizationSets | Associations | Attributes | Enumerations | Structured Data'l'ypes|
Name of Classifier Name of Attribute Multiplicity of Attribute Type of Attribute Remarks on Type
Contact hasEMail String UML PrimitiveType -
Contact lastUpdate 1 xsd:dateTime The OWL 2 type is undefined in LML
Contact person FullMame UML Structured DataType
Contact hasStreet String UML Primitive Type
Contact hasCity String UML PrimitiveType
’ Add to the diagram ” Close
Legend:

white rows — suggestions of UML elements which might be included in the class diagram
grey rows — UML elements already included in the class diagram

9. Conclusions

The paper presents rules for transforming UML
class diagrams to their OWL 2 representations.
All the static elements of UML class diagrams
commonly used in business or conceptual mod-
elling have been considered. The vast majority of
the elements can be fully transformed to OWL 2
constructs. The presented transformation rules
result from an in-depth analysis and extension
of the state-of-the-art transformation rules iden-
tified through a systematic literature review. In
total, 41 transformation rules have been described
(not counting our complementation to the rules of
disjointness presented in Section 6). 25 transforma-
tion rules have been directly extracted from the lit-
erature, 8 rules originate in the literature but have
been extended by us in order to reflect the seman-
tics of UML elements in OWL more precisely, and
8 transformation rules are our new propositions.

In addition to the transformation rules, we
have defined all the presented verification rules
(26 in total). The verification rules are aimed
at checking the compliance of the OWL repre-
sentation of UML class diagram with the given
OWL domain ontology. The described transfor-
mation and verification rules are crucial in the
method of semantic validation of UML class dia-
grams [1]. The approach validates automatically
if a selected class diagram is compliant with the
selected OWL 2 domain ontology.

The developed method and the tool are
a pragmatic attempt of bringing together the
differences in the philosophy of UML and OWL 2
languages. In order to make the process auto-
matic, the tool has been supplemented with all
the transformation and verification rules, and
has been tested with a wide range of test cases.
The inclusions to the tool are the result of prag-
matic thinking. For example, the implementa-

102

Malgorzata Sadowska, Zbigniew Huzar

tion allowed observing that it is worth extend-
ing the tool so that it automatically generates
ontology-based suggestions for diagram correc-
tions.

The tool already offers a range of new possi-
bilities for practical application of domain ontolo-
gies. However, as a consequence, the proposed
approach creates a need for greater involvement
of domain ontologies in modeling.

The research background of our considera-
tions can be supported by other publications, e.g.
[35-37]. The potential of reusing domain ontolo-
gies for the purpose of validation is promising and
may help the modelers through automation. The
choice of OWL is justified by the growing number
of the already created ontologies in this language.
For future work, the development of the tool is
planned to be finished soon. The next step of
work is preparation of experiment aimed at val-
idation of the tool and the method in practice.
The experiment is aimed to state the practicality
of our proposal.

References

[1] M. Sadowska and Z. Huzar, “Semantic validation
of UML class diagrams with the use of domain
ontologies expressed in OWL 2,” in Software
Engineering: Challenges and Solutions. Springer
International Publishing, 2016, pp. 47-59.

[2] Unified Modeling Language, Version 2.5, OMG,
2015. [Online]. http://www.omg.org/spec/UML/
2.5

[3] OWL 2 Web Ontology Language Document
Overview (Second Edition), W3C, 2012. [Online].
https://www.w3.org/TR/owl2-overview/

[4] M. Sadowska, “A prototype tool for semantic
validation of UML class diagrams with the use
of domain ontologies expressed in OWL 2,” in
Towards a Synergistic Combination of Research
and Practice in Software Engineering. Springer
International Publishing, 2017, pp. 49-62.

[5] M. Sadowska and Z. Huzar, “The method of nor-
malizing OWL 2 DL ontologies,” Global Journal
of Computer Science and Technology, Vol. 18,
No. 2, 2018, pp. 1-13.

[6] A. Korthaus, “Using UML for business ob-
ject based systems modeling,” in The Unified
Modeling Language. Physica-Verlag HD, 1998,
pp- 220-237.

[7] H.E. Eriksson and M. Penker, Business Model-
ing With UML: Business Patterns at Work. New
York, USA: John Wiley & Sons, Inc., 2000.

[8] E.D. Nitto, L. Lavazza, M. Schiavoni, E. Tra-
canella, and M. Trombetta, “Deriving executable
process descriptions from UML,” in Proceedings
of the 24th International Conference on Software
Engineering, ICSE ’02. New York, NY, USA:
ACM, 2002, pp. 155-165.

[9] C. Fu, D. Yang, X. Zhang, and H. Hu, “An ap-
proach to translating OCL invariants into OWL
2 DL axioms for checking inconsistency,” Auto-
mated Software Engineering, Vol. 24, No. 2, 2017,
pp- 295-339.

[10] B. Kitchenham and S. Charters, “Guidelines for
performing systematic literature reviews in soft-
ware engineering,” Keele University & Univer-
sity of Durham, EBSE Technical Report EBSE
2007-01, 2007.

[11] X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang,
“A map of threats to validity of systematic liter-
ature reviews in software engineering,” in 23rd
Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 2016, pp. 153-160.

[12] Z. Xu, Y. Ni, W. He, L. Lin, and Q. Yan,
“Automatic extraction of OWL ontologies from
UML class diagrams: a semantics-preserving ap-
proach,” World Wide Web, Vol. 15, No. 5, 2012,
pp. 517-545.

[13] Z. Xu, Y. Ni, L. Lin, and H. Gu, “A seman-
tics-preserving approach for extracting OWL on-
tologies from UML class diagrams,” in Database
Theory and Application, Communications in
Computer and Information Science. Berlin, Hei-
delberg: Springer, 2009, pp. 122-136.

[14] M. Mehrolhassani and A. Elgi, “Developing on-
tology based applications of semantic web us-
ing UML to OWL conversion,” in The Open
Knowlege Society. A Computer Science and In-
formation Systems Manifesto, Communications
in Computer and Information Science. Berlin,
Heidelberg: Springer, 2008, pp. 566—577.

[15] O. El Hajjamy, K. Alaoui, L. Alaoui, and M. Ba-
haj, “Mapping UML to OWL2 ontology,” Jour-
nal of Theoretical and Applied Information Tech-
nology, Vol. 90, No. 1, 2016, pp. 126-143.

[16] C. Zhang, Z.R. Peng, T. Zhao, and W. Li,
“Transformation of transportation data models
from Unified Modeling Language to Web Ontol-
ogy Language,” Transportation Research Record:
Journal of the Transportation Research Board,
Vol. 2064, No. 1, 2008, pp. 81-89.

[17] J. Zedlitz, J. Jorke, and N. Luttenberger, “From
UML to OWL 2,” in Knowledge Technology,

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies

103

[18]

[19]

[23]

Communications in Computer and Informa-
tion Science. Berlin, Heidelberg: Springer, 2012,
pp. 154-163.

A H. Khan and I. Porres, “Consistency of UML
class, object and statechart diagrams using on-
tology reasoners,” Journal of Visual Languages
& Computing, Vol. 26, 2015, pp. 42-65.

A H. Khan, I. Rauf, and I. Porres, “Consistency
of UML class and statechart diagrams with state
invariants,” in Proceedings of the 1st Interna-
tional Conference on Model-Driven Engineer-
ing and Software Development, S. Hammoudi,
L.F. Pires, J. Filipe, and R.C. das Neves, Eds.,
Vol. 1. SciTePress Digital Library, 2013, p. 1-11.
J. Zedlitz and N. Luttenberger, “Transforming
between UML conceptual models and OWL 2
ontologies,” in Terra Cognita 2012 Workshop,
Vol. 6, 2012, p. 15.

W. Xu, A. Dilo, S. Zlatanova, and P. van Oost-
erom, “Modelling emergency response processes:
Comparative study on OWL and UML,” in
Proceedings of the Joint ISCRAM-CHINA and
GI4DM Conference, Harbin, China, 2008,
pp- 493-504.

N. Gherabi and M. Bahaj, “A new method
for mapping UML class into OWL ontology,”
International Journal of Computer Applications
Special Issue on Software Engineering, Databases
and Ezxpert Systems, Vol. SEDEXS, No. 1, 2012,
pp. 5-9. [Online]. https://research.ijcaonline.
org/sedex/numberl /sedex1002.pdf

H.S. Na, O.H. Choi, and J.E. Lim, “A method
for building domain ontologies based on the
transformation of UML models,” in Fourth In-
ternational Conference on Software Engineer-
ing Research, Management and Applications
(SERA’06), D.K. Baik, D. Primeaux, N. Ishii,
and R. Lee, Eds., IEEE, 2006, pp. 332-338.

M. Bahaj and J. Bakkas, “Automatic conversion
method of class diagrams to ontologies maintain-
ing their semantic features,” International Jour-
nal of Soft Computing and Engineering, Vol. 2,
No. 6, 2013, pp. 65-69.

A. Belghiat and M. Bourahla, “Transforma-
tion of UML models towards OWL ontologies,”
in 2012 6th International Conference on Sci-
ences of FElectronics, Technologies of Informa-
tion and Telecommunications (SETIT), 2012,
pp. 840-846.

S. Hoglund, A.H. Khan, Y. Liu, and I. Porres,
“Representing and validating metamodels using
OWL 2 and SWRL,” in Proceedings of the 9th

[27]

[28]

[29]

[33]

Joint Conference on Knowledge-Based Software
Engineering, 2010.

K. Kiko and C. Atkinson, “A detailed com-
parison of UML and OWL,” University of
Mannheim, Fakultidt fir Mathematik und In-
formatik, Lehrstuhl fiir Softwaretechnik, Tech.
Rep. TR-2008-004, 2008.

J. Zedlitz and N. Luttenberger, “Data types in
UML and OWL-2,” in The Seventh International
Conference on Advances in Semantic Processing,
2013, pp. 32-35.

J. Zedlitz and N. Luttenberger, “Conceptual
modelling in UML and OWL-2,” International
Journal on Advances in Software, Vol. 7, No. 1
& 2, 2014, pp. 182-196.

OWL 2 Web Ontology Language Struc-
tural Specification and Functional-Style Syn-
tax (Second Edition), W3C, 2012. [Online].
https://www.w3.org/TR/owl2-syntax/

OWL 2 Web Ontology Language New Features
and Rationale (Second Edition), W3C, 2012.
[Online]. https://www.w3.org/TR/owl2-new-
features/

N. Noy and A. Rector, Defining N-ary Relations
on the Semantic Web, W3C, 2006. [Online]. https:
//www.w3.org/ TR /swbp-n-aryRelations/

W3C XML Schema Definition Language (XSD)
1.1 Part 2: Datatypes, W3C, 2012. [Online].
https://www.w3.org/TR/xmlschemall-2/
OWL 2 Web Ontology Language Primer
(Second Edition), W3C, 2012. [Online].
https://www.w3.org/TR /owl2-primer/

I. Dubielewicz, B. Hnatkowska, Z. Huzar, and
L. Tuzinkiewicz, “Domain modeling in the
context of ontology,” Foundations of Computing
and Decision Sciences, Vol. 40, No. 1, 2015,
pp. 3-15. [Online]. https://content.sciendo.com/
view/journals/fcds/40/1 /article-p3.xml

B. Hnatkowska, Z. Huzar, L. Tuzinkiewicz,
and I. Dubielewicz, “A new ontology-based
approach for construction of domain model,”
in Intelligent Information and Database Sys-
tems, N.T. Nguyen, S. Tojo, L.M. Nguyen, and
B. Trawinski, Eds., Cham: Springer International
Publishing, 2017, pp. 75-85.

I. Dubielewicz, B. Hnatkowska, Z. Huzar, and
L. Tuzinkiewicz, “Domain modeling based on
requirements specification and ontology,” in
Software Engineering: Challenges and Solutions,
L. Madeyski, M. Smialek, B. Hnatkowska, and
Z. Huzar, Eds., Cham: Springer International
Publishing, 2017, pp. 31-45.

e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 105-139, DOI 10.5277/e-Inf190104

A Three Dimensional Empirical Study of Logging

Questions from Six Popular QQ & A Websites

Harshit Gujral®, Abhinav Sharma*, Sangeeta Lal*, Lov Kumar**

*Jaypee Institute of Information Technology, Noida, Uttar-Pradesh, India
** BITS-pilani Hydrabad Campus, Hydrabad, India

harshitgujrall2@gmail.com, sharmal997abhinav@gmail.com, sangeeta@jiit.ac.in,
lovkumar505@gmail . com

Abstract

Background: Q & A websites such as Stack Overflow, Server Fault, provide an open platform for
users to ask questions and to get help from experts present worldwide. These websites not only help
users by answering their questions but also act as a knowledge base. These data present on these
websites can be mined to extract valuable information that can benefit the software practitioners.
Software engineering research community has already understood the potential benefits of mining
data from Q & A websites and several research studies have already been conducted in this area.
Aim: The aim of the study presented in this paper is to perform an empirical analysis of logging
questions from six popular Q & A websites.

Method: We perform statistical, programming language and content analysis of logging questions.
Our analysis helped us to gain insight about the logging discussion happening in six different
domains of the Stack Exchange websites.

Results: Our analysis provides insight about the logging issues of software practitioners: logging
questions are pervasive in all the Q & A websites, the mean time to get accepted answer for logging
questions on SU and SF websites are much higher as compared to other websites, a large number
of logging question invite a great amount of discussion in the SoftwareEngineering Q & A website,
most of the logging issues occur in C++ and Java, the trend for number of logging questions is
increasing for Java, Python, and JavaScript, whereas, it is decreasing or constant for C, C++, C#,
for the Server Fault and Superuser website ‘C’ is the dominant programming language.

Keywords: classification, debugging, ensemble, logging, machine learning, source code
analysis, tracing

1. Introduction

Logging is an important programming practice
that is performed by inserting log statements
in the source code. These log statements are
used to record important runtime information
about the program execution. Software devel-
opers can use this runtime information at the
time of debugging. In addition to debugging,
logging is important in several other software
development activities such as anomaly detec-
tion [1], performance problem diagnosis [2]. For

Submitted: 4 August 2018; Revised: 28 February 2019;

Accepted: 28 February 2019;

example, Fu et al. [1] use log messages timings to
differentiate normal and anomalous executions.
Nagaraj et al. [2] purpose a system that compares
the state of normal execution sequence (normal
performance) and bad execution sequences (bad
performance) and identify the states that are
different between the two execution sequences.
Logging is an important activity for software
development, however software developers often
face challenges In logging due to changing na-
ture of source code as well as logging libraries.
For example, software developers face difficulty

Available online: 31 May 2019

106

Harshit Gujral et al.

in identifying code constructs that needs to be
logged [3, 4], log level that needs to assigned
to log statements [5] or issues in migrating log
libraries [6]. Hence, recently several techniques
have been proposed by the software engineering
research community to help software developers
in source code logging [3-5, 7].

The techniques proposed in the literature for
helping software developers in logging are use-
ful, but, at present there is little understanding
about the major logging concerns of the different
software practitioners like software developers,
system administrators, database administrators,
etc. A detailed study of the most frequent log-
ging concerns of the software practitioners can
be beneficial in further improving the existing
logging techniques or tools. Information present
on the technical Q & A websites can be a great
resource for identifying the logging concerns of the
software practitioners. Table 1 shows 6 logging
questions from six popular Stack Exchange Q & A
websites, i.e. Stack Overflow (SO) [8], Server
Fault (SF) [9], SuperUser (SU) [10], Database
Administrators (DB) [11], Android Enthusiast
(AE) [12], and Software Engineering (SE) [13].
Each question in Table 1 received thousands of
views from the software development commu-
nity. For example, question 1 received 192,320
views. This indicates the impact and reach of
Q & A websites in software development com-
munity. In the question 1, the user has asked
a questions on SF website which is related to
‘Enabling MySQL logging’. It shows that users
face issue in enabling MySQL logging. In question
6, the user has asked about ‘best practices of log-
ging user actions in production’. In this question,
user wants more information about logging prac-
tices of user action. We believe that a detailed
characterization study of the logging questions
asked on these websites can provide a valuable
insights about the logging needs of software devel-
opment community.

The software engineering research commu-
nity has already recognized the potential of the
Q & A websites in various applications [14, 15].
For example, Pinto et al. [14] analyze the SO
questions to find application-level energy con-

sumption related issues. Mario et al. [15] ana-
lyze SO questions to find mobile development
related issues. Barua et al. [16] analyze questions
on the SO website to find software development
related trends. All these studies analyze impor-
tant aspects of software development. However,
at present there is no research study that ana-
lyzes the data from the Q & A website for iden-
tifying source code logging issues. In this paper,
we take the first step towards analyzing the log-
ging concerns of software developers from popular
Q & A websites.

The overall goal of our research is to im-
prove the understanding about the logging is-
sues that software practitioners face the most.
In particular, we aim at systematically analyz-
ing the questions from Q & A websites. We hy-
pothesize that Q & A websites represents an
important knowledge base and can be beneficial
in identifying the source code logging concerns
of the software developers. The findings of this
paper can be beneficial to software practition-
ers in many ways. Product manager can use
this study to perform market analysis to find
logging tools that are gaining popularity. Soft-
ware practitioners can use this study to find
logging tools/libraries that are commonly used
by other software practitioners. These findings
can be used by the Stack Exchange team for
site moderation/archiving purpose. Additionally,
software engineering research community can
use the results presented in this paper to fur-
ther improve the current logging prediction or
improvement studies.

In this work, we perform a three dimensional,
large scale and an in-depth empirical study of
logging questions asked on six popular commu-
nity based Q & A websites from the Stack Ex-
change network. We analyze more than 82 K
questions from six popular programming Q & A
websites with respect to three different research
dimensions, i.e. statistical analysis, programming
language analysis, and content analysis and an-
swer a total of 7 research questions. The results
of our empirical analysis show several interesting
insights such as logging questions are pervasive
in all the programming websites. It shows that

A Three Dimensional Empirical Study of Logging Questions from Six Popular @ & A Websites

107

Table 1. Example of logging related questions from various websites: WN: Website Name

SNo. WN %“esmon Title g;ivfm Tags
1 SF 71071 How to enable MySQL logging? 192,320 MySQL,
logging
2 SO 56628 How do you clear the SQL Server transaction log? 965,799 sql-server,
transaction-log
3 SU 176165 Where Linux places the messages of boot? 139,650 Linux, boot,
centos, logging
4 AE 14430 How can I view and examine the Android log? 355,050 logging
5 DB 4043 Can I see Historical Queries run on a SQL Server 173,358 sql-server, SQL,
database? logs
6 SE 168059 Best practices for logging user actions in production 49,435 C#, asp.net,
logging

nearly 1.06-11.6% of all the logging questions
invite a great amount of discussion. The work pre-
sented in this paper is a significant extension of
our previously accepted work Empirical Analysis
of the Logging Questions on the Stack Overflow
Website at Conference on Software Engineering
& Data Sciences (CoSEDS-2018).

The remainder of the paper is organized as
follows. In Section 2, we describe the closely
related studies in context to the work presented
in this paper and the novel research contribu-
tion made by this work. In Section 3, we de-
scribe the various research dimensions and their
respective research questions, research method
that we followed, the experimental dataset, and
the results of the empirical study. In Section
4, we give various threats to validity related
to the finding of this paper. In Section 5 we
conclude the paper and provide details about
future directions and finally, in Section 6, we
give acknowledgment.

2. Related work

In this section, we review the closely related work
to our research and list down our specific research
contributions. We divide related work into multi-
ple lines of research, i.e. 1) Empirical analysis of
logging statement, 2) Logging prediction studies,
and 3) Empirical analysis of Q & A websites.

2.1. Empirical analysis of logging
statement

Logging is a cross-cutting software development
concern and has attracted attention of many
researchers. Logging statements present in the
source code have been analyzed with respect to
several dimensions, such as type of changes
in log statements ([17]), reasons of migrat-
ing from one logging library to other ([6]),
source code constructs that are logged
more frequently as compared to others
([18, 19]), relationship between code quality
and logging statements [20], uses of differ-
ent log levels in source code ([5]). These anal-
ysis provide important information to software
developers. For example, Yuan et al. [21] analyze
four open source projects written in C\C++. They
identify type of changes to logging statements
where software developers spend most of their
time. Shang et al. [20] analyze modifications done
to logging statements for Java projects. They
report four major reasons for logging modifica-
tion, i.e. debugging, feature change, inaccurate
logging level, and redundant logging. Chen et
al. [17] replicate the study performed by Yuan
et al. [21] for Java projects and report several
differences in the results. For example, in Java
projects deleting and moving log printing code
accounts to 26% and 10% to all logging modi-
fications whereas in C\C++ it accounts to only

108

Harshit Gujral et al.

2%. Kabinna et al. [6] identify reasons for log-
ging library migration on Java software projects.
They report two major reasons, i.e. flexibility and
performance improvement, for logging library mi-
gration. Li et al. [5] analyze log-levels of various
open-source Java projects and report several in-
teresting findings. They report that no single log
level dominates. They also report that different
projects show varying distribution of log levels.
In another study, Li et al. [22] analyze four Java
software projects and identify 20 reasons for log-
ging change in source code. They categorize these
20 reasons into four categories: changing con-
text code, improving logging, dependency-driven
changes, and fizing logging issues. Yuan et al. [23]
analyze 250 randomly sampled bug reports from
five large C\C++ projects and report the most
frequently occurring error patterns that need to
be logged. Fu et al. [18] work on analyzing logged
and non-logged code constructs. They analyze log
statements and their logged code snippets from
two closed-source systems at Microsoft (written
in C#). They categorize the log statements in five
categories: assertion-check, return-value-check,
exception, logic-branch and observing-point log-
ging. They further perform a detailed study of
70 non-logged catch-blocks and find reasons of
not logging. Lal et al. [19] analyze logged and
non-logged catch-blocks. They report several dis-
tinguishing characteristics between logged and
non-logged catch-blocks. For example, try-blocks
associated with logged catch-blocks have much
higher complexity (measures using SLOC, num-
ber of operators and number of method calls) as
compared to that of non-logged catch-blocks.

All of the above studies analyze logging state-
ments present in the source code. In contrast to
these studies, in this work, we analyze logging
questions from six Stack Exchange sites to get
insights about the logging issues that software
developers face most frequently.

2.2. Logging prediction studies

Logging is crucial for software development and
hence, in past researchers spent a great amount of
effort for providing software developers with tools

and techniques that can help them in source code
Logging. For example, Fu et al. [18] and Zhu et al.
[24] propose a tool LogAduvsior to help software
developers in logging prediction for exception
types and return value check code snippets for
C# projects. Lal et at. [3, 4] propose LogOpt
and LogOptPlus, machine learning models for
catch-blocks and if-blocks logging prediction for
Java projects. Li et al. [5] propose model for
log level prediction. Kabinna et al. [25] propose
a model for log statement stability prediction for
Java projects. Lal et al. [7] propose a method
LogIm for predicting logging statement for if and
catch-blocks for imbalanced dataset. In another
study, Lal et al. [26] use ensemble of classifiers
for doing cross-project logging prediction.

The work presented in this paper, is comple-
mentary to above studies. We work on identifying
the most frequent logging issues of the software
developers. Hence, the findings of this work can
be beneficial in further improving these logging
prediction models. For example, researchers can
select in which language software practitioners
face most of the logging issues and can provide
logging tools for the same. Researchers can iden-
tify which are the most frequent libraries in which
software practitioners facing the issues and hence,
can provide solutions to apply logging prediction
for these logging libraries.

2.3. Empirical analysis of
Q & A websites

The Stack Exchange is network of popular Q & A
sites and is actually a knowledge base, several re-
search studies have already been conducted using
the data from Stack Exchange websites. Pinto et
al. present an empirical study on analyzing 300
Stack Overflow questions and 550 Stack Overflow
answers on problems related to application-level
energy consumption [14]. They study distinctive
characteristics, most common problems, main
causes and solutions recommended on software
energy consumption [14]. Mario et al. apply topic
modelling to discover hot-topics on mobile de-
velopment by mining questions and answers on
Stack Overflow [15]. Their findings reveal that

A Three Dimensional Empirical Study of Logging Questions from Six Popular @ & A Websites

109

most of the questions are on compatibility is-
sues, crash reports and database connection [15].
Beyer et al. conduct a manual categorization of
Android app development related issues on Stack
Overflow [27]. They investigate 450 Android re-
lated posts and conclude that developers mainly
have issues related to usage of API components
such as User Interface and Core Elements [27].

Yang et al. study security related questions
on Stack Overflow and cluster security related
questions (such as cryptography and mobile se-
curity) based on their text [28]. They discover
that security related questions belong to five
main categories, i.e. web security, mobile secu-
rity, cryptography, software security, and sys-
tem security [28]. Malik et al. manually analyse
1000 posts on Android energy consumption [29].
Their study reveals that most of the questions
are related to improper implementation, sensor
and radio utilization [29]. Nagy et al. present
a study in mining Stack Overflow for discovering
error-prone patterns in SQL queries [30]. Their
study reveals that the SQL statements of the
code blocks can be automatically analyzed to
identify error-prone patterns which can be used
in a recommendation system [30].

Above studies analyze one aspect of program-
ming or software development and none of these
studies focus on analyzing questions related to
logging. In contrast to these studies, the work pre-
sented in this paper focuses on analyzing source
code logging questions on six StackExhange web-
sites.

3. Empirical study

3.1. Research dimensions and research
questions

Table 2 shows three main research dimensions
(RDs) and respective research questions (RQs)
considered in this work. Following is a brief de-
scription of each RD and respective RQs:

RD1: Statistical Analysis of Logging Ques-
tions on the Stack Exchange Sites: In RD1,
we explore how software development commu-

nities use Stack Exchange websites for asking
logging related issues. For this, we analyze several
parameters related to logging questions. We ana-
lyze the trend of logging question with accepted
answers (RQ1), number of answers posted for
each logging question (RQ2), and time taken by
each logging question to get the accepted answer
(RQ3).

Successful questions (question with an ac-
cepted answer) depict satisfaction of the program-
mer. These trends are essential for development
of logging tools and libraries. We conducted this
analysis on six websites and hence, it broadens
the observation of satisfaction of logging users
across various platforms. For an instance, signif-
icantly more accepted questions were observed
in Database Administrator (DB) than Android
(AE). This also gives the sense of how alive is
logging today and how much more research and
development is required in order to satisfy the
needs of programmers dealing with source-code
logging

Number of answers per question is the sign of
the amount of discussion source-code logging is
attracting on these six-websites. Additionally, if
a question is attracting a large amount of discus-
sion then it may symbolize the presence of some
widely occurring error or some ambiguity faced
by the programmers. Study of these cases will
aid in developers and researchers in developing
tools and methods that would be easy to use
and debug. For example, logcat, alogcat and adb
questions invite great amount of discussion in
Android.

Time taken to get an accepted-answer to
a question corresponds to the time taken to solve
user’s posted issue. Lesser the time, quicker the
solution. If some questions are taking large time
in getting accepted-answer, it can depict the
presence of some esoteric (lesser known) issues
that need to be researched in order to present
a palatable solution. If a logging tool or library is
associated with large time-taken then concerned
developers should intervene with a solution or
some version update in order to fix such problems.
For example, our analysis shows that questions
asked on SE website invite a great amount of

110

Harshit Gujral et al.

Table 2. Details of research dimensions and research questions

Research dimension = Research questions

1. What is the trend of successful and ordinary or unsuccessful questions on logging
across years and across Stack Exchange sites?

Statistical analysis

2. What is the trend of logging question in terms of quantity of answers per question

across years and across websites?
3. How much time it takes to get the accepted answer of logging questions?

4. How pervasive is software logging related questions on community based Q & A

Programming
language analysis

websites across programming languages?
5. What is the distribution of logging questions with respect to different program-

ming language for each Q & A website?

6. What are the main discussion logging topics in various websites?

Content analysis

Stack Exchange websites?

7. What is the distribution of logging-related tags across various Stack Exchange
websites? And how persuasive is the commonality between these tags along various

discussion. On SE website the user is asking fun-
damental questions like which methods of better
for logging file or database.

RD2: Analysis of Logging Questions with
Respect to Different Programming Lan-
guages: In RD2, we analyze trend of logging
questions with respect to different programming
languages. First, we analyze how pervasive soft-
ware logging questions are on the community
based Q & A websites across programming lan-
guages (RQ4). Second, we analyze, the distri-
bution of logging questions with respect to dif-
ferent programming language for each Q & A
website (RQ5).

Analysis of RQ4 provides insight into the
development of source-code logging tools and
libraries. The results of this RQ will be helpful
to analyze the dependency of the programming
languages with source-code logging. The results
will help in estimating programmer’s interest
and discussion with respect to various languages.
This will help developers to understand emerging
trends in programming languages and they would
be able to wisely choose a programming language
for building logging tools. For example, our re-
sults show that maximum number of logging
questions are asked in Java and C++. Companies
can use this information to build new logging
tools.

The RQ5 which is an extension of RQ4. In
this RQ, we analyze programming language dis-
tribution across six-websites. This would aid de-
velopers to choose programming language based
upon various environment and platforms. For Ex-
ample, Server (SF) and super-user (SU) oriented
applications suggest a large interest in C-based
logging tools while for software engineering, C#,
Java, and C++ seems to be a viable option.
RD3: Content Analysis of Logging Ques-
tions on the Stack Exchange Sites: We ana-
lyze the information present in logging questions.
We perform two types of analysis in this: First, we
identify the main topics present in the title and
description of logging questions (RQ6). Second,
we analyze the tags associated with the logging
questions (RQT).

Results of this dimension provide an overview
of most discussed logging topics. This insight will
help developers to keep in mind these discussions
while developing logging tools and libraries. It
would also aid to keep a track of logging-related
issues and needs of programmers. In RQ6, we
focus on analyzing the content of the post. An-
swer of this RQ, provides important insight like
Android users face logging issues in network con-
nections. Research community can use this infor-
mation to further improve logging functionality
of network related functions in Android OS.

A Three Dimensional Empirical Study of Logging Questions from Six Popular @ & A Websites

111

The analysis of RQ7, provide information
about cross-discipline logging tools and practices,
for example, the transaction log is used in both
server environment (SF), Stack Overflow (SO)
and database (DB) while event-logging practice
is observed in super-user (SU) and Stack Over-
flow (SO). This knowledge is the use-case for
researchers and developers to select logging prac-
tices and tools that are compatible with multiple
platforms and environments.

3.2. Research method

In this subsection, we describe the research meth-
ods followed in this work. There are several
Q & A websites such as Stack Exchange [31],
Quora [32], where people can post their ques-
tions and other people or experts can reply to
their questions. In this work, we select Stack
Exchange websites for our analysis because it
is a network of so many popular Q & A sites.
At the time of this study, there were a total
of 133 websites present in the Stack Exchange
network. The Stack Exchange network consists
of websites related to various domains such as
software development, tourism, academia. Our
aim in this work is to analyze questions related
to logging. Hence, analysis of all of these web-
sites is not required and is out-of-scope of this
paper. Thus, we carefully selected six technical
Q & A websites from all these websites. Follow-
ing is the criteria and essential properties that
we took into account while selecting websites
for our study:

Type — Software development /Uses: In this
work, we are analyzing questions related to log-
ging. Hence, we select websites related to soft-
ware development and programming.

Number of users — At least 1000: We select
websites having at least 1000 users in order to
draw statistically significant conclusions.
Number of questions — At least 1000: We
select websites having at least 1000 questions so
that we can draw statistically significant conclu-
sions.

Age of the website — At least 2 years old:
We select websites having at least 2 years of

history. Website which are not so old or are in
there beginning phase may not be appropriate
for our study as they may not have enough log-
ging questions to infer any statistically significant
conclusion.

3.3. Experimental dataset details

Matching to our selection criteria we select follow-
ing six popular websites that are frequently used
by software practitioners. All the six websites
are actively used by thousands of users.

Stack Overflow (SO): SO is a Q & A web-
site created for professional and enthusiast pro-
grammers [8]. It is created in the year 2008, i.e.
~ 10 years old. At the time of this study, it
consisted of & 8.2 million users, ~ 14 million
total questions and ~ 75 K logging questions.
Server Fault (SF): SF is a Q & A website
for system and network administrators [9]. It is
created in the year 2009, i.e. = 9 years old. At
the time of this study, it consisted of ~ 0.3 mil-
lion users, ~ 0.2 million questions, and ~ 4.2 K
logging questions.

Superuser (SU): SU is a Q & A website for
computer enthusiasts and power users [10]. It is
created in the year 2009, i.e. &~ 9 years old. At
the time of this study, it consisted of ~ 0.6 mil-
lion users, &~ 0.3 million questions, and ~ 1.2 K
logging questions.

Database Administrators (DB): DB is a Q
& A website for database professionals who wish
to improve their database skills and learn from
others in the community [11]. It is created in the
year 2009, i.e. = 9 years old. At the time of this
study, it consisted of & 0.1 million users, ~ 60 K
questions, and = 1.1 K logging questions.
SoftwareEngineering (SE): SE is a Q & A
website for professionals, academics, and stu-
dents working within the systems development
life cycle [13]. It is created in the year 2010, i.e.
~ 8 years old. At the time of this study, it con-
sisted of & 0.2 million users, =~ 47 K questions,
and 198 logging questions.

Android (AE): AE is a Q & A website for
enthusiasts and power users of the Android oper-
ating system [12]. It is created in the year 2010,

112

Harshit Gujral et al.

Q&A Websites

Select 6 programing Q&A websites

I

N

[Software development

Q&A Website

————

Filter questions related to logging

Phase 1 v

—

i| Filter tags with regular | :
expression ‘*log*’

[Remove false positives]

Select top 6 programing]

language
!

Find Iogging\égs related to
logging libraries of these 6
programming languages

All logging tags

Filter questions consisting of these

I

S

tags

[Logging questions

U

[Empirical analysis

g g

LY

[Statistical Analysis] [

Analysis

Programming Language

J

Content Analysis]

Figure 1. Research method followed in this study

i.e. & 8 years old. At the time of this study, it
consisted of / 0.1 million users, ~ 46 K questions,
and 183 logging questions.

3.4. Dataset preparation

In this subsection, we describe the steps that we
used to extract the relevant dataset for our study.
For this study, we have used the data dump pro-
vided by Stack Overflow community. This dataset
is in XML format and consists of details of all
the questions asked by users. For each website,
it provides 7 files: badges.xml, comments.xml,
posts.xml, posthistory.xml, user.xml, votes.xml,
postlinks.xml. For this study we have used
posts.xml file. This file consists of information
each post. For example, if for a give question there
are three answers, then a total of four post will be
included in this file. This file consists of informa-

tion like, title of the questions, description of the
questions, date on which the questions asked, etc.
Next, we extract all the logging questions. Manual
identification of all the logging questions can be
a tedious task. Hence, we adopt a method to auto-
matically find the logging questions. We use tags
assigned to questions to identify logging questions.
The Stack Exchange community assigns a set to
tag to each question. These tags are chosen care-
fully to describe the domain of the question. We
use a 2-phase method to select all the logging tags.
Figure 1 present the main steps of our 2-phase
method. Below we describe our 2-phase method:
Phase 1: In phase 1, we define a regular expres-
sion, i.e. *log* to retrieve all the logging tags.
We notice that this approach is very effective
in finding logging tags, as we were able to re-
trieve several logging tags using this approach.
For example, we are able to retrieve tags such as

A Three Dimensional Empirical Study of Logging Questions from Six Popular @ & A Websites

113

transaction-log, syslog, syslog. However, we notice
that this approach results in lots false positives
also. For example, tags like ‘login’, or ‘logins’
were also outputted. Hence, we manually remove
false positives from the dataset.

Phase 2: We noticed that the phase 1, is not
able to retrieve logging questions because the
regular expression used in the phase 1 is not able
to retrieve tags such as SLF4J. Hence, we decided
to add these kinds of tags manually. We select top
6 programming language from the tiobe index,
i.e. Java, C, C++, Python, C#, and JavaScript.
We perform an exhaustive Google search to iden-
tify all the logging libraries used for these six
programming languages. For example, Log4J and
SLF4J for Java, Log4C for C, C++. We add tags
related to these libraries in our list.

Using process followed in Phase 1 and in
Phase 2, we retrieve a total of 169 tags.We
extract all the questions consisting of any of
these tags. We extracted 82199 logging from
these six websites. We made all our dataset
publicly available to allow replication of the re-
sults by software engineering research community
(https://github.com/newtein/StackExLogging).
For each website, we compute the percentage
that logging questions have with respect to total

questions. Table 3 shows that SF and DB have
the highest percentage of logging questions. This
table also shows that a large number of questions
are asked on logging.

3.5. Research contributions

In context to work done in literature, in this work,
we perform the first study (to the best of our
knowledge) of logging questions on six popular
Stack Exchange websites with respect to three
dimensions. We identify several RQ’s related to
statistical and content analysis of logging ques-
tions. We answer each R(Q by conducting empirical
analysis on more than 82 K logging questions.

3.6. RD1: Statistical analysis

In this subsection, we present the results of vari-
ous RQ’s related to statistical properties of log-
ging questions. This research dimension provides
information about how the behavior of program-
mers is changing over time. Statistical trends
are observed from posted questions and answers.
This dimension of research may not have a di-
rect application for a user but it is in-fact quite
essential to understand how source-code logging

Table 3. Experimental dataset details of Stack Exchange website — Stack Overflow: SO, SuperUser: SU,
Server Fault: SF, DBA: DB, SoftwareEngineering: SE, Android: AE

Field SO SU SF DB SE AE
Total Number of 8287574 630516 346259 114789 241851 154687
Unique Users

Total questions 14995834 363915 252963 60948 47362 46559
Total questions with 8034235 154322 125601 29400 27762 13316
accepted answer

Total logging 75185 1275 4227 1131 198 183
questions

Total logging 39674 541 2163 555 110 50
questions with

accepted answer

Percentage of logging 0.19 0.14 0.62 0.78 0.10 0.17
questions to total

questions

Timestamp of the 8/1/2008 7/15/2009 4/30/2009 10/22/2009 9/27/2010 9/1/2010
First Question

Timestamp of the 12/3/2017 11/30/2017 12/1/2017 12/1/2017 11/19/2017 11/28/2017

Last Question

114

Harshit Gujral et al.

is evolving over the years? This gives a sense of
how alive is logging today and how much more
research and development is required in order to
satisfy the needs of programmers dealing with
source-code logging.

3.6.1. RQ1: What is the trend of successful and
ordinary or unsuccessful questions on
logging across years and across Stack
Exchange sites?

Motivation: On Stack Exchange sites a ques-
tion can receive multiple answers. The user who
has asked the question can review these answers.
If he is satisfied with one of these answers, he
can mark that answer as accepted [33]. However,
if none of these answers, answer the question
correctly, the user has the right to not select
any of these answers as accepted. Each ques-
tion can have only one accepted answer. In the
literature [14], Stack Exchange questions are clas-
sified into three categories: successful (questions
with accepted answer), ordinary (questions that
have answers but none of them is accepted) and
unsuccessful (questions that do not have any an-
swer). In this RQ, we analyze the trend of logging
questions and logging questions with accepted
answers on various Stack Exchange websites. Ac-
cepted answers are indicators of quality of re-
sponses to questions. Accepted answers shows
that questions on logging are receiving helpful
responses. We believe that identifying number
of logging questions that are successful can be
beneficial in identifying the behavior and satisfac-
tion of software development community towards
logging.

Approach: In this RQ, we extract total logging
questions and logging questions with accepted
answers (i.e. successful logging questions) for
each of the six websites. We extract this data
for all the years from 2008 to 2017. Using this
information, we plot histogram showing the total
number logging questions and total successful
logging questions for each of the six website. We
also plot cumulative logging questions and cu-
mulative successful logging questions for all the
six websites.

Results: Figure 2 shows the histogram of total
logging question and successful logging questions.
It also shows the trend of cumulative logging
questions and cumulative successful logging ques-
tions. From Figure 2, we draw several interesting
observations. First, it shows that irrespective of
the website logging questions occur consistently
across all the websites. For example, on SU web-
site users had asked 50-177 questions in each
year between 2009 and 2017. Second, we observe
that the frequency and intensity of questions dif-
fer across the websites. For example, a total of
75185 logging question are asked on SO whereas
1131 logging questions are asked on DBA in the
years 2008-2017. This huge difference in the num-
ber of logging question between DBA and SO
does not necessarily means that database have
less logging issues. It can be also be due to dif-
ference in the popularity and user base of the
websites. For example, the SO website has much
bigger user base and is much more popular than
other Stack Exchange websites, and hence, has
much more logging questions as compared to other
sites. Third, we observe that there is no trend
(increasing or decreasing) in number of logging
questions asked over the years for all the web-
sites. Fourth, we observe that all the websites
have a large number of successful logging ques-
tions. For example, 33—78% of logging questions
have received an accepted answer on the SO web-
site.

RQ1 conclusions: Logging is an important con-
cern that occurs frequently in different domains.
We observe a large number of successful logging
questions. However, we do not observe any trend
in terms of frequency of total logging questions
and successful logging questions across the years
for any website.

3.6.2. RQ2: What is the trend logging questions
in terms of quantity of answers per
question across years and across websites?

Motivation: In this RQ, we analyze the number
of answers posted for each logging questions. On
Stack Exchange sites, users can post any number
of answer to each questions. We consider answer

A Three Dimensional Empirical Study of Logging Questions from Siz Popular) €& A Websites

115

No. of Questions

No. of Questions

Ul WUSOSLvI D

nNuU

ANDROID

I Cummulative Logging Questions
@ Cummulative Logging Questions with accepted answer
EEm Total Logging Questions

150 I Total Logging Questions with accepted answer
100
50
0 El=l
oS g9 g0 g0 g0 g9 g0 g9 g0 ot
(a) AE
SERVERFAULT
Il Cummulative Logging Questions
4000 @ Cummulative Logging Questions with accepted answer
I Total Logging Questions
I Total Logging Questions with accepted answer
3000
2000
1000
. EEEEEew
2B S @O @ g0 o o @ 9 e
(c) SF
STACKOVERFLOW
[Cummulative Logging Questions
70000 @ Cummulative Logging Questions with accepted answer
EEm Total Logging Questions
60000 Il Total Logging Questions with accepted answer
50000
40000
30000
20000
10000
i mEEEEEE
2 o 0 o\t o o o e © oot

(e) SO

No. of Questions

No. of Questions

No. of Questions

1000

800

600

400

200

0

200

=y
(&)
o

100

w
o

1200

1000

800

600

400

200

DBA

Bl Cummulative Logging Questions

@ Cummulative Logging Questions with accepted answer
EEm Total Logging Questions
I Total Logging Questions with accepted answer

oS g9 g2 o\ P g g (g (t® o

(b) DB

SOFTWAREENG

I Cummulative Logging Questions
@ Cummulative Logging Questions with accepted answer
EE Total Logging Questions

I Total Logging Questions with accepted answer

oS g 00 o\ oW 0 o\ 9 go® oot
(d) SE
SUPERUSER

Il Cummulative Logging Questions
@ Cummulative Logging Questions with accepted answer
I Total Logging Questions
Il Total Logging Questions with accepted answer

SV g2 g2 o\ 9 ' o

o

S® P

(f) SU

Figure 2. Distribution of logging questions with accepted answers

116

Harshit Gujral et al.

ANDROID: Logging Questions

Answer Count

7- o
6-
€
55-
o
O 4- o
o
2 3- o o
g 5- o o
g2
. 1 &
0- o
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
(a) AE
SERVERFAULT: Logging Questions
o
15.0 -
125 - S o o
o
10.0 - o
o 3 o o
757 6 o o o
[9) o) [o) o
5.0 - %) o o o
o o o o o o) o
25- o o} o
| DTPP TS
0.0- o o
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
(c) SF
STACKOVERFLOW: Logging Questions
40 - 9
€ 30
2 & g
o ® o)
T 20-
=
w
C
<

yt 8
10 - E s o
.- |)
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

(e) SO

Answer Count

14 -
12 -
10-
8-
6 -
4 -

Answer Count

2-
0-

17.5-
15.0 -
12.5-
10.0 -
7.5-

Answer Count

5.0 -
2.5-
0.0-

DBA: Logging Questions
o o o

o o (o] o

[e]
(o]
o o o
S S E—)

o (e] o
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

(b) DB

SOFTWAREENG: Logging Questions
o

o (e]
o
o
o
: E%j E§3 o
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

(d) SE

SUPERUSER: Logging Questions
o o

0000

o
O (¢] o
o (o)
o o
(¢} (¢} (¢] (¢} o
@? é% 8 T
el R R
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

(f) SU

Figure 3. Box plot showing answer count of all the logging questions

Table 4. Percentage of the questions that received >5 answers —
Stack Overflow: SO, SuperUser: SU, Server Fault: SF,
DBA: DB, SoftwareEngineering: SE, Android: AN

SO SU SF

DB

SE AN

2.8 2.35

3.76

1.06

11.61 2.18

A Three Dimensional Empirical Study of Logging Questions from Siz Popular) €& A Websites

117

touchscreen emonitorin
logglng

utermlna root

Uconnectl
data

Ocellular

table

plans

transactlon log

DB
sql

ma

sqr“server

replic

backup

l1ze

(a) AE (b) DB
SF SE
e SR et databaser oo MEMOT Y coding
- \J ..1 —) monltorlng java ecXC ep 10n 3
“ ractices oriente g
Sys]‘Og l l n u X P w debugging "y azure issue ' 'wE
ta,l. i i 4' shell L:? O g g g §§
- o = S quality tracking jj
WJ_[ndOWSapaChe \\lndcmseven(: unit errorspcode stanc!n%ng astcéd(QU-
SO SuU
&= and -01d logcat task; software
php@ b O O S t]-O 4net \“jjerweohbm:flre$ox d OW Srald
logglng Log4jj event . ol 1. esystems 1o
L. E»_,ql, server window exceptlon rowseEDUNI:pn (hedH&d lty(emos g

iagnostic

! ' :’?_
» - i o~ T
linyx . e

ava ava 10

10g4] - net logging

J

Py th n

(e) SO

management m1°Ck

881”8m0ﬂ£$

l console I
http

drive

* bash
N Q-
11"k internet :

laptop =y (@)
v
-
Ul

orin 1

remote,. g
(f) s

symbolic

networ klng

Figure 4. Word cloud of tags of logging questions that received more than 5 answers

count posted for each question as a measure of
discussion. Increase in number of answers can
be an indication towards increase in discussion
required for logging questions.

Approach: To answer this RQ, we compute
number of answers received for each logging ques-
tion for each year for all the six websites. Using

this information, we compute descriptive statis-
tics such as Quartile-1 (Q1), Median, Quartile-3
(Q3), Min and Max and create box-plots. We
compute descriptive statistics to gain insight on
the data characteristics and its basic features.

Results: Figure 3 shows box-blot of number
of answers received for each logging question

118

Harshit Gujral et al.

for all the websites. We study the central ten-
dency of the data in-terms of the median val-
ues. The median values of the answer count for
the sites AE, DB, SF, SE, SO and SU in the
year 2014 are 1, 1, 1, 2, 1, and 1, respectively.
The box-plot in Figure 3 reveals the dispersion
in the data which is the spread of the values
around the median. We draw several interesting
observations from the Figure 3. First, we notice
that for all the websites, the median value of
the number of answers received for each ques-
tion is higher in the initial years (2008-2011) as
compared to later years (2012-2017). For exam-
ple, for SE website the median values of answer
count is 5 (2010), 3 (2011), 2.5 (2012) and 2
(2013-2017). For this outcome, one reason can
be that old questions receive more answers over
the period of time.

Second, we observe presence of several out-
liers in all the websites. We show the outliers in
Figure 3 using dots so that they are clearly visible
and displayed separately and do not exaggerate
the range values. We observe that the SO website
has the highest number of outliers as compared
to any other website. To get insight about the
questions receiving a large number of answers, we

further analyze logging questions that received
>5 answers. Table 4 shows the percentage of
logging questions that receive >5 answers. Our
analysis shows that ~1.06-11.61% of questions
in all the websites received >5 answers. It is
interesting to find that the SE website has the
highest percentage of questions that received >5
answers.

Third, we analyze tags assigned to logging
questions that received >5 answers. We build
word cloud of tags associated with these ques-
tions (refer to Fig. 4). We observe the word cloud
of each website highlights a different set of tags.
For example, in Android logging questions are
related to logcat, alogcat and adb. In DB website,
all the 12 questions are related to transaction-logs.
The SE websites word-cloud highlights tags like
exception, practice. The logging questions in SE
website are related to logging practices. The most
discussed logging questions on the SO website
are related to logging libraries such as log4net,
log4j, SLF/J. Table 5 provide more details about
the questions that we analyzed.

RQ2 conclusions: Approximately 1.06-11.61%
of all the logging questions invite a great amount
of discussion.

Table 5. Analysis of the questions that received >5 answers: Stack Overflow: SO, SuperUser: SU, Server
Fault: SF, DBA: DB, SoftwareEngineering: SE, Android: AN

A rooted device can monitor the logcat (a command line
tool that dumps a log of system messages) stream on
the phone for this he needs root access.

is there an existing app that could be installed and could
record touch interactions on the background?

Android logging can be viewed and examined by use of adb
logcat(android debug bridge it can control device over
USB from a computer), alogcat(software testing tool
that control full control over intents), logcat extreme
(user interface that records and monitors logcat).

Logging information about data-connection, rate along
with the location can be monitored by using phone’s radio
without sending any additional data which is available through
logcat or through network buffer on user’s phone using alogcat

S.No. WB Tag ID Context
1 AE root-access 157
2 AE touchscreen 13992
3 AE Android 14430
logging
4 AE data 35702
connection,
data-moni-
toring,
celluar-ra- or adb.

dio

A Three Dimensional Empirical Study of Logging Questions from Six Popular @ & A Websites

119

Table 5 continued

S.No. WB Tag ID Context

5 DBA sqgl-server, 41215 Shrinking of database on SQL server using DBCC while trans-
transac- action log showed that no transactions where open can be
tion-log, done using log reuse_wait_ desc query and further sp_ re-
dbcc, movedbreplication query to remove replication related objects.
database-size,
shrink

6 DBA sql-server, 45876 The only difference between full backup and copy-only-full-
transac- backup is that the full backup does not break up the differential
tion-log, 12, log chain while neither of them breaks the transaction log
backup chain nor they truncate the transaction log file.

7 DBA sqgl-server, 13757 Prior taking the backup, to safely remove the SQL server trans-
transac- action log file use sp_ detach__db procedure. This procedure
tion-log, make sure that SQL server records the fact that database was
backup, shut down cleanly.
delete

8 DBA sql-server, 162628 Taking a transaction log backup and truncating the log and
backup, then deleting the transaction log backups this would only
transac- work if the tool is using its own tracking to know which log
tion-log files are to be restored for the proper functioning of log-chain.

9 DBA sql-server, 12474 During the maintenance of transaction-log file it should be
transac- make sured that there are no error in backing up transaction
tion-log, log otherwise file size would grow and system would run out
mainte- of space.
nance

10 SF monitoring 1845 Here monitoring of different types of log files, systems and

24428 their different features is being made.
53000
53699
53894
437369
11 SF syslog, 96720 Different tools like logrotate, splunk linked to syslog log files
logfiles 42527 are studied.
49042
62687
12 SF Apache 322116 To catch all access log with Apache virtual hosts, to write
355311 wuseful awk and grep scripts for Apache logs and such other log
based features based are provided by Apache.
13 SE exceptions 15502 Different features to handle different types of logging excep-
20109 tioms.
130250
272771
306032
14 SE object 82,499 It provides features like best design perspective for log-
230, 131 ging, need of logging while doing TDD(Test-driven develop-

ment).

120

Harshit Gujral et al.

Table 5 continued

S.No. WB Tag ID Context
15 SE debugging 84, 301 It explains use of the concept like timestamping, main-
225,903 taining transactions log and logging for the purpose of
debugging.
16 SE design 27, 595 It provides different design perspective for best logging prac-
782,499 tices.
153
17 SE programming 2, 727 Tt tells us to write efficient programs which make significant
713, 729 use of logging.
415, 500
18 SU monitoring 103, 222 It explains monitoring concepts of logging from the net-
143, 658 work perspective.
226
19 SU filesystems 22,674 It explains filesystems with respect to logging issues.
420, 321
236, 100
20 SU Linux 106073 It helps in logging different processes, files in operating
222912 system Linux (Ubuntu).
226744
330590
351387
21 SU Windows 153 It helps in logging different processes and files in OS
106073 Windows.
145086
219401
22 SO log4net 192456 The Apache log4net library is a tool to help the programmer
756125 output log statements to a variety of output targets.
50599689
50591008
23 SO log4j, 1140358 Apache Log4j is a Java-based logging utility.
12532339
728295
24 SO logcat 7959263 Logcat is a command-line tool that dumps a log of system
2250112 messages, including stack traces when the device throws an
3280051 error and messages that you have written from your app with
19897628 the Log class.
25 SO boost 34362871 Boost is a set of libraries for the C++ programming language
17844085 that provide support for tasks and structures such as linear
39247778 algebra, pseudorandom number generation, multithreading,
34394896 image processing, regular expressions, and unit testing.
26 SO SLF4J 11916706 SLF4J or Simple Logging Facade for Java provides a Java
7421612 logging API by means of a simple facade pattern.
8965946
14024756

11639997

A Three Dimensional Empirical Study of Logging Questions from Six Popular @ & A Websites

121

3.6.3. RQ3: How much time it takes to get the
accepted answer for logging questions?

Motivation: In this RQ, we compute time taken
by the logging questions to get an accepted an-
swer. We believe that answer to this RQ can
be beneficial in identifying type of logging is-
sues that are most time consuming. For example,
server related issues can be more time consuming
as compared to others.

Approach: We perform three types of analysis
to answer this RQ. First, we compute the average
time taken by the logging questions to get ac-
cepted answer. Second, we compute average time
taken by the logging questions to get accepted
answer for each year separately for all the six
websites. We also compute standard deviation
for both the analysis. Third, we create box plot
of the time taken by the logging questions to
get the accepted answer. We compute both av-
erage time graph and box-plot because average
computation is affected by outliers and can give
mis-leading results, whereas in box-plot analysis
all the outliers are clearly visible.

Results: Figure 6 shows the average acceptance
time for all the logging questions for all the years
combined. Figure 6 shows that mean time to
get accepted answer for SU and SF websites are
much higher as compared to other websites. The
mean time of acceptance of SU and SF web-
sites in 36761.93 (in hours) and 26034.32 (in
hours), respectively. The standard deviation of
SU (198665.32) website is much higher as com-
pared to other websites, i.e. AE (76106.25), DB
(119476.32), SF (159452.76), SE (167535.09), and
SO (138574.83).

Figure 5 shows the average acceptance time
for all the logging questions for all the years sepa-
rately. We observe that for each website whenever
there is an increase in the mean acceptance time,
there is corresponding increase in the standard
deviation, which indicates presence of potential
outliers, i.e. questions that took a large amount
of time to get the accepted answer in all the
websites. Additionally, we observe presence of
several questions which took almost 0 time in
getting accepted answer. For example, SO has

156 questions that took 0 second to get an ac-
cepted answer. Figure 5d shows that the mean
time taken by the SE questions is very less for all
the years. In year 2012, there are some question
in SE that took much longer to get the accepted
answer. The SE website invites questions on pro-
gramming practices. If there is some question
which is taking a large amount of time, it can
indicate some fundamental programming issue or
concern with logging in which software develop-
ers are facing problem. We analyze five questions
on SE website that took large amount of time to
get accepted answers (refer to Table 6). Following
is the detailed analysis of two such questions:
In question 1 (id: 291757), the user is asking
about “a better method to handle precondition
and logging”. The experts suggested the user
to use throw and assert statements. Following
a snippet of expert comment:
When implementing this, you should
rarely decide on how to handle the error,
at the place where it occurs; instead, you
should throw an exception and let client
code decide.
In question 2 (id: 208471), the user was asking
a fundamental question about a better method
between file or database to use for logging. The
expert suggested the user to use file as he was not
needing any complex processing of the log used.
Following is the snippet of expert comment:
Both options seem valid to me. In such
cases, a useful rule to apply is to do
the Simplest Thing That Could Possibly
Work. Text files are easier to get started
with and are expected to work reasonably
well at least in the beginning. Once re-
quirements arise that are better satisfied
using a database, it will be trivial to im-
port them. Using this strategy, you post-
pone design decisions as long as possible
(but not longer than that). As such, you
don’t do unnecessary work. When, if ever,
it will be needed, you will have a much
better understanding of what exactly it
is you need. Hence, you are more likely
to build the Right Thing and not waste
time building the Wrong Thing.

122

Harshit Gujral et al.

ANDROID
150000 ® S
HE Mean
125000
m
£ 100000
£
c
< 75000
[0]
£
£ 50000
25000 I
0 — | [|
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Years
(a) AE
SERVERFAULT
200000 O &b
HE Mean
g 150000
£
£
< 100000
£
=
50000
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Years
(c) SF
STACKOVERFLOW
300000 —
250000 I Mean
£ 200000
£
£ 150000
()
£
£ 100000
50000

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Years

(e) SO

DBA
250000 ® SO
I Mean
200000
mn
e
‘€ 150000
£
[0]
2 100000
=
50000
0 ° — E— . - [|
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Years
(b) DB
SOFTWAREENG
400000 ® SiD
HE Mean
& 300000
£
£
£ 200000
()
£
100000 l
0
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Years
(d) SE
SUPERUSER
350000
® SiD
300000 I Mean
= 250000
£
£ 200000
£
@ 150000
£
= 100000
50000

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Years

0

(f) SU

Figure 5. Mean time to get accepted answer for logging questions

Figure 7 shows the box plot of the time
taken by the logging questions to get the ac-
cepted answer. Figure 7 shows that the median
acceptance time of logging questions on the AE
website is much higher as compared to that of
other websites. For example, the median accep-
tance time (in minutes) for logging question on
the AE website is 3093.39 (2011), 113.2 (2012),
4475.32 (2013), 292.30 (2014), 790.49 (2015),

277.74 (2016) whereas for the SO website is the
median acceptance time is 46.96 (2011), 65.41
(2012), 78.43 (2013), 111.94 (2014), 139.91 (2015),
151.86 (2016). There can be several reasons for
this kind of behavior for example may be AE
logging questions are more complex as compared
to other logging questions or there can be lack of
user participation of the AE website as compared
to other websites.

A Three Dimensional Empirical Study of Logging Questions from Siz Popular) €& A Websites

123

200000 ® St
Il Mean

150000

100000

Time (in mins)

50000

., I oen m H o=
AN DB SE SF SU SO

Years

Figure 6. Combined mean

RQ3 conclusions: The mean time to get ac-
cepted answer for logging questions on SU and
SF websites are much higher as compared to
other websites, whereas, the median acceptance
time of logging questions asked on AE is much
higher as compared to the other 5 websites.

3.7. RD2: Programming language
analysis

This research dimension provides an insight into
the development of source-code logging tools
and libraries. Results would be helpful to ana-
lyze the dependency of programming language
with source-code logging across various plat-
form. Results estimate programmer’s interest
and discussion with respect to various languages.
This will help developers to choose a program-
ming language for developing logging tools based
upon various environment and platforms. For
Example, Server (SF) and super-user (SU) ori-
ented applications suggest a large interest in
C-based logging tools while for software engineer-
ing, C#, Java, and C++ seems to be a viable op-
tion.

3.7.1. RQ4: How pervasive is software logging
related questions on community based
Q & A websites across programming
languages over the years?

Motivation: In this RQ, we analyze the dis-
tribution of logging question in different pro-
gramming languages over past several years. Log-
ging frameworks for various programming lan-
guages can vary in-terms of their capabilities
and performance with respect to features such as
type-safety, thread-safety, flexibility and porta-
bility. Our objective is to gain insights on the
quantity of questions asked on logging frame-
works for multiple programming languages. We
believe that answer to this RQ, can be benefi-
cial in identifying the programming language(s)
in which software developers face most of the
logging issues. It can also be beneficial in iden-
tifying the languages in which logging interest
is increasing or decreasing. Answer to this RQ,
can be used to tune future logging automation
or prediction tools.

Approach: To answer this RQ, we select top
6 programming languages: C, C++, C#, Java,

Table 6. Top 5 most time consuming questions on the SE website

S.No. Question Id Answer Id Question Time (in minutes)
1 291757 292108 Better way of handling pre conditions and logging 4647.95
2 208471 209261 Is SQLite a sensible option for data logging? 10154.03
3 220557 223273 Finding patterns in logs 44275.5
4 232143 244595 Strategy to store/average logs of pings 130175.27
5 149346 298292 Logging asynchronously — how should it be done? 1761970.55

124 Harshit Gujral et al.
ANDROID DBA
25000 4000
20000 A—|;
3000
B B
= 15000 €
£ £ 2000
(0] [0]
£ 10000 £
= =
1000
N il & é & &
=L &S = D o | O &
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Years Years
(a) AE (b) DB
SERVERFAULT SOFTWAREENG
5000 2500
4000 2000
z z
€ 3000 € 1500
£ £
[0} [0}
£ 2000 £ 1000
= =
1000 500
0 I£| & I‘—_LI 0 = = O = Iil
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Years Years
(c) SF (d) SE
STACKOVERFLOW SUPERUSER
4000 12000
10000
3000
g E 8000
£ £
£ 2000 £ 6000
£ £
i [4000

“hic

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Years

(e) SO

- .eoUbho0.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
Years

(f) SU

Figure 7. Box Plot showing time to get accepted answer for logging questions

Python, and JavaScript. Next, we extract all the
logging related questions for these six program-
ming languages. We collect data from all the six
websites considered in this work, i.e. SO, SU, SF,
DB, SE, and AN. We extract these questions in
two steps:
— First, we manually identify the tags related
to popular logging libraries used in these six
programming languages. Table 7 shows the

list of tags that we identified. We select all
the questions consisting of any of these tags.
Logging questions are then assigned to their
respective programming languages.

— Second, we select all the questions that con-
sist of any of the programming language
tag, i.e. ‘C’, ‘C++’, ‘C#’, ‘Java’, ‘Python’,
‘JavaScript’. From these questions, we filter
all the questions that consists of any ‘logging

A Three Dimensional Empirical Study of Logging Questions from Six Popular @ & A Websites

125

Table 7. Tags that we used to extract questions related to programming languages

Programming Tags

language

Java LogdJ, SLF4J, tinylog, logback, Apache Commons Logging, google-cloud-java,
commons-logging, jboss-logging, syslogdj, otroslogviewer, log4j, log4j2, log4jdbc, jul-to-slf4j,
hyperloglog.java, java.util.logging

C Log4C, sclogdc, syslog, zlog, zf log, logdc

C++ glog, logdcplus, pantheios, boost::log, easylogging++, logdcxx, boost, boost-log,
boost-logger, boost.log, spdlog, logdcpp

Python pygogo, Logbook, google-cloud-python, django-logging, logger-python, hyperloglog.python,
unified-log, auth.log, graylog, graylog2

C# logdnet, NLog, Enterprise Library, Common.Logging, log4net-configuration,
logdnet-appender, logdnet-filters

JavaScript js-logging, Logdjs, logdJavaScript, JSNLog, Node-Loggly, Bunyan, Winston, Morgan,

Angular-Loggly, loglevel, jsnlog, log-level, logsene-js, node-nslog, truncate-logs-js

tag’ The logging questions are then assigned

to the respective programming language.
Results: Figure 8 present the number of log-
ging questions asked in each year (2008-2017)
for all the six programming language consid-
ered in this work. In this Figure, y-axis repre-
sents the number of logging questions asked in
each year. We kept the y-axis scale same for all
the programming languages for better visualiza-
tion of logging questions trend across the web-
site. We draw several interesting observations
from the Figure 8. First, it shows that users
have asked the highest number of logging re-
lated questions for Java and C++. A total of
51723 logging questions are asked on these web-
sites out of which 73% (i.e. 37935) questions be-
long to Java and C++. Second, it shows that the
number of logging questions are increasing for
Python and JavaScript. For example, the num-
ber of logging questions asked in Python are :
11 (2008), 66 (2009), 149 (2010), 247 (2011), 323
(2012), 465 (2013), 512 (2014), 571 (2015), 701
(2016), 789 (2017). We also observe an increas-
ing trend for logging questions in Java (except
in the year 2016). Whereas, we observe a de-
creasing trend for logging question in C++ and
C# after the year 2013.
RQ4 conclusions: A majority of logging ques-
tions belong to C++ and Java programming
language. The trend of number of logging

questions is increasing for Java, Python, and
JavaScript, whereas it is decreasing or constant
for C, C++, C#.

3.7.2. RQ5: What is the trend of logging
questions with respect to different
programming language for each Q & A
website?

Motivation: In this RQ, we analyze the dis-
tribution of logging questions with respect to
different programming languages for different
websites. Each website represents a specific do-
main. Analysis of the logging questions asked
in different programming language with respect
to different website can be beneficial identifying
the programming language in which most of the
questions arise on that domain.

Approach: To answer this RQ, we compute to-
tal number of logging questions asked in each year
on each website. For each website, we grouped
the logging questions with respect to each pro-
gramming language.

Results: Figure 9 shows the programming lan-
guage wise trend of logging question with re-
spect to each website. The results of the RQ4,
show that Java, C++ and C# are dominant pro-
gramming language in which most of the logging
questions are asked. However, results of the RQ5
show that different programming language show

126

Harshit Gujral et al.

3500

3000

2500

2000

1500

Number of Questions

1000

500

3500

3000

2500

2000

1500

Number of Questions

1000

500

3500

3000

2500

2000

1500

Number of Questions

1000

500

dominance (language in which the highest num-
ber of logging questions are asked) for different
website. For example, for the SO website C++ and
Java are dominant language whereas for the SF

C#

0\6 0'\1

’LQQ% ?’QQQ %Q\Q ’L AN ’LQ‘\QI '_LQ»\'B Ab %\‘J
(a) C#

C

Impn——_——— - § § § § § |
B O g @ e et g g e

(c) C

JAVASCRIPT

PP p® gt e g e g g o

(e) JavaScript

Number of Questions

Number of Questions

Number of Questions

3500

3000

2500

2000

1500

1000

500

3500

3000

2500

2000

1500

1000

500

3500

3000

2500

2000

1500

1000

500

O o\ Q'U— Q\’b e Q\‘D 9\6 g«’l

o e o
(b) C++

JAVA

B N A L LN SN LN
(d) Java

PYTHON

rLQQ‘b r)S)QQ rLQ'\Q 1'),0'\’\ rLU'\rL qp'\% qp’\b(qp\b 10\6 rzpl\,l

(f) Python

Figure 8. Count of logging questions for various programming languages

RQ5 Conclusion: Different websites have dif-
ferent programming language that is dominant.
For the SO website C++ and Java are dominant
language whereas for the SF and SU website, ‘C’

and SU website, ‘C’ is the dominant programing
language. For the SE website, we did not observe
any particular trend with respect to different pro-
gramming languages. The AE and DB websites
consists of very few logging questions and hence,
we not able to extract any significant insight.

is the dominant programming language.

3.8. RD3: Content analysis

Source code logging exists in various forms and
across various disciplines. Results of this dimen-

A Three Dimensional Empirical Study of Logging Questions from Siz Popular) €& A Websites

127

AE
1.2
- e Java
%10 a C
% x C++
g 0.8 + Python
G C#
% 0.6 1 Javascript
5 Android
— 04
o
e}
E o>
P4
0.0 -
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
(a) AE
SE
e Java
8 A C
x C++
6 * Python
C#
1 Javascript

Android

Number of questions asked

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
(c) SE
SO

4000

e Java

A C
3000 % Ct+

* Python

2000

1000

Number of questions asked

el — = .

2008 2009 2010

(e) SO

2011 2012 2013 2014 2015 2016 2017

DB

1.2
= e Java
S10 a4 C
% x C++
g 08 % Python
. c#
%0.6 1 Javascript
5 Android
= 04
[}
o
g 0.2
P4

00 = s s X L A)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
(b) DB
SF

- 80 e Java
2 A C
[2]
@ x
2 60 *
el
7]
g
o 40
©
:
g 20
>
zZ

w pvi

2012 2013 2014 2015 2016 2017

—3 —

2008 2009 2010 2011

(d) SF
SuU
5 e Java
20 a1 C
% x C++
»
.5 15 * Python
2 C#
% 1 Javascript
= 0 Android
@
o
£ 5
=]
zZ

p— - 4 - s

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

(f) SU

Figure 9. Count of logging questions for various programming languages for each of the six websites

sion provide an overview of most discussed log-
ging topics. This insight will help developers to
keep in mind these discussions while developing
logging tools and libraries. It would also aid to
keep a track of logging-related issues and needs
of programmers. Additionally, it also provides

insight about cross-discipline logging tools and
practices, for example, the transaction log is used
in both server environment (SF), Stack Overflow
(SO) and database (DB) while event-logging prac-
tice is observed in super-user (SU) and Stack

Overflow (SO).

128

Harshit Gujral et al.

Pre-

brocessed text -

Dataset of six
Q&A websites

LDA-based Topic
Analysis model

=

Extracted
Posts

Removal of
embedded
source code

=

Removal of token Tokenisation and

with unit
frequency

stopwords removal

Figure 10. Pre-processing steps of LDA

3.8.1. RQ6: What are the main discussion
logging topics in various websites?

Motivation: In this RQ, we analyze main dis-
cussion topics present in the logging questions.
Identifying major logging discussion topics can
be beneficial in finding logging tools and libraries
in which software developers face most difficul-
ties. Since, we are analyzing logging topics on six
websites, it can also be beneficial in identifying
types of problems that developers face on each
website.

Approach: We use LDA algorithm for identi-
fying topics present in the logging questions in
each website. We use Python library Gensim
[34] in our work. LDA algorithm require three
input parameters: corpus, number of topics, and
number of iterations. Hence we first create our
corpus. We extract title and description of each
question to build the initial corpus. We apply five
pre-processing steps to clean the initial corpus
(refer to Figure 10 for details). First, we remove
all the source code snippets from the description
of the questions, i.e. we remove all the content

between ‘<code>’ and ‘<code>’ tag. Second, we
remove all the HTML tags such as ‘<p>, <a
herf... >’ from the description of the questions.
Third, we remove all the English stop words, i.e.
‘the’, ‘is’, etc. Stop words are non-content bearing
terms that do not add meaningful insight towards
our goal. Fourth, we apply stemming to convert
words to their root form. For example, the term
‘programmers’ is converted to ‘programmer’. We
use Porter Stemmer algorithm for stemming [35].
Fifth, we remove all the words that occur only
once in the corpus. LDA takes number of topics,
i.e. K, as the second parameter. Since, there is
no best value known for K that is suitable for all
types of dataset. We vary the value of K from 10
to 50 and select the value giving the best results.
The third parameter to LDA algorithm in the
number of iterations. In this work, we set the
number of iterations equal to 500.

Results: We analyze results given by the LDA
algorithm. The results showed that for all the
websites we were getting meaningful topics for
K = 50, hence, we selected this value. Table 8
shows some of the topics discovered for each web-

A Three Dimensional Empirical Study of Logging Questions from Six Popular @ & A Websites 129

site. Following is the detailed discussion about
the topics obtained in each website:

SO: We discovered logging topics related to
different domains on SO website. For exam-
ple, logging topics in OOP, classes, etc. Log-
ging topics in different programming languages
like Java, Python, C#, C. We also find top-
ics related to programming features like ob-
ject oriented programming language, file han-
dling, class features. Table 10 shows an il-
lustrative example of a logging question for
Python programming language asked on the
SO website.

SF: In SF website, we observe logging topics
related to issues to various servers like email
server, tomcat server, Apache server. In addition,
we observe topics related to networking and sys-
log. Table 10 shows an illustrative example of
a logging question related to networks asked on
the SF website.

SU: In SU website, we find logging topics related
to Windows, USB, message server, command line,
etc. Table 10 shows an illustrative example of
a logging question related to USB asked on the
SU website.

Table 8. Popular logging topic identified in all the six websites

Android Enthusiast, K = 50

Topics

Words

document processing in system

log in Android applications
log in tablet

log in Android phone

log in device

apps

log in network connection

document, write, store, readonly, writing, system
adb, logcat, applications, Android, device, bootloader
adb, tablet, file, files, log, applications

log, phone, app, Android, apps, time

log, logs, apps, storage, device, problem

apps, google, exception, phone, install, exit

log, WiFi, network, IP, DHCP, connect, logcat

Database Administrators, K = 50

Topics Words

Backup Restore Backup, log, transaction, backups, restore, recovery
Binarylog in MySQL Binlog, MySQL, Binlogs, Binary, Logs

databases null, bigint, int, varcharl5, commit, set

rebuliding indexes

SQL features

memory allocation
transaction-log in databases
log in databases server
binlog in MySQL server
PostgreSQL

log in SQL databases server
log in Oracle databases

index, rebuild, progress, task, query, source, end
table, rows, column, insert, values, id

reserved, allocated, commited, pages, kb, node

select, query, transaction, log, table, join

logs, db2, server2, server, databases, transaction
binlog, mysqlbinlog, query, MySQL, server, endlogpos
master, slave, Postgres, PostgreSQL, archive, wal

log, SQL, database, databases, server, mirroring
redo, Oracle, database, log, logs, files

Server Fault, K = 50

Topics

Words

log in network

syslog in messaging

log in email server

log in Tomcat server

log in Apache server
different syslog in messages
log in SQL server

TCP, UDP, log, port, lo, accept

syslogng, log, destination, source, get, messages
ip, email, mail, Logwatch, server, postfix

log, file, Tomcat, logs, server, files

Apache, log, errorlog, logs, acesslog, server
rsyslog, syslog,varlogmessages, log, logging, logs
server, log, database, server, backup, transaction

Harshit Gujral et al.

Table 8 continued

Stack Overflow, K = 50

Topics

Words

OOP

features of class
log in Python

log in Java

file handling
programming features
log in files

log in Java Tomcat
C programing

log in Python file
log in file using C#

int, include, class, void, char, const

public, void, static, class, private, new, import, null, return, string
logging, logger, import, Python, log, logback

log4j, spring, maven, class, log4j2, logdjwarn, logger

file, included, main, line, appender, stdout

undefined, reference, const, function, stdallocator, external
file, log, files, logs, line, write

file, log, log4j, logger, Tomcat, logdjproperties

include, const, return, int, typedef, function

logging, logger, file, log, Python, logback

log4dnet, appender, file, log, using, config

Superuser, K = 50

Topics

Words

log in Windows computer
log using USB

syslog in message server
log in openg] file

log in file using command line

Windows, log, application, logs, computer, service
USB, device, plugged, logs, file, drive

syslog, server, log, syslogd, mesaages, information
system, opengl, log, logs, file, extension

file, log, command, log, commands, output

Software Engineering, K = 50

Topics Words

Java public, void, static, try, catch, throw, class, exception

log in client server log, client, server, clients, logger,request

log in OOP’s exception, log, throw, method, catch, logging

software software, license, disclaimer, copyright, warranty, warranties

log in databases

log in user application

log and exceptions

logging in project

log in files

multithreading in C in Unix
log in applications

log in systems

logging in languages and OS

log, database, table, SQL, file, user

log, user, application, logging, logged, data

logger, log, exceptions, exception, logging, logginggetlogger
project, logging, compiled, library, shared, core

log, files, appender, file, tests, application

multithreading, Unix, C, code, library, boost

logs, log, message, loglevel, application, information
system, logging, libraries, log, developer, exception
logdcexx, logdj, C, Java, Windows, Linux

Table 9. Categorical detail of observed logging-related tags

Category Name Tags Websites Description
Logging logging AE, Consider base of our analysis. Logging tag is used in
General DB, SE, all the six websites.

SU, SO

A Three Dimensional Empirical Study of Logging Questions from Six Popular @ & A Websites

131

Table 9 continued

Category Name Tags Websites Description
Log-ship- log-ship- DB, SF, It is a process of restoring transaction-log files
ping ping SO on a standby server after creating a backup of
General transaction-logs on a primary database
Log Files logfiles, log- SO, SF, It is a record of events that occurs in an operat-
files, trans- SU ing system, software runs, etc. Transaction Log and
action-log Event logs forms a sub category of log files [36].
Transaction- transaction- DB, A transaction log is a log of communication or trans-
log log SO, SF actions between a system and clients of that system.
Event Log event-log SO, SU Event logs aims to provide an audit trail that can be
employed to understand the activity of the system
and to diagnose problems. They forms the basis of
Types of understand activities of complex systems such as
Logging server applications.
Error-log error-log, SO, Error-log is the collection of errors encountered dur-
error-logging DB, SU ing execution of a program.
Binary-log binlog, bina- SF, SO, A binary log consist of binary log files and an index
rylog DB and is similar to transaction-log. They are used to
restore data after backup.
Syslog syslog SO, SF, Syslog is the standard protocol for message logging.
SU
Rsyslog ryslog SF, SO It is widely used in Unix and Unix-like operating
system as a utility for transferring log messages in
an IP network. It extends basic syslog protocol to
Svsl d content-based filtering along with providing features
yslog an such as using TCP for transport.
Syslog
utilities syslogd syslogd SF, SU It provides provision for system logging and kernel
message trapping. It supports both local and remote
logging.
syslog-ng syslog-ng SO, SF syslog-ng extends syslogd model by adding
content-based filtering, flexible configuration, TCP
transport, etc.
Graylog graylog, SO, SF Graylog is an Open-Source log capture tool and pro-
graylog2 vides analysis solution for operational intelligence.
NXLog nxlog SO, S NXLog is a log collector and supports log collection
from multitude of sources and formats, e.g. event logs
Logging from TCP, UDP, file, databases, syslog, Windows
Tools event log, etc.
.and- Logparser logparser SO, SF, Logparser is a command line tool designed to au-
Libraries DB tomate tests for Internet Information Services (IIS)
logging.
Logwatch Logwatch SF, SU Logwatch is a log parser and analyser.
Logstash logsash SO, SF Logstash is used for managing events and logs. It

deals with log processing, storage and searching.

132

Harshit Gujral et al.

Table 9 continued

Category Name Tags Websites Description
Hugo hugo SO, SU, The Hugo logging plugin is used to log debug state-
SF ments with the help of annotations.
Logging Log4j log4k SO, SF Log4j is Java-based logging utility developed by
Tools .
1 Apache Software Foundation.
an
Libraries Lynx lynx SU, SO Lynx is the Android logging library.
mysqlbinlog mysqlbinlog DB, SO It is a utility used to process binary and relay logs.
Boost Boost SO, SF, Boost is a C++ based logging library.
SE

DB: In DB website, we observe logging topics
related to various domains like backup, SQL fea-
tures, indexes, memory allocation. Additionally,
we observe topics related to DB servers like Ora-
cle and MySQL servers. Table 10 shows an illus-
trative example of a logging question related to
transaction-log asked on the DB website.

AE: In AE website, we observe topics related to
document processing, tablet, Android phone, and
logs in network connection. Table 10 shows an
illustrative example of a logging question related
to networking asked on the AE website.

SE: In SE website, we obtain a wide variety
of logging topics related to OOP, Java, files,
databases, etc. Additionally, we observe topics
related to exception and multi-threading. Ta-
ble 10 shows an illustrative example of a logging
question related to object oriented programming
asked on the SE website.

RQ6 conclusions: For each website, we obtain
logging topics related to different features such
as programming language, transaction log, net-
working (Table 9).

3.8.2. RQ7: What is the distribution of
logging-related tags across various Stack
Exchange websites? And how persuasive
is the commonality between these tags
along various Stack Exchange websites?

Motivation: In this RQ, we analyse logging-re-
lated tags. Logging related tags mostly represent
logging libraries, tools and technologies. This is
a pressing need of our analysis to investigate

distribution of these logging tags across various
Q & A websites. This can be beneficial to find
common logging libraries across six-websites as
tags are the medium of classification on these
websites. Distribution of these logging tags across
various websites will provide us cues regarding
common logging tools and libraries employed
across various environments their trends. This
may help the developers to design a common
tool across different platforms capable of solving
multiple problems.

Approach: In order to provide a compen-
dious analysis, for this RQ, we have considered
logging-related tags that are present in at-least
two websites.

Results: Results of this analysis is divided into
four categories, first, General Logging tags, sec-
ond, Syslog and Syslog-based utilities, third,
types of logging, and fourth, logging tools and
libraries. Figure 11 depicts the observed results
of our analysis. Center of the bubble depicts
logging-related tags while its diameter corre-
sponds to observed frequency. Following are the
results of each category:

General Logging tags: This category consists
of tags namely logging, log-files and log-shipping.
The chief objective of log shipping is to ensure
high availability of database by creating backup
server that can replace production server quickly.
It is used by both server engineers and database
administrator on SF and DB respectively along
with that this technique is further supports by
well-known servers and databases namely Mi-

A Three Dimensional Empirical Study of Logging Questions from Siz Popular @ € A Websites

133

Table 10. Example post from various websites of the selected topic: WS: Website, QID: Question Id

WS Topic QID Title Body

SO login 41666158 logdj/logback I want to do something which seems really straightforward:
Python pass logger just pass a lot of logging commands (maybe all, but par-

level as ticularly WARN and ERROR levels) through a method in

a parameter a simple utility class. I want to do this in particular so that
during testing I can suppress the actual output to logging by
mocking the method which does this call.

SF log in 508349 Rsyslog not I am trying to set up a centralized log server. I have central
network logging from server (A) receiving logs via a remote server (B) on port 514.

remote I know it is receiving these. Here are a few entries from a tcp-

server dump on port 514... I have made sure to restart rsyslog every
time I edit rsyslog.conf and I am running the start daemon
with the -r and -t flags, even though they are deprecated in
my current version. So why isn’t anything coming in on port
514 being written to test.log?

SU log 849950 Logging T'am currently trying to find a way to log all of the connections
using when and disconnections of USB devices from all of the Windows
USB someone machines on our network. This information needs to automat-

connects or ically be logged to a file on the machine, this file can then be
removes read by nxlog and then get shipped to our centralised logging
a USB platform for processing. I was hoping that this information
device would be logged by Windows logs automatically, but I found
to/from that while some information about USB removable storage
a Windows appears to get logged to Event Viewer, this is quite limited
machine information and doesn’t pick up when USB keyboards and
mice are connected and disconnected. . .
DB Transaction 6996 How dol How do I truncate the transaction log in a SQL Server 2008
log truncate the database? What are possible best ways? I tried this from
transaction a blog as follows: 1) From the setting database to simple
log in a SQL recovery, shrinking the file and once again setting in full
Server 2008 recovery, you are in fact losing your valuable log data and
database? will be not able to restore point in time. Not only that, you
will also not be able to use subsequent log files. 2) Shrinking
database file or database adds fragmentation. There are a lot
of things you can do. First, start taking proper log backup
using the following command instead of truncating them and
losing them frequently.

AE login 85114 Does I have a WiFi network to which I connect at work. The IP
network Android save address has always been DHCP, but today the DHCP server
connec- a log of its is down. If I can figure out what IP address I had, I can set it
tion own IP statically (after checking to make sure another device hasn’t

addresses? already taken it, via ping from my desktop). Does Android
have a log anywhere of the IP addresses it is leased? I have
root and thus can look at any file on my phone.

SE login 255372 Logging I’'m building a multi-tier enterprise application using Spring.
OOP’s exception in I have different layers: Controller, Business and Provider.

multi-tier Within the application I’ve built a custom error handling
application mini-framework that is based on a single RuntimeException

which has an error code to discriminate different kind of
erTors. . .

134

Harshit Gujral et al.

transaction-log
error-logging
lynx

logging
mysqlbinlog
log4j

hugo

syslog
syslogd
logstash
syslog-ng
binlog
log-files
binary-log

log-shipping
graylog
boost
logwatch
logparser
nxlog
graylog2
error-log o
event-log
logfiles ®

Logging Tags

rsyslog o

AE
DB
SE
SF
SuU
SO

Figure 11. Bubble diagram of tags that are present in more than one website

crosoft SQL Server, 4D Server, PostgreSQL and
MySQL [37-39].

Syslog and Syslog-based utilities: Syslog is
the standard protocol for message logging. Sys-
log is commonly used for system management,
security auditing and debugging analysis [40]. It
provides provision for system logging and ker-
nel message trapping. Many utilities extends
syslog-based models, two of them are namely
Rsyslog and Syslog-ng. These are commonly used
by system programmers of SO and SF. Rsyslog
website claims it to be Swiss army knife for log-
ging [41]. Rsyslog extends basic syslog protocol
to content-based filtering along with providing
features such as using TCP for transport while
Syslog-ng extends syslogd-model and thereby en-
hancing existing features [42, 43]. Both of these
utilities are used for system logging while it is ob-
served that Rsyslog is more popular on SO and SF
than syslogd depending upon their tag frequency.

Types of Logging: Error Logging, Transaction
logging, Event-logging and Binary-logging are
some of the popular types of logging used by
programmers of SO, SF, DB and SU. Error-logs
are widely used for troubleshooting and bug fix
[44]. Error logging is observed on SO, DB and
SU. Event logs aims to provide an audit trail
that can be employed to understand the activity
of the system and to diagnose problems. They
forms the basis of understand activities of com-
plex systems such as server applications. Event
logging is observed in SU and SO Highest number
of transaction-log tags and binary log tags are
observed in DB. This may be attributed to the fact
that in order to allow the database to recover from
crashes or other errors and to basically maintain
consistent state, most of the databases maintain
a transaction log [45]. Binary log is similar to
transaction log, it records all changes in the
databases including both data and structure [46].

A Three Dimensional Empirical Study of Logging Questions from Six Popular @ & A Websites

135

Logging Tools and Libraries: Many logging
tools and libraries are used by programmers to
manage and process logs. Some of the popu-
lar logging tools detected in our analysis are
Graylog, Graylog2, NXLog, Logparser, Logwatch,
Logstash, Hugo, Lynx, Log4j and mysqlbinlog.
Graylog and NXLog tag is frequently observed
in both SF and SO. Usage of Graylog may be
attributed to the fact that Graylog is a server
that collects log messages along with that pro-
vides an interface for analysis and monitoring
[47]. This tools is frequently used by Server Ad-
ministrators while NXLog’s high-performance
I/0 layer make it capable of handling thousands
of parallel client connections in order to process
huge log volumes [48]. Thus making it suitable
for use in Server Environments. Logwatch pro-
vides feature to deliver a unified report of all
activity on a server through command line or
email to the administrator [49, 50]. Logparser is
designed to automate tests for IIS logging. IIS
is an extensible web server created by Microsoft
used by database and server administrators. It
aims to provide query axis to text-based data for,
e.g. log files, XML, CSV, etc. Logparser is fre-
quently observed on SF and SO while Logwatch
is chiefly present on SF only. mysqlbinlog is used
for processing binary log files and usage of this
tag is observed in SO and DB [51]. Among all
the above mention tools, frequency of usage of
Logstash tag is maximum on SF while frequency
of Log4j is maximum on SO. Logstash is one of
the components of ELT-stack. This ELT-stack
combination is widely used by Wikimedia Foun-
dation. Logstash collects all the log-events sent
by Wikimedia applications and stores them in an
Elasticsearch cluster followed by use of font-end
client Kibana in order to filter and display mes-
sages [52].

RQ7 conclusions: Syslog-based model
Rsyslog is more popular on SO and SF than
Syslogd-based model syslogng. System program-
mers tends to use transaction and binary logging
more than error and event logging. This may
be attributed to the fact that error and event
logging is not observed in SF while transaction
and binary logging is observed. DB Administra-

tors tends to use transaction logging and binary
logging frequently in order to maintain consis-
tency of their database. Among all the websites
observed tag frequency of transaction and binary
logging is highest for DB. Among all the logging
tools and libraries namely Logparser, Logwatch,
NXLog, GrayLog, Logstash, Hugo, Log4j, the
popularity of Logstash is maximum on SF while
popularity of Log4j is maximum on SO in terms
of tag-frequency.

4. Threats to validity

In this section, we discuss various threats to va-
lidity related to the results presented in this work.
Threats to external validity: In our study,
we conduct experiments on 82 K logging ques-
tions from six different Q & A websites of the
stack exchange network. These websites are sub-
ject to a general audience (e.g. SO) and spe-
cific audiences (e.g. AE, SF, DB, SU, and SE).
Hence, we have depicted the results of source
code logging analysis separately for each domain.
Logging-related results can be generalized within
a domain but may not be generalized across
domains. However, results of SO provides a ba-
sic level of generalization considering its vast
audience across multiple domains.

Threats to internal validity: For topic gener-
ation using LDA, we have used K = 50 for all
six websites. However, this is done irrespective
of the size of the corpus of each website. Fur-
ther, all the code snippets were removed from
the analysis using regular expressions along with
HTML tags. We notice that previous studies
analyzing content from Stack Exchange websites
have also removed source code present in the
description of posts [16]. We further minimize
the threats of internal validity by using built-in
Python libraries (for example, Sklearn, NLTK)
for doing data processing.

Threats to construct wvalidity: It is con-
cerned with the identification of logging-related
tags that formed the basis of our study and
further interpretation of topics. Threats to
construct validity is categorized into 3 main

136

Harshit Gujral et al.

parts: the construction of programming
language-related tags, construction of gen-
eral logging-related tags and Interpreta-
tion of LDA-topics. First, There are several
programming languages. However, we selected 6
programming language through ostensible ran-
domization. Additionally, we use term program-
ming languages for programming languages as
well as scripting languages (JS). In order to deter-
mine the number of logging-related questions cor-
responding to programming languages, we have
used various logging libraries, tools, APIs, etc.
specific to that programming languages. Table 7
depicts these logging-related libraries, tools,
APIs, etc. corresponding to six-programming lan-
guages. These libraries are selected after rigorous
manual exploration of the internet and existing
research by best of our knowledge but due to
several programming-language related libraries
in the field, there may exist some libraries left
unexplored. Hence, C++ and Java have more
logging-related questions than Python and C
may be because some of Python or C related log-
ging libraries could be left unexplored. Moreover,
Boost is a set of libraries written in C++ and aims
to provide support for a multitude of tasks, for ex-
ample, algebra, unit testing, multithreading, etc.
Thus, Boost tag consists of a set of logging as well
as non-logging libraries for C++ which can affect
the results of the actual number of logging ques-
tions concerning C++. Second, Logging-related
Tags used in our analysis are depicted in Table 7.
Mostly, these tags are the comprehensive col-
lection of logging-related terms (transaction-log,
log-files, etc.) and logging-related libraries, Tools,
and APIs (SL4J, Logstash, etc.). Some of these
tags are used by developers in more than one
context, for example, Observed results of Lynx
and Hugo can be inconsistent as Lynx is a logging
library as well as a text-mode web browser while
Hugo is also a logging library but also a static
site generator written in Go. Third, Interpre-
tation of topics generated from LDA is not an
easy task [53] and can be subjective. Thus, first,
second author and corresponding author under-
stood the topics and derived the topic labels
and other authors verified them. In the cases

where topics were hard to interpret, we further
studied the questions related to them in order
to drive a label.

5. Conclusions and future work

Logging is an important software development
practice. Log statements present in the source
code are used to record important runtime in-
formation. Software practitioners can use this
information at the time of debugging. In past,
several research studies have been conducted that
propose solutions to help software developers in
source code logging. These solutions are helpful
but at present there is no study that analyzes the
issues that software developers face while logging.
In this paper, we perform a three dimensional,
empirical study of logging questions asked on
the six popular Q & A websites. We perform
statistical, programming language and content
analysis of logging questions. Our analysis helped
us to gain insight about the logging discussion
happening in six different domains of the Stack
Exchange websites.

Our analysis provides an insight about the
logging needs of software developers. Results of
our in-depth empirical study show that logging
questions are pervasive in all the Q & A websites.
The mean time to get accepted answer for logging
questions on SU and SF websites are much higher
as compared to other websites. It also shows that
a large number of logging question invite a great
amount of discussion in the SoftwareEngineering
Q & A website. We have found that software
developers face most of the logging issues in C++
and Java. It shows that the trend of number of
logging questions is increasing for Java, Python,
and JavaScript, whereas, it is decreasing or con-
stant for C, C++, C#. Researchers can use these
results to fine tune the automated logging tools
proposed by them. Companies can use these re-
sults to fine-tune their tools and to decide which
technique to support.

Our analysis also shows that different web-
sites have different dominant programming lan-
guage. For the SO website C++ and Java are

A Three Dimensional Empirical Study of Logging Questions from Six Popular @ & A Websites

137

dominant language whereas for the SF and SU
website, ‘C’ is the dominant programming lan-
guage. Researchers can use this information, for
example, if they are providing automated log-
ging tool for server they can target it with ‘C’
language, whereas, if they are making general
purpose logging tool, they can target it with
‘C++’ or ‘Java’.

Since, this is the first study of on logging
issues of Q & A websites, in this we explored
different dimensions of logging question in future,
we will explore more specific logging problems
faced by software practitioners. We plan to ex-
tend this work in several dimensions. First, at
present we have performed topic analysis using
question title and description only. In future, we
plan to perform topic analysis of answers as well.
Second, we plan to perform sentiment analysis of
comments associated with logging questions. To
find the overall sentiment of users about logging.
Third, we plan to perform topic analysis for small
time intervals like 1-3 months in order to to find
how topic related to logging are changing over the
period of time. Fourth, we will perform analysis
of most popular logging questions irrespective of
the website on which they are asked.

6. Acknowledgment

We thank our advisor and mentor Dr. Ashish
Sureka for providing guidance and inputs in this
project.

References

[1] Q. Fu, J.G. Lou, Y. Wang, and J. Li, “Execu-
tion anomaly detection in distributed systems
through unstructured log analysis,” in Proceed-
ings of the Ninth IEEFE International Conference
on Data Mining, ICDM ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 149-158.

[2] K. Nagaraj, C. Killian, and J. Neville, “Struc-
tured comparative analysis of systems logs to
diagnose performance problems,” in Proceedings
of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI'12,
2012, pp. 26—26.

[3] S. Lal and A. Sureka, “LogOpt: Static fea-
ture extraction from source code for automated
catch block logging prediction,” in Proceedings
of the 9th India Software Engineering Conference
(ISEC), 2016, pp. 151-155.

[4] S. Lal, N. Sardana, and A. Sureka, “LogOpt-
Plus: Learning to optimize logging in catch and
if programming constructs,” in Proceedings of
the IEEE J0th Annual Computer Software and
Applications Conference (COMPSAC), Vol. 1,
June 2016, pp. 215-220.

[6] H. Li, W. Shang, and A.E. Hassan, “Which log
level should developers choose for a new log-
ging statement?” Empirical Software Engineer-
ing, Vol. 22, No. 4, 2017, pp. 1684-1716.

[6] S. Kabinna, C.P. Bezemer, W. Shang, and
A E. Hassan, “Logging library migrations: A case
study for the Apache Software Foundation
projects,” in Proceedings of the 13th Interna-
tional Conference on Mining Software Reposito-
ries, MSR ’16. New York, NY, USA: ACM, 2016,
pp. 154-164.

[7] S. Lal, N. Sardana, and A. Sureka, “Improv-
ing logging prediction on imbalanced datasets:
A case study on open source java projects,” In-
ternational Journal of Open Source Software
and Processes (IJOSSP), Vol. 7, No. 2, 2016,
pp. 43-71.

[8] StackExchange Community, StackOverflow home
page. [Online]. https://stackoverflow.com/
[accessed: 26.12.2017].

[9] StackExchange Community, Serverfualt stack ex-
change home. [Online]. https://serverfault.com/
[accessed: 26.12.2017].

[10] StackExchange Community, Superuser Stack
Ezxchange home page. [Online]. https:
//superuser.com/ [accessed: 26.12.2017].

[11] StackExchange Community, Database Admin-
istrators Stack Exchange home page. [Online].
https://dba.stackexchange.com/ [accessed:
26.12.2017).

[12] StackExchange Community, Android Enthusiasts
home page. [Online]. https://android.stackexcha
nge.com/ [accessed: 26.12.2017].

[13] StackExchange Community, SoftwareEngineer-
ing home page. [Online]. https://softwareengine
ering.stackexchange.com/ [accessed: 26.12.2017].

[14] G. Pinto, F. Castor, and Y.D. Liu, “Mining
questions about software energy consumption,”
in Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM, 2014,
pp. 22-31.

[15] M. Linares-Vésquez, B. Dit, and D. Poshyvanyk,
“An exploratory analysis of mobile development

138

Harshit Gujral et al.

[16]

[17]

[18]

[24]

issues using Stack Overflow,” in Proceedings of
the 10th Working Conference on Mining Software
Repositories. IEEE Press, 2013, pp. 93-96.

A. Barua, S.W. Thomas, and A.E. Hassan,
“What are developers talking about? an analysis
of topics and trends in Stack Overflow,” Empiri-
cal Software Engineering, Vol. 19, No. 3, 2014,
pp. 619-654.

B. Chen and Z.M.J. Jiang, “Characterizing log-
ging practices in Java-based open source soft-
ware projects — A replication study in Apache
Software Foundation,” Empirical Software Engi-
neering, Vol. 22, No. 1, 2017, pp. 330-374.

Q. Fu, J. Zhu, W. Hu, J.G. Lou, R. Ding, Q. Lin,
D. Zhang, and T. Xie, “Where do developers
log? An empirical study on logging practices in
industry,” in Companion Proceedings of the 36th
International Conference on Software Engineer-
ing, ICSE Companion, 2014, pp. 24-33.

S. Lal, N. Sardana, and A. Sureka, “Two level
empirical study of logging statements in open
source Java projects,” International Journal of
Open Source Software and Processes (IJOSSP),
Vol. 6, No. 1, 2015, pp. 49-73.

W. Shang, M. Nagappan, and A.E. Hassan,
“Studying the relationship between logging char-
acteristics and the code quality of platform soft-
ware,” Empirical Software Engineering, Vol. 20,
No. 1, 2015, pp. 1-27.

D. Yuan, S. Park, and Y. Zhou, “Characteriz-
ing logging practices in open-source software,”
in Proceedings of the 34th International Con-
ference on Software Engineering, (ICSE), 2012,
pp. 102-112.

H. Li, W. Shang, Y. Zou, and A.E. Hassan, “To-
wards just-in-time suggestions for log changes,”
Empirical Software Engineering, Vol. 22, No. 4,
2017, pp. 1831-1865.

D. Yuan, S. Park, P. Huang, Y. Liu,
M.M. Lee, X. Tang, Y. Zhou, and S. Savage,
“Be conservative: Enhancing failure diagno-
sis with proactive logging,” in Proceedings
of the 10th USENIX Conference on Oper-
ating Systems Design and Implementation
(OSDI), 2012, pp. 293-306. [Online]. http:
//dl.acm.org/citation.cfm?id=2387880.2387909
J. Zhu, P. He, Q. Fu, H. Zhang, M. Lyu, and
D. Zhang, “Learning to log: Helping developers
make informed logging decisions,” in Proceedings
of the IEEE/ACM 37th IEEE International Con-
ference on Software Engineering (ICSE), Vol. 1,
May 2015, pp. 415-425.

[25]

[26]

[27]

[30]

[34]

S. Kabinna, C.P. Bezemer, W. Shang, and
A E. Hassan, “Examining the stability of logging
statements,” in Proceedings of the 23rd IEEE
International Conference on Software Analysis,
Evolution, and Reengineering (SANER), 2016,
pp. 326-337.

S. Lal, N. Sardana, and A. Sureka, “ECLog-
ger: Cross-project catch-block logging prediction
using ensemble of classifiers,” e-Informatica Soft-
ware Engineering Journal, Vol. 11, No. 1, 2017,
pp- 9-40.

S. Beyer and M. Pinzger, “A manual catego-
rization of android app development issues on
Stack Overflow,” in Software Maintenance and
Evolution (ICSME), 2014 IEEE International
Conference on. IEEE, 2014, pp. 531-535.

X.L. Yang, D. Lo, X. Xia, Z.Y. Wan, and
J.L. Sun, “What security questions do developers
ask? A large-scale study of Stack Overflow posts,”
Journal of Computer Science and Technology,
Vol. 31, No. 5, 2016, pp. 910-924.

H. Malik, P. Zhao, and M. Godfrey, “Going green:
An exploratory analysis of energy-related ques-
tions,” in Proceedings of the 12th Working Con-
ference on Mining Software Repositories. IEEE
Press, 2015, pp. 418-421.

C. Nagy and A. Cleve, “Mining Stack Overflow
for discovering error patterns in SQL queries,” in
Software Maintenance and Evolution (ICSME).
IEEE, 2015, pp. 516-520.

StackExchange Community, StackFExchange.
[Online]. https://stackexchange.com/ [accessed:
26.12.2017].

Quora Community, Quora Home Page. [Online].
https://www.quora.com/ [accessed: 26.12.2017].
StackExchange Community, What does it mean
when an answer is “accepted”. [Online]. https:
/ /stackoverflow.com/help/accepted-answer
[accessed: 26.12.2017].

Python Community, Latent Dirichlet Allocation
(LDA) in Python. [Online]. https://radimr
ehurek.com/gensim/models/ldamodel.html
[accessed: 9.04.2018].

J. Han, M. Kamber, and J. Pei, Data Mining:
Concepts and Techniques, 3rd ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.,
2011.

Neurobs, Neurobs. [Online]. https://www.ne
urobs.com /pres__docs/html/03_ presentatio
n/07_data_reporting/01_logfiles/index.html
[accessed: 12.03.2018].

A Three Dimensional Empirical Study of Logging Questions from Six Popular @ & A Websites

139

[37]

38

Wikipedia, 4th Dimension (software). [Online].

https://en.wikipedia.org/wiki/4th_Dimension
_ (software) [accessed: 12.03.2018].
PostgreSQL, Warm Standby Servers for High
Availability. [Online]. http://www.postgresql.org
/docs/8.2 /static/warm-standby.html [accessed:
12.03.2018].

MySQL Community, Reference Manual on
Configuring Replication. [Online]. https://de
v.mysql.com/doc/refman/5.7/en/replication-
configuration.html [accessed: 12.03.2018].

Network Working Group, The Syslog Protocol.

[Online]. https://tools.ietf.org/html/rfc5424
[accessed: 12.03.2018].

Rsyslog Community, Rsyslog. [Online]. https:
//www.rsyslog.com/ [accessed: 12.03.2018].
Syslog-ng Community, Reliable, scalable,
secure central log management.
https://syslog-ng.com/ [accessed: 12.03.2018].
Python Community, syslogd — Linux man page.
[Online]. https://linux.die.net/man/8/syslogd
[accessed: 12.03.2018].

Techopedia, Error Log. [Online]. https://ww
w.techopedia.com/definition /26306 /error-log
[accessed: 12.03.2018].

T.A. Peters, “The history and development
of transaction log analysis,” Library Hi Tech,
Vol. 11, No. 2, 1993, pp. 41-66.

[Online].

[46]

[47]

(48]

[49]

MariaDB Community, Binary Log. [Online].
https://mariadb.com/kb/en/library/binary-
log/ [accessed: 12.03.2018].

StackOverflow Community, Graylog. [Online].
https://stackoverflow.com/tags/graylog/info
[accessed: 3.05.2018].

StackOverflow Community, NXLOG. [Online].
https://stackoverflow.com/tags/nxlog/info
[accessed: 3.05.2018].

archlinux, Logwatch. [Online]. https://wiki.arch
linux.org/index.php/Logwatch [accessed:
3.05.2018].

Bjorn, F. Crawford, J. Pyeron, J. Soref, K. Bauer,
M. Tremaine, O. Poplawski, and S. Jakobs, Log-
watch. [Online]. https://sourceforge.net/p/logw
atch/wiki/Home/ [accessed: 12.03.2018].
MySQL Community, mysqlbinlog — Utliity
for Processing Binary Log Files. [Online].
https://logging.apache.org/logdj/2.x/ [accessed:
12.03.2018].

Wikitech, Logstash — Wikitech. [Online]. https:
//wikitech.wikimedia.org/wiki/Logstash [ac-
cessed: 12.03.2018].

A. Hindle, C. Bird, T. Zimmermann, and N. Na-
gappan, “Do topics make sense to managers and
developers?” Empirical Software Engineering,
Vol. 20, No. 2, 2015, pp. 479-515.

e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 141-202, DOI 10.5277/e-Inf190105

Empirical Studies on Software Product
Maintainability Prediction: A Systematic
Mapping and Review

Sara Elmidaoui*, Laila Cheikhi*, Ali Idri*, Alain Abran**

*SPM Team, ENSIAS, Mohammed V University in Rabat, Morocco
** Department of Software Engineering and Information Technology, Ecole de Technologie Supérieure,
Montréal, Canada

sara.elmidaoui@umbs.net.ma, laila.cheikhi@umb.ac.ma, ali.idri@umb.ac.ma,
alain.abran@etsmtl.ca

Abstract

Background: Software product maintainability prediction (SPMP) is an important task to control
software maintenance activity, and many SPMP techniques for improving software maintainability
have been proposed. In this study, we performed a systematic mapping and review on SPMP
studies to analyze and summarize the empirical evidence on the prediction accuracy of SPMP
techniques in current research.

Objective: The objective of this study is twofold: (1) to classify SPMP studies reported in the
literature using the following criteria: publication year, publication source, research type, empirical
approach, software application type, datasets, independent variables used as predictors, dependent
variables (e.g. how maintainability is expressed in terms of the variable to be predicted), tools
used to gather the predictors, the successful predictors and SPMP techniques, (2) to analyze
these studies from three perspectives: prediction accuracy, techniques reported to be superior in
comparative studies and accuracy comparison of these techniques.

Methodology: We performed a systematic mapping and review of the SPMP empirical studies
published from 2000 up to 2018 based on an automated search of nine electronic databases.
Results: We identified 82 primary studies and classified them according to the above criteria.
The mapping study revealed that most studies were solution proposals using a history-based
empirical evaluation approach, the datasets most used were historical using object-oriented software
applications, maintainability in terms of the independent variable to be predicted was most
frequently expressed in terms of the number of changes made to the source code, maintainability
predictors most used were those provided by Chidamber and Kemerer (C&K), Li and Henry (L&H)
and source code size measures, while the most used techniques were ML techniques, in particular
artificial neural networks. Detailed analysis revealed that fuzzy & neuro fuzzy (FNF), artificial
neural network (ANN) showed good prediction for the change topic, while multilayer perceptron
(MLP), support vector machine (SVM), and group method of data handling (GMDH) techniques
presented greater accuracy prediction in comparative studies. Based on our findings SPMP is still
limited. Developing more accurate techniques may facilitate their use in industry and well-formed,
generalizable results be obtained. We also provide guidelines for improving the maintainability of
software.

Keywords: systematic mapping study, systematic literature review, software product
maintainability, empirical studies

Submitted: 27 June 2018; Revised: 5 April 2019; Accepted: 6 April 2019; Available online: 17 July 2019

142

Sara Elmidaoui et al.

1. Introduction

Maintainability of a software product is defined
in SWEBOK [1] as a quality characteristic that
“must be specified, reviewed, and controlled dur-
ing the software development activities in order
to reduce maintenance costs”. Many techniques
for software product maintainability prediction
(SPMP) have been proposed as a means to bet-
ter manage maintenance resources through a de-
fensive design [2]. However, predicting software
maintainability remains an open research area
since the maintenance behaviors of software sys-
tems are complex and difficult to predict [3].
Moreover, industry continues to search for appro-
priate ways to help organizations achieve reliable
prediction of software product maintainability.

A number of studies have been conducted in
this context [4-9]. For instance, Riaz et al. [4]
conducted a systematic literature review (SLR)
on a set of 15 primary studies dating from 1985
to 2008 to investigate techniques and methods
used to predict software maintainability. They
found that the number of studies varied from
one to two per year illustrating that this re-
search topic was still in emergence in 2008 and
had not yet reached a certain level of maturity.
Moreover, they showed that the choice among
prediction models for maintainability was not ob-
vious (12 out of 15 studies had proposed models).
Size, complexity and coupling were commonly
used independent variables for maintainability,
while maintainability expressed in terms of an
ordinal scale based on expert judgment was the
most commonly used dependent variable. A sub-
sequent SLR (from 1985 to 2010) by Riaz [5]
identified seven primary studies that focused on
relational database-driven applications (RDBAS).
The results showed little evidence for maintain-
ability prediction for relational database-driven
applications. He found that: expert judgment
was the most common prediction technique, cou-
pling related measures were the most common
predictors, and subjective assessment was the
most common dependent variable.

Orenyi et al. [6] conducted a survey on
object-oriented (OO) software maintainability
using a set of 36 studies published between 2003

and 2012. The authors investigated the use of
a quality model, sub-characteristics or measures
and techniques, and noted that regression analy-
sis techniques were the most used (31% of the 36
studies). Dubey et al. [7] provided an overview
of a set of 21 studies on maintainability tech-
niques for OO systems published between 1993
and 2011. In these latter two studies (not SLRs)
the authors did not provide a detailed analysis.
Fernandez-Saez et al. [8] conducted a systematic
mapping study (SMS) on a set of 38 primary
studies (collected from 1997 to 2010) in order to
discover empirical evidence related to the use of
UML diagrams in source-code maintenance and
the maintenance of UML diagrams themselves.
They found that “the use of UML is beneficial
for source code maintenance, since the quality
of the modifications is greater when UML dia-
grams are available, and most research concerns
the maintainability and comprehensibility of the
UML diagrams themselves”. To explore the use
of UML documentation in software maintenance,
the authors have published results from a survey
of software industry maintenance projects [9]
by 178 professionals from 12 different countries.
The findings were summarized as follows: “59%
indicated the use of a graphical notation and 43%
UML, most effective UML diagrams for software
maintenance were class, use case, sequence and
activity diagrams, the benefits of using UML
diagrams result in less time needed for a better
understanding and, thus an improved defect de-
tection, and larger teams seem to use UML more
frequently in software maintenance”.

A summarized context of this related work is
presented in Table 1 in terms of: purpose of the
study, research or mapping questions addressed,
type of study (SLR, SMS or another form of
literature review, such as survey, review, etc.),
period of collection, and the number of primary
studies for each study.

As can be seen from Table 1, while all stud-
ies shared an interest in the maintainability of
the software, they focused on different aspects
or topics within the field. The period of col-
lection and number of primary studies varied
among the reviews. Only three studies conducted
a rigorous review with SLR and SMS addressing

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review

143

Table 1. Summarized context of related work

Study ID Purpose Research or mapping ques- Type Period of #of
tions addressed collection studies

[4] Understand the state of the 1) techniques, 2) accuracy SLR 1985-2008 15
art of the software maintain- measures, 3) independent
ability prediction techniques variables, 4) dependent vari-
and metrics. ables.

[5] Understand the state of the 1) techniques, 2) accuracy = SLR 1985-2010 7
art of the software maintain- measures, 3) independent
ability prediction techniques variables, 4) dependent vari-
and metrics in RDBAs. ables.

[6] Review existing studies in Not provided Survey 2003-2012 36
the area of OO software
maintainability ~ measure-
ment.

[7] Review of studies on soft- Not provided Survey 1993-2011 23
ware maintainability model
with OO system.

8] Review of studies on mainte- 1) UML Diagrams, 2) depen- SMS 1997-2010 38
nance of UML diagrams and dent variable, 3) state of the
their use in the maintenance art, 4) factors
of code.

[9] Survey on the use of UML Not provided Survey February -

in software maintenance in
order to gather information
and opinions from a large
population.

to April
of 2013

some research or mapping questions. The SMS
[8] focused on empirical studies concerning the
maintenance of UML diagrams and their use in
the maintenance of code. However, the scope of
this study was broader and focused not only on
UML diagrams but also provided a state-of-the
art review of software product maintainability
prediction in general. The SLR [4] addressed
four research questions (see Table 1), while our
study addressed additional questions related to
publication trends, publication sources, research
types, empirical approaches, software application
types, datasets, and tools used to gather these
independents variables. Moreover, in our study,
to provide answers to the mapping questions,
we classified the selected studies according to
a set of proposed criteria, whereas study [4] only
extracted data for some research questions, pre-
senting them in tables as reported in the primary
studies without providing any analysis. Further-

more, none of the previous studies dealt with the
accuracy of SPMP techniques whereas our study
analyzes and summarizes the evidence regarding
prediction accuracy of SPMP techniques as well
as identifies the most accurate in comparative
studies.

Since the publication of SLRs [4, 5] and SMS
[8] studies a number of new empirical studies
have been published, some proposing new tech-
niques, such as machine learning techniques, oth-
ers evaluated existing ones, while still others pro-
vided comparative studies to identify the most
accurate. Furthermore, since the first SLR on
software maintainability was published in 2008,
it was important to investigate what further re-
search had occurred since. Moreover, the number
of primary studies investigated was very small
(from 7 to 15) and the results obtained cannot
be conclusive. To establish the state-of-the-art
on this topic and reach a certain level of external

144

Sara Elmidaoui et al.

Table 2. Mapping and research questions

To identify the publication trend of SPMP studies over time.
To identify what and how many publication sources for SPMP

To identify the different research types used in SPMP studies.
To identify the empirical approaches that have been used to
validate SPMP techniques.

To identify the software application types on which the SPMP

To identify the datasets used for SPMP empirical studies,
including the number of projects in the empirical studies.

To identify: A) How maintainability was expressed in terms of
the variable to be predicted (e.g. dependent variable). B) What
measures or factors were used as predictors (i.e. independent
variables) for SPMP. C) Successful predictors for maintainabil-
ity as reported by the selected studies. D) Tools used to gather

To identify and classify the techniques used in SPMP studies.

To identify to what extend the SPMP techniques provide
accurate prediction.
To identify SPMP techniques reported to be superior in com-

1D Mapping questions Motivation
MQ1 How has the frequency of SPMP

studies changed over time?
MQ2 What are the main publication

sources? studies.
MQ3 What research types were used?
MQ4 What empirical approaches were

used?
MQ5 What types of software applica-

tions were used? studies focused.
MQ6 What datasets were used?
MQ7 What dependent and independent

variables were used?

predictors.

MQ8 What techniques were used in

SPMP?
1D Research questions Motivation
RQ1 What is the overall prediction ac-

curacy of SPMP techniques?
RQ2 Which SPMP techniques were re-

ported to be superior in compara- parative studies.

tive studies?
RQ3 Which of the SPMP techniques

reported to be superior in compar-
ative studies also provided greater
accuracy?

To compare SPMP techniques that have been reported to be
superior in the comparative studies using the same prediction
context in terms of accuracy prediction.

validity [4], research published during the last
10 years of studies providing empirical validation
of their finding needs to be investigated. This
study differs from previous reviews in several
ways: it provides an up-to-date state-of-the-art
review of SPMP (from 2000 to 2018), the search
was conducted on nine digital libraries, a set
of 82 primary studies were selected, and classi-
fication criteria were proposed for purposes of
detailed and precise analysis of the results. A set
of eight mapping questions (MQs) were addressed
related to: (1) publication year, (2) publication
source, (3) research type, (4) empirical approach,
(5) software application type, (6) datasets, (7) in-
dependent variables (e.g. factors used as predic-
tors) and dependent variables (e.g. how main-
tainability is expressed in terms of the variable

to be predicted), and (8) techniques used, as well

as a set of three research questions (RQs) re-

lated to: (1) prediction accuracy, (2) techniques
reported superior in comparative studies and

(3) accuracy comparison of these techniques (see

Table 2). Therefore, the objective of this study

was twofold:

— to classify SPMP studies according to the
proposed criteria (see Table 3), and,

— to analyze and summarize the empirical evi-
dence of SPMP technique accuracy prediction
in current research.

The rest of the paper is organized as fol-
lows. Section 2 presents the methodology used
to conduct the study including the mapping and
research questions to be addressed, the research
strategy and selection of the primary studies.

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review

145

Table 3. Classification criteria

Property

Categories

Research types

Empirical
approaches
Software applica-

tion types

Datasets

Independent
variables

Techniques

Solution proposal (SP), evaluation research (ER)

History-based evaluation (HbE), case study (CS), experiment or family of experiments
(Ex)

Object-oriented applications (OOA), procedure-oriented applications (POA), web-based
applications (WbA), service-oriented applications (SOA), component-based applications
(CbA), not identified (NT)

Software engineering researchers (SER), open source software systems/projects (OSS),
private software projects/systems (PSP) dependent variable change, expert opinion,
maintainability index, maintainability level, maintainability time, others

Chidamber and Kemerer (C&K), Li and Henry (L&H), class diagram, source code size,
McCabe complexity (McCabe), software quality attributes, Martin’s measures, Halstead
measures, Brito e Abreu and Carapuga (BA&C), factors, coding rule measures, quality
model for object-oriented design (QMOOD) measures, maintainability index (MI),
web-based application (WbA) measures, Jensen measures, effort measures, sequence
diagram, Lorenz and Kidd (L&XK) measures, fault measures, database measures

Machine learning (ML), artificial neural network (ANN), fuzzy & neuro fuzzy (FNF),
regression & decision trees (DT), case-based reasoning (CBR), Bayesian networks (BN),
evolutionary algorithm (EA), support vector machine & regression (SVM/R), induc-
tive rule based (IRB), ensemble methods (EM), clustering methods (CM); statistical:
regression analysis (RA), probability density function (PD), Gaussian mixture model
(GMM), discriminant analysis (DA), weighted functions (WF), stochastic model (SM)

Section 3 summarizes the results by providing
answers to the mapping questions. Section 4
provides the results of the research questions.
Section 5 presents the threats to validity of the
work. Section 6 offers conclusions and possible
future directions.

2. Research methodology

In this study, we used the guidelines of Petersen
et al. [10] for conducting systematic reviews,
which include planning, conducting and report-
ing. According to Kitchenham, “Systematic Map-
ping Studies (SMS) use the same basic method-
ology as SLRs but aim to identify and classify all
research related to a broad software engineering
topic rather than answering questions about the
relative merits of competing technologies that
conventional SLRs address” [11]. In the planning
step, the review protocol was developed which
describes the procedure for conducting the re-
view. The steps of this protocol are summarized

as follows: (1) establishment of a set of map-
ping and research questions to address the issues
related to the review, (2) identification of the
search strategy including identification of search
terms, selection of sources to be searched, and
the search process, (3) selection of the set of
primary studies using inclusion and exclusion
criteria, (4) mapping of publications by extract-
ing data from each selected study, and (5) data
synthesis by grouping the overall results in order
to facilitate analysis and provide answers to the
mapping and research questions. The protocol
was established by holding frequent meetings
between authors. A detailed description of each
of these steps is provided in the following sub-
sections.

2.1. Mapping and research questions

In addition to our primary motivation to provide
and summarize evidence from published empir-
ical studies on SPMP, according to our set of
criteria, we identified eight mapping questions

146

Sara Elmidaoui et al.

(MQs) and three research questions (RQs) — see
Table 2.

The MQs are related to the structuring of the
SPMP research area with respect to the proper-
ties and categories described in Table 3. These
categories are defined and explained in the Ta-
bles Al and A2 in the Appendix.

2.2. Search strategy

The search strategy used to identify the primary
studies included the following steps: identify the
search terms, apply these search terms to elec-
tronic databases to retrieve candidate studies,
use the search process to ensure that all relevant
studies are identified.

2.2.1. Search terms

The search terms were identified based on the
MQs and RQs by identifying keywords, synonyms
and alternative spellings. The main search terms
were: “maintainability”, “empirical”, “software”,
“prediction”, and “technique”. Table 4 provides
the main search terms and their alternatives
spellings. As can be seen from Table 4, for alter-
native terms related to maintainability we consid-
ered all the maintainability sub-characteristics
proposed in the standard ISO 9126 and used in

previous SLRs [4, 5].

The search terms were derived using the fol-

lowing series of steps [12]:

— Define the main search terms matching the
mapping questions listed above.

— Identify synonyms and alternative spellings
for the main terms.

— Use the Boolean OR to concatenate synony-
mous and alternative terms in order to re-
trieve any record containing either (or all) of
the terms.

— Use the Boolean AND to connect the main
terms in order to retrieve any record contain-
ing all the terms
The following set of search terms were used

to extract the primary studies: “(maintainability

OR analyzability OR modifiability OR. testa-

bility OR compliance OR stability) AND (em-

pirical* OR. evaluation® OR validation* OR
experiment™ OR control* experiment OR. case
study OR survey) AND (software product OR
software OR application OR system OR. soft-
ware engineering) AND (predict®* OR evaluat*

OR assess™ OR estimat* OR measur®*) AND

(method®* OR technique* OR model* OR. tool*

OR approach*)”

2.2.2. Literature resources

To search for primary studies, nine relevant and
important digital libraries in software engineering
used in previous SLRs and SMSs [4, 5, 12] were
chosen, which included journals, books, and con-
ference proceedings from: IEEE Xplore, Science
Direct, Springer Link, Ebsco, ACM Digital Li-
brary, Google Scholar, Scopus, Jstore, and DBLP.
The preconstructed search terms established in
the first step were applied to this set of nine digi-
tal libraries. The search focused on title, abstract
and keywords, and ranged from 2000 to 2018.

2.2.3. Search process

To ensure selection of the maximum number of
studies related to SPMP, a first round search (au-
tomated) was performed using the search terms
on each digital library to gather the overall set of
candidate studies. A second search round (man-
ual) was performed, which consisted of examining
the reference lists of the set of candidate studies
in order to identify new candidates based on

Table 4. Search terms

Main terms Alternative terms

maintainability
empirical
software
prediction
technique

analyzability, modifiability, testability, stability, compliance

evaluation, validation, experiment, control experiment, case study, survey
software product, software, application, system, software engineering
prediction, evaluation, assessement, estimation, measurement

method, technique, model, tool, approach

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review

147

the title. If the full study was not available, the
authors were contacted to obtain a copy of the
published work.

2.3. Study selection

After applying the search process, the full text of
the candidate studies retrieved were assessed by
two authors according to the following inclusion
and exclusion criteria.

— Inclusion criteria (IC): (1) empirical stud-
ies addressing prediction or assessment of
software product maintainability and/or its
sub-characteristics, (2) empirical studies us-
ing SPMP techniques.

— Exclusion criteria (EC): (1) studies that
discuss the process of software maintenance,
(2) studies that concentrate on software
maintainability generally and do not present
a technique to predict the software main-
tainability, (3) studies published before 2000,
(4) short studies (2-3 pages), (5) secondary
studies, and (6) studies by the same author;
if results were the same in both studies, the
most recent was used, otherwise both studies
were used.

The study was retained if it satisfied both
inclusion criteria, and rejected if it did not sat-
isfy at least one of the exclusion criteria. Once
applied, the decision to retain or reject the study
depended on the evaluation of the two authors.
In case of doubt or disagreement, a discussion
based on review of the full text ensued until
an agreement was reached. Duplicate titles and
titles out of scope of the review were rejected.

2.4. Study quality assessment

Quality assessment (QA) criteria were used to
assess the relevance of the candidate studies. QA
is necessary in order to limit bias in conducting
mapping and review studies, to gain insight into
potential comparisons and to guide the interpre-
tation of findings [12]. The quality of the relevant
studies was evaluated based on seven questions
as follows:

— QA1: Are the objectives of the study clearly

described and appropriate?

— QAZ2: Are the factors or measures used as
predictors of maintainability defined?

— QAZ3: Are the datasets adequately described?

— QA4: Are the SPMP techniques well-pre-
sented and defined?

— QAD5: Is the accuracy criteria well-presented
and discussed?

— QAG: Is the most accurate technique clearly
stated?

— QAT: Are the findings of the study clearly
stated and presented?

These questions have three possible answers:
“Yes”, “partially”, and “No”. These answers are
scored as follows: (+1), (+0.5), and (0) respec-
tively. The quality score for each study was com-
puted by summing up the scores of the answers
to the QA questions. The maximum score for
all questions is 7 and the minimum 0. Studies
that scored greater than 50% of the perfect score
were considered for the review as in [4, 12]. The
QA was performed independently by two of the
authors. In the case of disagreement, the two
authors discussed the issue until a final consen-
sus was reached. After applying the QA criteria,
82 primary studies with an acceptable quality
score (i.e. more than 3.5) were selected. The de-
tailed quality scores for each study are presented
in Table A3 in the Appendix.

2.5. Data extraction and data synthesis

A data extraction form was completed with in-
formation for each selected primary study to
determine which apply to one of more of the
mapping or research questions. Two indepen-
dent researchers performed the extraction. In
the case of disagreement, a discussion was held
to reach consensus after a thorough review of
the study. To facilitate synthesis and analysis
of the data, the information collected was tab-
ulated and grouped into a file (see Table 5).
Various visualization techniques (such as charts
and frequency tables, etc.) were used to syn-
thesize the data, accumulate and combine facts
from the selected primary studies in order to
formulate answers to the mapping and research
questions. A narrative summary reports the
principal findings of the study, including collec-

148

Sara Elmidaoui et al.

Table 5. Data extraction form

Data extractor

Data checker

Study identifier

Name of database
Publication year

Author name(s)

URL

Article title

M@Q2: Publication source

MQ3: Research type (see Table 3 and Table Al in the Appendix)
MQ4: Empirical approach type (see Table 3 and Table A2 in the Appendix)

MQ5: Software application type (see Table 3)

MQ6: Datasets (see Table 3)
— Categories of datasets

— Historical datasets: name and number of projects

MQ7: Dependent and independent variables (see Table 3)

— Common types of factors or measures used as independent variables (predictors).
— Common types of factors or measures used as dependent variables.

— Successful predictors of maintainability as reported in the selected primary studies.

— Tools (tool name, description).

MQ8: Techniques (see Table 3)

— Categories of techniques: statistical and machine learning.

RQ1: Prediction accuracy
— Most used accuracy criteria.

— Accuracy prediction of SPMP techniques per most used dependent variable topics (identified in MQT).

RQ2: SPMP techniques reported to be superior in comparative studies
— Techniques reported to be superior in comparative studies.

— Strengths and weakness of these techniques.

— Techniques having been reported to be superior and not.

RQ3: Accuracy comparison of the SPMP techniques identified in RQ2
— Selection of studies under the same prediction context (e.g. dataset, accuracy criteria, etc.).
— Accuracy comparison of SPMP techniques under this context.

— Selection of the most accurate SPMP techniques.

tion of a number of studies that state similar
and comparable viewpoints.

3. Mapping Results

To conduct the study the process defined dur-
ing the planning phase was implemented. Data
retrieval, study selection, data extraction, and
data synthesis were executed according to the

review protocol developed by the authors. To
begin with, the protocol was carried out by the
first author in order to search studies related
to the SPMP area. The first and second author
then discussed the candidate studies after remov-
ing duplicates. Finally, the selected studies were
checked by reading the full text of each study
in order to confirm whether the paper was to
be included or excluded from the list of primary
studies. In cases of disagreement, the authors

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review

149

discussed the studies until an agreement was
reached.

Figure 1 presents the search steps together
with their corresponding results: (1) Applying
the search terms on the nine online databases
resulted in 41341 studies, (2) Removing duplicate
studies and those not related to the SPMP topic
resulted in 341 candidate studies, (3) Applying
the inclusion and exclusion criteria resulted in
75 relevant studies, (4) Scanning the list of refer-
ences and citations resulted in seven more studies
for a total of 82 relevant studies (see Table A4
in the Appendix for the summary of the search
results). All 82 studies were retained since they
had an acceptable quality score (see Table A5 in
the Appendix).

This section presents and discusses the results
obtained from review of the 82 primary studies
by providing answers to the mapping questions
(MQ1-8) in the following subsections. The classi-
fication of each of the selected studies was based
on the established classification criteria (see Ta-
ble 3, and Tables A1l and A2 in the Appendix)
and can be found in Table A6 in the Appendix.

Search String IRetrieved (Candidate! Apply |
' | Studies | ICSEC |

Data Bases

3

il

l

S390UdI9J9J4 UDDG

5938

Science Direc*

8715
Springer Lin¥

1601
|
- =30
=
22090

Google scho\o’

]

-
n
o

B
=
W €
iy
o

g
=
e
o
=+
(4]
=
(=
Qo
(0]
n

it

3.1. Publication years (MQ1)

Figure 2 presents the distribution of SPMP stud-
ies per year, beginning in 2000. Interest in SPMP
increased slowly over the decade from 2003 to
2010, reached a peak in 2012 and in 2017 (10 and
11 studies, respectively) and decreased thereafter
while remaining relatively high between 2012 and
2017. Only three studies are shown for 2018 since
most of the published studies were not yet online
at the time the SMS was conducted.

3.2. Publication sources (MQ2)

Table 6 presents the distribution of the selected
primary studies over publication sources. Only
six journals (ILJCA, JC, IST, IJSAEM, ESE,
and JSS), six conferences (SIGSOFT, QR2MSE,
ICSM, ICRITO, ICACCI, and CSMR) and one
symposium (HASE) had more than one selected
study. The other publication sources had only
one study and have been grouped into others.
Figure 3 shows graphically the distribution
of primary studies by source. Of the 82 selected

Relevant
Studies

Relevant
Studies

Selected
Studies

DI D Ajddy

Figure 1. Search process steps and results

150

Sara Elmidaoui et al.

Number of studies

2000 2002 2004 2006 2008

2010 2012 2014 2016 2018

Year

Figure 2. Distribution of selected SPMP studies per year

Table 6. Publication sources

Source Type #of studies Percentage
Information and Software Technology (IST) Journal 4 5%
Journal of Systems & Software (JSS) Journal 4 5%
International Journal Computer Applications (IJCA) Journal 3 4%
Empirical Software Engineering (ESE) Journal 3 4%
Journal of Computing (JC) Journal 2 2%
International Journal of System Assurance Engineering and Journal 2 2%
Management (IJSAEM)

SIGSOFT Software Engineering Notes (SIGSOFT) Conference 2 2%
International Conference on Quality, Reliability, Risk, Mainte- Conference 2 2%
nance, and Safety Engineering (QR2MSE)

IEEE International Conference on Software Maintenance Conference 2 2%
(ICSM)

European Conference on Software Maintenance and Reengi- Conference 2 2%
neering (CSMR)

International Conference on Reliability, Infocom Technologies Conference 2 2%
and Optimization (ICRITO)

International Conference on Advances in Computing, Commu- Conference 2 2%
nications and Informatics (ICACCI)

International Symposium on High Assurance Systems Engi- Symposium 2 2%
neering (HASE)

Others (conference, symposium, journal, chapter, workshop) 1 each source 63%

studies, 41 (50%) were published in journals,
34 (42%) at conferences, four (5%) at a sym-
posium, two (2%) in a workshop, and one (1%)
a chapter.

3.3. Research types (MQ3)

Two main research types were identified from
the selected studies: solution proposal (SP) and

evaluation research (ER). Figure 4 shows that SP
was the most frequently used (48 studies or 59%)
followed by ER (34 studies or 41%), indicating
that the goal of researchers was to propose new
techniques or adapt old ones (SP), and then eval-
uate and/or compare existing techniques (ER) to
improve SPMP. Furthermore, of the 82 selected
studies, 41 (50%) conducted comparative stud-
ies to identify the most relevant techniques for

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review

151

Symposium(5%)_

Journal (50%)

\

Workshop (2%) - Chapter (1%)
|

Conference (42%)

Figure 3. Distribution of primary SPMP studies by publication source

41%

59%

All studies

Number of studies
Lol — o (=] (7] w
m o th © th o

o

34%

Research Type
Figure 4. Research types of SPMP studies

predicting software product maintainability of
which 14 (34%) were SP studies and 27 (66%)
were ER studies.

3.4. Empirical approaches for validating
SPMP techniques (MQ4)

Figure 5 shows the three main empirical ap-
proaches used to validate SPMP techniques,
which are history-based evaluation (HbE), ex-
periment (Ex), and case study (CS). From Fig-
ure 5, HbE and Ex were the most frequently
employed approaches: 48 studies (58%) were em-
pirically validated on previously completed soft-
ware projects (HbE) and 26 studies (32%) were
validated under controlled conditions (Ex).

As shown in Table 7, the number of studies
using these two approaches has increased over
time. Note that only eight out of 82 (10%) of
selected studies investigated an SPMP technique
in a real-life context through a case study (CS).

u Solution Proposal

B Evaluation Research

Comparative studies

3.5. Software application types (MQ5)

To validate SPMP techniques, the selected stud-
ies used data from different types of software
applications. A set of four main types were iden-
tified: object-oriented applications (OOA), pro-
cedure-oriented applications (POA), web-based
applications (WbA), service-oriented applica-
tions (SOA), and component-based applications
(CbA).

Figure 6 shows that OOA were the most fre-
quently used with 65 studies (79%), followed by
POA and SOA with four studies, each (5%), WbA
with two studies (2%), and CbA with one study
(1%). The remaining studies, denoted by NI (Not
Identified), did not specify the type of software ap-
plications studied. The high percentage for OOA
to empirically validate SPMP techniques is due
to the use of historical datasets (MQ6), most of
which involved object-oriented projects. Moreover,
based on the distribution of primary studies using

152

Sara Elmidaoui et al.

Case study
10%

Experiment
32%

Figure 5. Empirical approaches for validating SPMP techniques

Table 7. Distribution of SPMP empirical approaches per time period

Empirical approach 2000-2005 2006-2011 2012-2018 Total
History-based evaluation (HbE) 2 10 36 48
Experiment (Ex) 4 17 26
Case Study (CS) 5 2 8

empirical approaches (MQ4) by software applica-

tion type (MQ5), it can be seen in Figure 6 that

OOA were frequently used in three empirical ap-

proaches: history-based evaluation (HbE) was the

most frequently used, followed by experiment (Ex),
and then case study (CS). Three other software
application types were used less frequently: POA
was only used in HbE and Ex approaches, WbA was
used equally in CS and Ex approaches, SOA was
only used in HbE, while CbA was only used in CS.

Figure 7 shows the frequency of research
types (MQ3), empirical approaches (MQ4) and
software applications types (MQ5). It can be
remarked that:

— OOA were the most frequently studied in
both research types (31 for evaluation re-
search and 34 for solution proposal),

- POA, WbA, SOA, and CbA software appli-
cation types were less used (eight studies for
solution proposal research), and

— the remaining six studies did not clearly iden-
tify the software applications types consid-
ered.

Moreover, almost all evaluation research stud-
ies (31 of 34 studies) used the HbE evaluation
approach while the majority of solution proposal
studies used either Experiment (23 studies) or
HbE evaluation (17 studies) approaches. The

case study approach was less used and only in
solution proposal (eight studies).

3.6. Datasets (MQ6)

A variety of datasets from various sources were
used in the selected the primary studies. Three
main categories of datasets based on their origin
were identified:

— Software engineering researchers (SER): Pub-
lic datasets used by researchers from the soft-
ware engineering community: UIMS (user in-
terface management system), QUES (qual-
ity evaluation system), VSSPLUGIN (visual
source safe PLUGIN), PeerSim (peer-to-peer
simulator), etc.

— Open source software systems/projects
(OSS): Freely available datasets, such as
JHotdraw, Jtreeview (Java TreeView), JEdit,
Lucene, etc.

— Private software projects/systems (PSP): Pri-
vate data from large industrial projects, such
as: MIS (medical imaging system), FLM
(file letter monitoring system), EASY (EASY
classes online services collection), SMS (stu-
dent management System), IMS (inventory
management system), APB (angel bill print-
ing), and from academic software projects

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review

153

8
4

=]
=
-I-

Software Application Types
o W =

3 38 = &

= B e

0 5 10 18 20

25 30 33 40 45

Empirical Approaches

Figure 6. Frequency of software application type per empirical approach

Research type

O @Evaluatinu Research o
41%

Qo -

Solution Proposal o o @ o
59%

Software

Empirical .
Approach Application type
History- Case) Object- Procedural- Service- Web- Component- yo,
based Study Experiment Oriented Oriented Oriented based based Identified
Evaluation o, 32% Applications Applications Applications ApplicationsApplications go,
8% 79% 5% 5% 2% 1%

Figure 7. Frequency of research types, empirical approaches and software application types

Table 8. Number of SPMP studies per dataset sources

of

Dataset sources Used in . Percent
studies
Private software S1, S3, S4, S7, S10, S11, S12, S13, S15, S17, S18, S20, S22, S24, 32 39%
projects (PSP) S25, S30, S34, S36, S40, S47, S50, S51, S52, S53, S67, S74, S75,
S78, S79, S80, S81, S82
Open sources S5, S8, S16, S27, S28, S34, S36, S39, S41, S46, S48, S49, S59, 27 33%
software projects S60, S61, S62, S63, S64, S65, S66, S68, S70, ST1, S72, S73, S76,
(0SS) STT
Software engineering S2, S6, S9, S14, S19, S21, S23, S26, S29, S31, S32, S33, S35, 25 30%

researchers (SER)

S37, $38, S42, S43, S44, S45, S54, S55, S57, S56, S58, S69

developed by students, such as bank informa-

tion system (BIS) and Aggarwal datasets.

Table 8 presents the number and percent-
age of studies per dataset sources. The PSP
datasets were the most frequently used with
32 studies (39%) each, followed by OSS datasets
with 27 studies (33%) and SER datasets with
25 studies (30%). Note that some studies may
have used more than one dataset. For example,
S34 used both PSP and OSS datasets and was
counted twice.

Within these dataset sources, some empirical
studies used historical data to evaluate and/or
compare SPMP techniques with other techniques,
referred to as historical datasets. When researchers
collect data on their own, they can make it avail-
able for future use or not. When the available data
is used by other research workers, it is referred to
as historical datasets. From the set of 82 selected
studies, 48 (which are related to HbE (MQ4)) used
historical datasets. Table 9 summarizes the histor-
ical datasets used, the number and percentage of

154

Sara Elmidaoui et al.

Table 9. Distribution of HbE empirical approaches over historical datasets

Datasets # of studies Percent # of project Source
UIMS 24 29% 1 project (39 classes) [13]
QUES 22 27% 1 project (71 classes) [13]
JEdit 6 % 1 project (415 classes) [14]
eBay 4 5% 1 projet (1524 classes) [15]
Lucene 3 4% 1 project (385 classes) [14]
JHotdraw 3 4% 1 project (159 classes) [14]
Art of Illusion 3 4% 1 project (739 classes) [16]
jTDS 3 4% 1 project (64 classes) [17]
BIS 2 2% 1 project (28 classes) [18]
MIS 2 2% 1 project (4500 modules) [19]
JUnit 2 2% 1 project (251 classes) [20]
Ivy 2 2% 1 project (614 classes) [16]
Camel 2 2% 1 project (422 classes) [16]
Eclipse 2 2% 1 project (10 594 classes) [16]
FLM 2 2% 1 project (55 classes) [21]
EASY 2 2% 1 project (84 classes) [21]

the primary studies that used the dataset, the num-
ber of projects or classes and the source reference
of the dataset. Note that one study may involve
more than one dataset and in that case is counted
only once. As can be seen from Table 9, among the
48 HbE empirical approaches, the most frequently
used historical dataset was UIMS (24 studies)
followed by QUES (22 studies), which amounts to
56% for only two relatively small OOA datasets of
one project each. While this creates a limitation
in terms of bias in the evaluation of numerous
studies, it permits a basis for comparison across
findings using the same dataset. Datasets that
were used in two to four studies included: JEdit,
eBay, JHotdraw, jtds, Lucene, Art of Illusion,
Eclipse, MIS, FLM, BIS, Ivy, Junit, Camel, and
EASY. The remaining datasets were used in only
one study each (not included in Table 9).

Furthermore, all these datasets (4th column)
developed software projects using the object-ori-
ented paradigm (including classes, methods, at-
tributes, polymorphism, etc.), except MIS and
Aggarwal datasets which developed software
projects using the procedure-oriented paradigm
(POA) and eBay software applications using the
service-oriented paradigm.

Figure 8 is extracted from Table 9 and in-
cludes only software engineering researchers and
open source datasets from publicly available in-
dustrial or professional datasets, such as: UIMS,

QUES, JEdit, Lucene, JHotdraw (no private or
student datasets were included). For instance,
the two popular datasets published by Li and
Henry [13] (UIMS and QUES), which are fre-
quently used in predicting maintainability, are
OO commercial systems developed using the
Ada programming language. The other datasets
(JEdit, Lucene, JHotdraw, Art of Illusion, jTDS,
JUnit, Ivy, Camel, Eclipse, and eBay) are OO
systems implemented in Java. The public avail-
ability of these datasets allows researchers and
practitioners to conduct verifiable, repeatable,
comparatives studies [22], provided that they
use the same prediction context (e.g. dependent
and independent variables, datasets, accuracy
criteria, and validation method).
FLM (2)

EASY (2)

Eclipse (2) BIS (%)

Camel (2)
Iy @)

UIMS (24)

JUnit (2)
MIS (2)

jTDS 3

Art of Illusion (3)
eBay (4)

JHotdraw (3)

Lucene (3)

UES (22)
JEdit(6) 1 '

Figure 8. Historical datasets used for SPMP studies

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 155

Table 10. Classification of the dependent variables

. . e # of
Topic Sub-topic Supported studies studies
S2, 56, S9, S14, S19, S21, S23, S24,
526, 529, S31, S32, S33, S35, S37,
. S38, S42, 543, S44, S45, S47, S48,
Change Changes in LOC S49, S52, S54, 555, $56, S57, S58, 16
559, S60, S61, S62, S64, S65, S66,
S69, S70, S71, S72, S73, S74, ST7
Change in module S10, S15
Change in class S30
OE;i?;fl Expert opinion based on ordinal scale g}&: gég: gzg’ 525, 527, 528, 536, 10
Maintainability Maint.ainabi.lity .inde-x. . S8, S16, S48, S68, S75
index Relative maintainability index S39, S76 8
Maintainability index satisfaction 5S40
Maintainability Understandablh.ty level, modifiability S4, S22, S51, S53, S78, S80, $82 7
level level, analyzability level
Understandability time S3, S12, S78
Maintainability Modifiability time S3, S12, S78
. Completion time of understandability — S80, S82 8
time . . .
Time to repair the design of
S17
a structure
Maintainability expressed in terms of
number of revised lines of code and S46, S63 2
number of revisions
Maintainability efficiency S79 1
Maintainability effectiveness S79 1
Understandability effectiveness S81 1
Modifiability effectiveness S81 1
Understandability efficiency S81 1
Other Modifiability efficiency S81 1
Modifiability completeness S3 1
Modifiability correctness S3 1
Error prone modules S1 1
Detected fault S13 1
Maintainability measured using 934 1
probabilistic quality model
WbA maintainability S5 1
Perceived maintainability ST 1
3.7. Dependent and independent reported successful predictors of software product
variables used in SPMP studies maintainability from the 82 primary studies.
(MQT7)

This section identifies and discusses the dependent
variables and the measures used to express main-
tainability (predicted output). It then presents the
factors or measures used as independent variables
(predictors), the tools used to gather them and the

3.7.1. Dependent variables

The dependent variable (predicted output), soft-
ware maintainability, was measured differently
in the 82 selected studies. As shown in Ta-

156

Sara Elmidaoui et al.

30
45
40
35
30
25
20

15

Number of studies

Dependent variables

Change (56%)

Expert opinion based on ordinal scale (12%)

Maintainability index (10%)

Maintainability level (9%)

Maintainability time (7%)

Figure 9. Distribution of selected SPMP studies per most used dependent variable

ble 10 and Figure 9, we identified five main
research topics related to maintainability (or
its sub-characteristics). Other less used research
topics were also identified, but are not included
in Figure 9. The scope of this review included
the maintainability sub-characteristics as iden-
tified by ISO 9126 [23] or its successor ISO
25010 [24], such as: changeability, modifiabil-
ity, stability, analysability, testability, modu-
larity, and reusability, or as defined by a par-
ticular study (S4, for example, identified two
sub-characteristics of maintainability: under-
standability and modifiability).

As shown in Table 10:

— The topic most frequently referred as the de-
pendent variable is change, 46 studies (56%):
o Changes in LOC studies used the num-

ber of lines of code changed per class by
counting the number of lines in the code
that were changed.

o Changes of modules studies used the
changes made to each module due to
faults discovered during system testing
and maintenance.

o Changes of classes studies used the change
of an attribute, a method or a class af-
fected by decomposition of the system and
its sub-systems.

— The second topic referred to studies that pre-
dict SPM based on expert opinion: 10 stud-
ies (12%) expressed maintainability using an
ordinal scale based on expert opinion. The
maintainability was qualified as: poor, aver-
age, very good, or very high, high, medium,
low, or excellent, average, bad, etc.

— The third topic referred to studies that used
a maintainability index (MI) to determine the
maintainability of the software product (eight
studies — at 10%). Some studies used the
maintainability index calculated as a factored
formula of average Halstead volume per mod-
ule, average extended cyclomatic complexity,
average lines of code, and average percent
of lines of comments per module measures.
Some studies used relative maintainability
index calculated for each source code element
for which metrics were calculated (e.g. meth-
ods, classes) using the goodness value. Other
studies used the maintainability index sat-
isfaction expressed in terms of maintenance
time satisfaction, maintenance man-hour sat-
isfaction, and maintenance cost satisfaction.

— The fourth topic referred to studies that pre-

dict maintainability in terms of understand-
ability, modifiability and analyzability levels,
which are evaluated based on the subject’s
difficulty to: understand the system, carry out
modification tasks, and diagnose the system
(seven studies — 9%).

— The fifth topic refers to studies that predict

the maintainability in terms of understand-
ability time, and/or modifiability time spent
by subjects answering the understandability
questions or understanding source code and
carrying out modifications, or the time to re-
pair the design of structure (six studies — 7%).

— The other research maintainability topic in-

cluded less used dependent variables such
as: modifiability completeness, modifiability
correctness, number of revised lines of code

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review

157

and number of revisions, maintainability ef-
ficiency, maintainability effectiveness, under-
standability effectiveness, modifiability effec-
tiveness, understandability efficiency, modifia-
bility efficiency, error prone modules, detected
fault, maintainability measured using a prob-
abilistic quality model, WbA maintainability,
and perceived maintainability.

3.7.2. Independent variables

In order to predict software product maintain-

ability, the selected primary studies used various

factors or measures as independent variables (or
predictors), i.e. different inputs to the SPMP tech-
niques. This subsection presents the independent
variables used, those most used as predictors and
the tools used to collect them. For the remainder
of this paper, the terms independent variables and
predictors will be used interchangeably. Table A7
in the Appendix provides the full list of the
predictors used, the corresponding total number
of frequencies, supported studies and percentage.

For the 82 primary studies, Chidamber and

Kemerer (C&K) measures were the most used

(50 studies — 61%), followed by

— Li and Henry (L&H) measures (33 studies —
10%),

— Class diagram measures (24 studies — 29%),
which included measures related to method,
attribute, class, or relationships (associa-
tions, aggregations, generalization and de-
pendency),

— Source code size measures using different lines
of code (LOC) measures (20 studies — 24%),

3 9 s
g 50

= 40

5 30

g

=

0
C&K L&H

Figure 10.

— McCabe cyclomatic complexity (17 studies —

21%), and
— Software quality attributes (such as stability,

changeability and analyzability, readability of

source code, document quality, understand-
ability of software, simplicity, accessibility,

etc.) (eight studies — 10%).

The least used predictors included measures
such as: factors, Lorenz and Kidd (L&K) mea-
sures, coding rule measures, maintainability in-
dex (MI), web-based application (WbA), se-
quence diagram measures (scenarios, messages
and conditions), Martin’s measures, QMOOD
measures, Fault, database measures, Halstead
measures, and Brito e Abreu and Carapuca
(BA&C), etc.

Figure 10 shows the number of studies for
the most frequently used predictors. Note that
one study may involve more than one type of
predictor. Figure 10 is extracted from Table A7,
while the least used predictors were discarded.

Furthermore, it was observed that object-ori-
ented measures were the most used predic-
tors. This is mainly due to the wide use of
object-oriented software applications (OOAs) in
SPMP empirical studies, i.e. 65 out of the 82 se-
lected studies (see Section 3.5, Figures 6 and 7).

As shown in Figure 11, the frequently used
OO measures were RFC (response for a class)
and LCOM (lack of cohesion in methods), fol-
lowed by WMC (weighted methods per class),
DIT (depth of inheritance tree), NOC (num-
ber of children), LOC (lines of code or sizel),
MPC (message passing coupling), NOM (num-
ber of local methods), DAC (data abstraction

20
: e

Class
Diagram code size

McCabe Software
quality
atributes

Source

Predictors

The number of the SPMP studies for the most frequently used predictors

158

Sara Elmidaoui et al.

s0 Y141 4y,

45 19
2 4
2 a5 32 31 3 30
z 26
2 30 .
= 1 22
5 25 |
a 20 |
E 15 I
Z 10

5 I

0 i

C D> 0 38 & L L&D e
FITFT TSI
0O Neasures

Figure 11. The number of SPMP studies for the most frequently used OO measures

coupling), Size2 (number of properties), and
CBO (coupling between object). Such types of
measures were collected at the design or source
code levels.

Table 11 presents the list and description of
the tools used to compute these measures, as well
as the primary studies that used them. Note that
only 46 out of the 82 studies provided information
on the data collection tools used. The Classic-Ada
metrics analyzer was the most commonly used
(24 studies), followed by Chidamber and Kemerer

Java Metric (CKJM) tool (eight studies), Intellij
IDEA tool (four studies), LocMetrics tool (three
studies), Krakatau Professional tool and Under-
stand tool (two studies each), and one study each
for Columbus tool, web application reverse engi-
neering (WARE) tool, Analyst4j standalone tool,
COIN tool, ObjectAid UML Explorer, JHawk
tool, JDepend tool, Classycle tool, SourceMeter
static code analysis tool, Customized tool, and C
and C++ code counter (CCCC) tool. Four other
studies used their own private tools.

Table 11. Tools used to collect measures

Name Description

1))

Classic-Ada
metrics
analyzer

CKJM

Intellij
IDEA

LocMetrics

Krakatau
Professional

Classic-Ada was implemented in LEX and YACC UNIX environ-
ments and was designed on the Mach operating system running on
a NeXTstation using a GNU C compiler. The system was ported to
an Ultrix system running on a VAX station [13].

Chidamber and Kemerer Java Metric extraction tool is freely available.
It calculates C&K metrics by processing the bytecode of Java files
[25].

Intellij IDEA is a free and open source Java IDE developed by Jet-
Brains and available as Apache 2 licensed and community edition
[26].

LocMetrics! counts total lines of code, blank lines of code, comment
lines of code, lines with both code and comments, logical source lines
of code, McCabe VG complexity, and number of comment words

Krakatau Professional was developed by Power Software Inc. It is
a fully-featured software metrics tool designed for source code quality
and software measurement specialists [27].

S2, S6, S9, S14, S19,
S21, $23, $26, $29, S31,
32, $33, S35, S37, S38,
S42, $43, S44, S45, S54,
S57, $56, S58, S69

S48, 549, S55, S59, S61,
S66, S71, S72

S48, S49, 62, S64

566, S71, S72

S8, S41

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review 159

Table 11 continued

Name Description 1D
Understand? is very efficient at collecting metrics about the code and

Understand pr0V1d.1ng different ways fo.r you .to view it. There is a Substapt.lal S73. §77
collection of standard metrics available as well as options for writing
custom metrics.

Columbus Columbus is a framework that supports project handling, data S39
extraction, data representation, data storage and filtering [28].

WARE WARE is an integrated tool that automatically extracts information S5
from the application and allows more abstract representations to be
reconstructed [29].

COIN Cohesion Inheritance (COIN) is a tool for evaluating cohesion, S68
inheritance and size metrics of class hierarchies in Java projects [30].

Analystdj Analyst4j is based on the Eclipse platform. It features search, metrics,

standalone . . . S28

tool analyzing quality, and report generation for Java programs [31].

ObjectAid ObjectAid UML Explorer® has been used to extract the UML diagrams

UML S63
from the Java source code.

Explorer

JHawk JHawk* is a general-purpose metrics collection tool that calculates S63
a variety of metrics from OO systems.

JDepend JDepend® has been used to generate design quality metrics for each S63
package in the system and verify the relations between the packages.

Classycle Classycle’s Analyser tool® analyzes the static class and package S63
dependencies in Java applications.

SourceMeter SourceMeter” is an innovative tool built for precise static source code S76
analysis of C/C++, Java, C#, Python, and RPG projects. This tool
makes it possible to find the weak spots of a system under
development from the source code only, without the need to simulate
live conditions.

Selele CCCC8 is a free software. tool by Tim Littlefair for measurement of 3§59
source code related metrics.

. Customized tools have been implemented to integrate and analyze

Customized . .o)
data from previous tools and to compute the new coupling, instability S63

tools . .
and abstractness metrics for every package in the system [32].

Private Tools constructed and developed for each study according to the S4, S5, S46, S52

context to automatically collect metrics.

"http://www.locmetrics.com
2http://www.scitools.com
3http://www.scitools.com

“http://www.virtualmachinery.com /fhawkprod.htm 8http://cccc.sourceforge.net/

Shttp://clarkware.com /software/JDepend.html
Shttp://classycle.sourceforge.net/
"http://www.sourcemeter.com/

Regarding successful predictors of SPM, - Chidamber & Kemerer and Li & Henry mea-
the 82 selected studies explicitly sures (DIT, NOC, WMC, RFC, CBO, LCOM,

25 (30%) of

reported useful measures for software product
maintainability based on empirical evaluation —

see Table 12:

in 14 studies (17%).

MPC, DAC, NOM, SIZE1, and SIZE2) re-
ported good correlation with maintainability

160

Sara Elmidaoui et al.

Table 12. Successful predictors of SPM in 25 of the SPMP studies

Successful predictors

Supported by

DIT, NOC, WMC, RFC, CBO, LCOM, MPC, DAC, NOM, SIZE1, S6, S8, S9, S14, S21, $32, S46, S47,

SIZE2

NA, NM, NC, NAgg, NAggH, NGen, NGenH, NAssoc, NDep,

S48, 49, S52, S58, S60, S66
S3, S12, S22, S51, S68

MaxDIT

MI, CC, NODBC, SCCR S52, S68
TWP, TLOC, WO, SS, CIS, TL, TCC, TWPR, TWPDC S5, S68
Coding effort, RDCRatio ST
Average fan-out, data flow, average McCabe S1
ACLOC, AMLOC, AVPATHS, CDENS, COF, n, N, PPPC S8
NPAVGC, OSAVG, CSA, SWMC, POF S16
LLOC, McCabe, rule violations S39
NOA, Coh, CAMC, LCC, LSCC, SCOM, PCCC, OL2, CBO_U, 946, S68
CBO_IUB, OCMEC, TCC ’

B, CLOC, Command, CONS, CSA, CSO, Cyclic, Dcy, NAA, OCmax, 948
OSmax, SLoc, STAT, V, Query

B, CLOC, Command, Inner*, Dcy* S49
NclienP, NAggR, NAssoc, NservP, NwebP S53
LCOM3, LOC, Ce S60
NPM, Ca, DAM, MOA S66
MIF, AIF, DCi, Coh, DCd 568

— Class diagram measures (NA, NM, NC, NAgg, -
NGenH, NAssoc, NDep, MaxDIT, NGen, and
NAggH) were found to be useful in predicting
maintainability in five studies (6%).

— The other measures were reported useful in
two or one study each.

The remaining 36 studies did not report use-

ful measures, since most were interested in com- —

paring the accuracy of their proposed or evalu-

ated SPMP techniques rather than in identify-
ing successful predictors. See Table A8 in the

Appendix for the acronyms of the successful

predictors.

3.7.3. Summary

Table 13 presents the predictors (independent
variable) used by each maintainability research —
topic.
— Studies focusing on predicting maintainabil-

ity in terms of change used mainly C&K and

L&H measures, and in particular, change ex- —

pressed in terms of number of LOC changed

in a class. This was because the datasets used

(e.g. UIMS, QUES, FLM, EASY, and Lucene,

etc.) focused on OO software applications. S8,

Studies on maintainability based on expert
opinion using an ordinal scale used quality
attributes, such as readability of source code,
document quality, stability, changeability, an-
alyzability as dependent variable, or measures
related to source code size, McCabe, C&K,
class and coding rules.

Studies on maintainability index or relative
maintainability index used C&K, source code
size, Halstead, class, Lorenz and Kidd, Brito e
Abreu and Carapuga, and McCabe measures,
while the maintainability index satisfaction
used satisfaction attributes.

Studies on maintainability level in terms of
sub-characteristics (understandability, modifi-
ability and analysability) used class diagram as
well as sequence diagram measures and factors.
Studies on maintainability time used class
diagram measures for understandability time
and modifiability time, while some used soft-
ware quality attributes.

Most of the remaining topics used class dia-
gram, source code size, as well as factors and
McCabe measures.

Furthermore, some studies, including S6 and
reported that C&K and L&H measures (which

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review

161

Table 13. Type of independent variable by dependent variable topic

Topic (dependent
variable)

Predictor measures (independent variables)

Change

Expert opinion based on
ordinal scale
Maintainability index

rules

C&K, L&H, McCabe, maintainability index, database, class, Halstead, source
code size, Jensen, effort
Quality attributes, source code size, McCabe, coupling, C&K, class, coding

C&K, source code size, Halstead, class, Lorenz and Kidd, Brito e Abreu and

Carapuga, McCabe, quality attributes

Maintainability level
Maintainability time

Modifiability correctness Class diagram, factors

Modifiability Class diagram, factors
completeness

Maintainability efficiency factors
Maintainability factors

effectiveness

Understandability factors

effectiveness

Modifiability factors

effectiveness

Understandability factors

efficiency

Modifiability efficiency factors

Error prone modules McCabe, module level
Detected fault fault

Class diagram, sequence diagram class
Class diagram, quality attributes

are related to OO design attributes such as cou-
pling, cohesion and inheritance) were statistically
significant and highly correlated to maintainabil-
ity. Note also, that C&K and L&H measures
as predictors were most often used to predict
maintainability expressed in terms of change as
predicted output.

3.8. Techniques used in SPMP studies
(MQ8)

From the 82 selected primary studies we iden-
tified two major categories of techniques that
have been applied to predict software product
maintainability: machine learning (ML) and sta-
tistical techniques. Figure 12 shows that ML
techniques were the most frequently used, being
adopted by 70% (57 studies) compared to statis-
tical techniques with 51% (42 studies). Note that
we include all studies using single techniques in
the review results section. Note, too, that a study
may use techniques from the two categories (more
details in Table A6 in the Appendix).

The statistical techniques include regression
analysis (RA), probability density function (PD),
gaussian mixture model (GMM), discriminant
analysis (DA), weighted functions (WF) and
stochastic model (SM):

— RA were the most frequently used statisti-
cal techniques with 35%. This category in-
cludes: Linear Regression (LR), Multiple Lin-
ear Regression (MLR), Logistic Regression
(LgR), Backward Elimination (BE), Stepwise
Selection (SS), Multiple Adaptive Regres-
sion Splines (MARS), Projection Pursuit Re-
gression (PPR), polynomial regression (PR),
Least Median of Squares Regression (LMSR),
Pace Regression (PaceR), Isotonic Regres-
sion (IR), Regression by Discretization (Reg-
ByDisc), Additive Regression (AR), Gaus-
sian Process Regression (GPR), and Least
Absolute Shrinkage and Selection Operator
(Lasso), followed by

~ PD with 4%, SM, GMM, DA and WF
with 1% each.

162

Sara Elmidaoui et al.

MLP
ANN KN Bagging
RBF WNN Boosting
GRNN |[FF3LBPN MV
GMDH | SBLLM SVM NL
Neuro-GA| FGA SVR DT ES
ELM AFGA FL SVM-RBF M5P Ensemble
PNN FPSO ANFIS SVM-LIN RT AVG
FFNN | MFPSO FIS SVM-SIG C4.5 WT
BPNN FCSA T2FLS LSSVM-LIN DS BTE
JERN |ELM-LIN MFL KNN LSSVM-RBF| | REPTree NDTF
NGD |ELM-PLY FET CBR SVM-PLY OneR AdaBoost
NGDM |[ELM-RBF FSC LWL BN GA DTable SMO J48 ILogitBoost]
NGDA NLM FIT K* NB GEP [KMC | CR LSSVM-SIG DFT TreeNet
NNM | GGAL | Neuro-Fuzzy| | NNge AODE GdA || XMC || M5R | [LSSYM-PLY| | Cubist RF

RegByDisc
AR
GPR
Lasso
Elastic Net

Figure 12. Techniques used in SPMP studies

The ML techniques were categorized according
to [33, 34] as follows: Artificial Neural Network
(ANN), Fuzzy & Neuro Fuzzy (FNF), Regres-
sion & Decision Trees (DT), Ensemble Methods
(EM), Case-Based Reasoning (CBR), Bayesian
Networks (BN), Evolutionary Algorithm (EA),
Support Vector Machine & Regression (SVM/R),
Inductive Rule Based (IRB), and Clustering Meth-
ods (CM).

— ANN were the most used techniques with
38%. It includes Multilayer Perceptron (MLP),
Radial Basis Function Network (RBF), Proba-
bilistic Neural Network (PNN), Group Method
of Data Handling (GMDH), General Regres-
sion Neural Network (GRNN), Feed For-
ward Neural Network (FFNN), Back Prop-
agation Neural Network (BPNN), Kohonen
Network (KN), Ward Neural Network (WNN),
Feed Forward 3-Layer Back Propagation Net-
work (FF3LBPN), Extreme Learning Ma-
chines (ELM), Sensitivity Based Linear Learn-
ing Method (SBLLM), Neuro-Genetic Algo-

rithm (Neuro-GA), Functional Link Artifi-
cial Neural Network (FLAAN) with Genetic
Algorithm (FGA), Adaptive FLANN-Ge-
netic (AFGA), FLANN-Particle Swarm
Optimization (FPSO), Modified-FLANN
Particle Swarm Optimization (MFPSO),
FLANN-Clonal Selection Algorithm (FCSA),
ELM with Linear (ELM-LIN), ELM with Poly-
nomial (ELM-PLY), ELM with Radial Basis
Function Kernels (ELM-RBF), ANN with Lev-
enberg Marquardt Method (NLM), GRNN
with Genetic Adaptive Learning (GGAL),
Jordan Elman Recurrent Network (JERN),
ANN with Normally Gradient Descent Method
(NGD), ANN with Gradient Descent With Mo-
mentum (NGDM), ANN with Gradient De-
scent With Adaptive Learning Rate (NGDA)
and ANN with Quasi-Newton Method (NNM).
SVM/R with 24%, includes Support Vec-
tor Machine (SVM), Support Vector Regres-
sion (SVR), Sequential Minimal Optimiza-
tion (SMO), SVM with Radial Basis Func-

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review

163

tion Kernel (SVM-RBF), SVM with Linear
Kernel (SVM-LIN), SVM with Sigmoid Ker-
nel (SVM-SIG), Least Square Support Vec-
tor Machine (LSSVM) with Linear Kernel
(LSSVM-LIN), LSSVM with Radial Basis
Function Kernel (LSSVM-RBF), SVM with
Polynomial Kernel (SVM-PLY), LSSVM with
Sigmoid Kernel (LSSVM-SIG) and LSSVM
with Polynomial Kernel (LSSVM-PLY).

— FNF with 20%, includes Fuzzy Logic (FL),
Adaptive Neuro-Fuzzy Inference Systems
(ANFIS), Fuzzy Inference Systems (FIS),
Type-2 Fuzzy Logic System (T2FLS), Mam-
dani-based Fuzzy Logic (MFL), Fuzzy En-
tropy Theory (FET), Fuzzy Subtractive Clus-
tering (FSC), Fuzzy Integral Theory (FIT),
and Neuro-Fuzzy.

— DT with 18%, includes Regression Tree (RT),
M5 For Inducing Trees of Regression Models
(M5P), Decision Stump (DS), Reduced Error
Pruned Tree (REPTree), Decision Tree Forest
(DFT), C4.5, OneR, J48, and Cubist.

— EM with 15%, includes Ensemble Selec-
tion (ES), Average-based Ensemble (AVG),
Weighted-based Ensemble (WT), Best-in-Train-
ing-based Ensemble (BTE), Majority-Voting
Ensemble (MV), Non-Linear Ensemble (NL),
Nonlinear Ensemble Decision Tree Forest
(NDTF), Adaptive Boosting (Adaboost), Bag-
ging, Boosting, Ensemble, Random Forest
(RF), TreeNet, and LogitBoost.

— BN with 7%, includes Naive-Bayes (NB)
and Aggregating One-Dependence Estimators
(AODE).

— CBR with 6%, includes Kstar (K*), Lo-
cally Weighted Learning (LWL), k-Nearest
Neighbor (IBK or KNN), and Nearest-Neigh-
bor-Like algorithm that uses Non-Nested gen-
eralized exemplars (NNge).

— EA with 6%, includes Genetic Expression Pro-
gramming (GEP), Genetic Algorithm (GA)
and Greedy Algorithm (GdA).

— IRB with 4%, includes Decision Table
(Dtable), Conjunctive Rule Learner (CR), and
M5 Rules (M5R).

— CM with 2%, includes K-Means Clustering
(KMC) and x-Means Clustering algorithm
(XMCO).

4. Review Results

This section presents and discusses the results
of this review by providing answers to the three
research questions (RQ1-3) in Table 2. Through
these questions, the following subsections analyze
the SPMP techniques from three perspectives:
prediction accuracy, techniques reported superior
in comparative studies and accuracy compari-
son of the techniques. Note that only studies
with consistent results about accuracy have been
taken into account, thereby excluding S56.

4.1. Prediction accuracy (RQ1)

From the results of MQ7, change, expert opinion,
maintainability index, maintainability level, and
maintainability time were the most used depen-
dent variable topics (i.e. measures used to express
maintainability, the predicted output) from a set
of 74 selected SPMP studies. Table A9 in the Ap-
pendix shows the details of the SPMP techniques,
the accuracy criteria used, and the mapping to the
corresponding studies, grouped by the most ad-
dressed dependent variable topics. As can be seen,
different accuracy criteria were used such as: mean
magnitude of relative error (MMRE), percentage
relative error deviation (Pred(25) and Pred(30)),
coefficient of correlation R, Coefficient of deter-
mination (R-squared), root mean square error
(RMSE), normalized RMSE (NRMSE), mean ab-
solute error (MAE), mean absolute relative er-
ror (MARE), magnitude of relative error (MRE),
accuracy, precision, weighted average precision
(WAP), recall, F-measure, specificity, etc., where
MMRE, Pred(25) and Pred(30) were the most
dominant. MMRE measures the mean of the dif-
ference between the actual and the predicted value
based on the actual value, while Pred measures
the percentage of predicted values that have an
MRE less than or equal to 0.25 or 0.30 [3].

Note that we included studies that used
MMRE and/or Pred to evaluate prediction accu-
racy in this research question. Topics for which
there was no MMRE or Pred were discarded.
Note too, that low MMRE or high Pred(25) or
Pred(30) values indicated good prediction accu-
racy [35, 36].

164

Sara Elmidaoui et al.

180

160

140

(=)
<

F .
=

2
(=}

ANN CBR

=

B MMRE (%)

DT FNF IRB SVMMR

B Pred(25)(%)

B Pred(30)(%)

Figure 13. Average performance of different change prediction techniques (16 studies)

Change: Selected studies on the change topic
(including changes of lines in the code, or changes
made to each module, or changes of an attribute,
a method or a class to predict the maintainabil-
ity of a software) used MMRE, Pred(25), and
Pred(30) in 16 out of 44 studies as accuracy
criteria. We also looked into the average perfor-
mance of the different prediction techniques. As
shown in Figure 13, FNF had the lower value in
terms of MMRE and the highest value in terms
of Pred(30), ANN had the highest value in terms
of Pred(25). Moreover, FNF provided greater ac-
curacy in terms of MMRE and Pred(30). The re-
maining studies (24 out of 44) used different accu-
racy criteria such as R-squared, R, MAE, MARE,
RMSE, NRMSE, precision, recall, F-measure,
specificity, accuracy, etc., while four studies did
not provide the accuracy criteria used (see Ta-
ble A9 in the Appendix for more details).
Maintainability index: Eight studies used the
maintainability index for prediction accuracy.
Most studies under this topic used various accu-
racy criteria such as: coefficient of correlation,
R-squared, adjusted R-squared, standard error
of the estimate and Spearman’s coefficient of cor-
relation (Rs), etc. Only study S68 used MMRE,
and Pred(30), while study S16 used MMRE as
accuracy criteria. Note that a set of 105 experi-
ments were performed in S68 and S16.

The distribution of prediction performance of
these two studies is shown in Figure 14 in terms
of MMRE and Pred(30). The MMRE ranged
from 1% to 100%, while the Pred(30) varied
from 40% to 100%.

400

bk 2

300

200
*

K

I
Pred(30)

Figure 14. Performance distribution of
maintainability index (S16 and S68)

Maintainability time: All studies (8) under
this topic predicted maintainability in terms
of understandability time, and/or modifiability
time while performing tasks related to maintain-
ability. Accuracy was evaluated using various
accuracy criteria such as: R-squared and gMRE,
etc. One study (S3) used MMRE and Pred(30)
as accuracy criteria in three experiments and the
RA (MLR) technique to predict maintainability
time.

Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review

165

Table 14. Prediction performance for maintainability time

Prediction context

ID MMRE Pred(30) Dataset Software Dependent Prediction
developement . .
type . variable technique
project
S3 58.30 46.00 Spain data Object-oriented Understandability time RA
S3 67.60 38.50 Italy data Object-oriented Understandability time RA
S3 85.00 30.00 All data Object-oriented Understandability time RA

Table 14 shows its prediction accuracy as well
as prediction context. The average MMRE was
70% and the average Pred(30) was 38%. The
result shows that the experiment using Spain
data had the highest accuracy.

4.2. SPMP techniques reported to be
superior in comparative studies

(RQ2)

From the results of MQ3, comparative studies
about SPMP techniques presenting better perfor-
mance were identified. Table 15 shows the details
of these studies in terms of compared techniques
and the r