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Abstract
This study was focused on evaluation of seismicity yield of key faults guarding the terrestrial Makran region (Balochistan 
and Iran) using updated datasets. The Makran onshore region is bounded by paramount strike-slip faults (Chaman fault, 
Ghazaband fault, Ornach-Nal fault and Minab fault). We have compiled the earthquake’s catalog and performed iterative 
processes for declustering of independent main shocks, estimation of magnitude completeness and b-values. The main shocks 
of disastrous earthquakes, e.g., Mw 7.7 Quetta (1935) and Mw 7.7 Awaran (2013), have epicenters along the Ghazaband fault 
and splay of Chaman fault, respectively. The earthquake source parameters such as moment magnitude, focal depth, focal 
mechanism, and epicenter location was utilized in mapping and seismicity evaluation of the faults. The focal mechanism 
solution was derived to determine the fault mechanics in generating the Mw > 5.0 events along these faults. This study helped 
us to compare the seismological profiles of each boundary fault and present the seismological information including the 
characteristics of events on/along fault, estimation of re-occurrence period, corresponding b-value, and hazard potential of the 
of the key faults. Since our study is based on recent dataset, i.e., inclusion of 2013 Mw 7.7 Awaran earthquake, the estimated 
results could help in better planning against the earthquake hazard in near-field cities & coastal towns of southern Pakistan.
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Introduction

Recent studies enhance the seismogeological understanding 
about interseismic strain, seismogenic behavior and seis-
motectonic dynamics of Makran region, southern Pakistan 
(Nemati 2019; Burg 2018; Penney et al. 2017). The research 
studies (Khan 2015; Barnhart et al. 2014; Hadi et al. 2013; 
Smith et al. 2013; Quittmeyer and Kafka 1984) revealed that 
Makran region is an active seismotectonic zone; however, it 
is diversified in seismotectonic characteristics in its eastern 
and western parts such as strength of earthquakes, seismicity 
recurrence, frequency of events, clustering of after- and/or 
foreshocks, focal depths of main shocks from interplate and 
intraplate regions and corresponding b-values (Penney et al. 

2017; Khan 2015; Ambraseys and Bilham 2014; Smith et al. 
2013; Rani et al. 2011; Regard et al. 2010). Makran region 
distinguishes four main litho-tectonic units from north to 
south (offshore, costal, outer and inner Makran), and this 
geological subdivision is associated with strong deforma-
tion such as long wavelength folding (Burg 2018; McCall 
2003) and secondary faulting (Dolati and Burg 2013) within 
massive basin fill deposits (~ 7 km, Smith 2013) of Makran. 
The tectonic lineaments and massive geological structures in 
Makran onshore are revealing the dynamic source of tectonic 
platform in southern Pakistan.

It was hypothesized that the major seismicity of the 
Makran onshore region (MKOR) is controlled by trans-
form faults, i.e., Chaman fault (CF), Ghazaband fault (GF), 
Ornach-Nal fault (ONF), the Minab fault (MF) and their 
associated fault splays and megathrust of Makran sub-
duction. MKOR is bounded by the paramount strike-slip/
transform faults: Minab fault at western side and Chaman, 
Ghazaband, Ornach-Nal faults at eastern side (Fig. 1). We 
have focused on the seismicity of major strike-slip/transform 
faults of MKOR in this study. The aim of this study was to 
evaluate the seismological characteristics of these boundary 
faults using instrumental data (over ~ 40 years, 1978–2018). 
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Although it is very rigorous effort but crucial to study the 
seismological behavior of individual faults particularly 
identifying their active segments, locking depth of each 
strike-slip/transform fault within complex Makran region, 
the seismotectonic behavior can help to delineate the nature 
of fault blocks either creeping or locked in active Makran 
subduction region (Szeliga 2012) which may correspond to 
evaluate the probability of future seismicity hazard in the 
Makran/coastal belt of Pakistan (Ali and Khan 2015). These 
boundary faults are accommodating seismic stresses being 
generated in active Makran subduction system (MSS) (Fat-
tahi and Amelung 2016; Hadi et al. 2013).

The Chaman fault system runs about 900 km north–south 
along western margin of Indian Plate in MKOR, attributes to 
seismogeological characteristics and structural heterogenei-
ties in Pakistan, Iran and Afghanistan (Ambraseys and Bil-
ham 2014; Bilham et al. 2007). The GF runs parallel to the 
CF, extends about 300 km along the north–south direction 
(Hadi et al. 2013; Smith et al. 2013) and connects with the 
thrust faults of Sulaiman range near Quetta, Pakistan (Yeats 
et al. 1979). ONF lies to the south of CF and runs 160 km 
along the north–south direction toward the Arabian Sea and 
seems to connect with the Murray Ridge-offshore Pakistan. 
(The MF which marks western boundary of Makran accre-
tionary prism in the south runs on the Arabian and Eura-
sian plates boundary about 50 km parallel to the Strait of 
Hormoz, Iran (Barnhart et al. 2014; Regard et al. 2005.) 
The tectonic earthquakes in MKOR (Pakistan and Iran) may 
have primitive feeding from the sinking Arabian Plate at 
Makran subduction zone and grinding margins of the Indian 
and Eurasian plates at western margin of Indian Plate and 

the transform/transpressional faults in the MKOR which 
are more susceptible to release the seismic stresses (Regard 
et al. 2010; Ambraseys and Bilham 2003).

Makran has a long history of earthquakes including the 
oldest tsunami generated after an earthquake reported 325 
B.C (Quittmeyer and Jacob 1979). There were several earth-
quakes striking the Karachi coast accompanied by tsuna-
mis, such as 1914 northern Makran earthquake, 1945 Pasni 
earthquake, 1984 offshore Makran/Murray ridge earthquakes 
and 2002 Ormara earthquake (Khan 2015). The study area 
has experienced some of the most disastrous earthquakes, 
e.g., Mw 7.7 Quetta (1935), Mw 8.1 Makran (1945) and the 
most recent Mw 7.7 Awaran (2013) earthquake. Among these 
major events, the Quetta earthquake of 1935 and Awaran 
earthquake of 2013 occurred along the Ghazaband and 
splay of Chaman fault (i.e., Hoshab fault). The translational 
motion between the Indian and Eurasia plates on an active 
left-lateral Chaman fault system has historically generated 
some major earthquakes destroying Kabul, Afghanistan and 
surrounding areas in 1505 (Barnhart et al. 2014). The Quetta 
earthquake is the deadliest earthquake of southern Pakistan, 
killed about 35,000–60,000 people (Ambraseys and Bilham 
2003). Makran earthquake of  MW 8.1 in 1945 (Byrne et al. 
1992) is suggesting the potential of subduction zone to gen-
erate earthquakes along the megathrust. Mw 7.7 Awaran 
earthquake of 2013 is the largest magnitude earthquake of 
recent decade (Khan 2015). Smith et al. (2013) inferred 
that the shallow dipping long thrusting Arabian Plate is 
under a thermal maturation process which may undergone 
regional extended rupture and can trigger an earthquake of 
Mw 8.7–9.2. Khan (2015) did integration of focal mechanism 

Fig. 1  Map of Makran onshore 
(Pakistan and Iran) region. 
Satellite image by ALOS Global 
Digital Surface Model (Japan 
Aerospace Exploration Agency) 
is modified by adding tectonic 
features (fault lines and subduc-
tion zone) following Regard 
et al. (2010)
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solutions with 3D seismic data (Makran offshore) and stud-
ied the involvement of thrust faults in offshore Makran and 
deep structural seismic activity of MSS. The US geologi-
cal survey catalog provides dataset of more than a thousand 
tectonic earthquakes which hit the region over a century 
(1902–2015) (Ali and Khan 2015), though an updated com-
parative seismicity response of the individual fault needs to 
be studied (Crupa et al. 2017; Zinke et al. 2014).

Data and method

Primary dataset employed in this study includes (1) geo-
graphically distributed earthquake data, (2) geologi-
cal parameters of causative faults, (3) satellite imageries 
(ASTER GDEM) and (4) published structural maps of 
MKOR. The point data of earthquakes variables (date, 
moment magnitude, focal depth, time and epicenter location) 
were used for seismicity plotting, analysis and evaluation of 
the understudy faults. The geological characteristics (strike, 
dip, and rake) of causative faults were retrieved to study the 
colinear earthquakes above Mw 5.0. The surface geologi-
cal faults of MKOR (CF, ONF, GF, MF) were traced and 
georeferenced for comparative seismicity evaluation from 
structural maps (Ali and Khan 2015; Barnhart et al. 2014; 
Regard et al. 2010).

We have quested the national and international/open 
source agencies, e.g., USGS/IRIS—National Earthquake 
Information Center, Harvard CMT- Lamont-Doherty Earth 
Observatory (LDEO), for necessary datasets from their 
archives, since the earthquake recording has started in 1970s 
in MKOR thus enabled us to consider the instrumental data 
after 1978. Although the catalog is being updated since 
Nov 15, 2019, to be latest catalog of the MKOR, a catalog 
of earthquake was prepared, containing 1015 events from 
January 1, 1978, to December 12, 2018 (40 years), spatially 
distributed over MKOR (20°–32° N and 55°–70° E). The 
catalog was unified to Mw by adopting empirical relations 
to convert other magnitudes, i.e., mb, ms & M to Mw as 
derived by Khan et al. (2018) and Scordilis (2006). We 
have explored the Zmap application developed by Wiemer 
(2001) to utilize for earthquake data filtering/processing, i.e., 
declustering of the independent events, historical analysis 
and magnitude of completeness. The catalog was declustered 
by following the standard Reasenberg Declustering method. 
The decluttering operation found 23 clusters of after and 
foreshocks earthquakes, and a total of 172 events (out of 
1033) were removed from the initial data. This exercise pre-
sented the catalog of 884 events for further analysis and 
study. The events of declustered catalog range in magnitude 
(moment magnitude) from 4.1 to 7.7 and depth 2 to 183 km. 
Most recent events of the catalog were an intraplate event 
of Mw 4.4 occurred on August 23, 2019. Zmap tools such 

as spatial data function F(x,y) tools were utilized to esti-
mate the magnitude of completeness (Mc). There are differ-
ent procedures to estimate Mc such as at max curvature, at 
fixed M, at Best 90, 95, etc. We have considered the max. 
curvature solution to determine the Mc of catalog. However, 
it is observed that Mc highly variable based on the statis-
tical procedure used to estimate it, but the results remain 
unchanged when choose “Mc 90” or “McBestCombo.” Mc 
describes the “the lowest magnitude at which 100% of the 
earthquakes in a space-time volume are detected” which is 
useful to reduce the uncertainty about the completeness of 
the catalog (Shi and Bolt 1982). The Mc estimations play 
integral role in b-value determination. Moreover, the return 
period of a fault can be well-projected with correct estimates 
of Mc and corresponding b-value.

Geospatial information system (GIS) and satellite remote 
sensing images are facilitated in integrated seismicity analy-
sis and modeling of spatially distributed earthquakes asso-
ciated with regional faults. The satellite images of ASTER 
GDEM were used to trace the fault lines and overlaid seis-
micity parameters, to understand the regional surface topog-
raphy along the fault lines and to provide 3D view of focal 
depth distribution. The ASTER GDEM provided a base map 
for seismicity analysis. The surface area of CF and GF was 
covered by 24 tiles (each tile covers 1° × 1°, horizontal reso-
lution 75 m), while ONF and MF were covered by six tiles. 
The GDEM tiles of under-investigation regions were merged 
to build a mosaic (which served as a platform to signify 
earthquake parameters in relation with the geological fault 
lines) and to understand the regional surface topography 
along the fault lines. The mapping applications (ArcMap 
and ArcScene) were used for seismicity parameters analysis 
(spatial data mapping, iso-parameters interpolation), prepar-
ing the spherical models of fault mechanism solution (FMS), 
georeferencing of faults lines and classifying the earthquake 
source parameters (focal depth, magnitude, epicenter loca-
tions) to be presented in map layouts.

Results

The results of this study are summarized into (1) seismo-
logical profile of boundary faults and (2) the estimation of 
re-occurrence period of the potential faults.

Seismological profile of faults onshore

Seismicity of Chaman fault (CF)

The sinistral Chaman fault system (CFS), which represents 
the western margin of Indian Plate in MKOR, is the larg-
est fault system of Pakistan (Fattahi and Amelung 2016) 
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and forms a transpressional boundary between the Indian 
and Eurasian Plates (Hadi et al. 2013). The CF is termi-
nated into Herat fault to the north (near Pak-Afghanistan 
border) and is branched into multiple curved faults to the 
south in MKOR. The most damaging earthquake (Mw 6.5) 
occurred on CF in 1892 near the Chaman town. After this 
earthquake, the fault was given name CF (Griesbach 1893). 
Various valuable studies including geological mapping of 
sediments deformation/slippage, GPS and InSAR investi-
gations were conducted to find out the quantum of elastic 
stresses being accumulated within the CFS system (Hadi 
et al. 2013). Recent studies have suggested 8.5 mm/yr creep-
ing rate along CF, which accounts for approximately 30% 
of the slip rate between the Eurasian and Indian plates (Sze-
liga et al. 2012). These studies have also pointed out some 
estimates of slip rates: 18.1 mm/year through sporadic GPS 
(Mohadjer et al. 2010) and slow slip rate of approximately 
8 mm/yr through InSAR analysis (Barnhart et al. 2014). The 
slip rate of CFS is 19–24 mm/year over 20–25 My based 
on Khojak Flysch deposit offset [Eocene–Oligocene- Mio-
cene] (Lawrence et al. 1992). Seismicity of Afghanistan 
and northwestern Pakistan is usually associated with active 
fault system related to the CF through Herat fault (Furuya 
and Satyabala 2008; Yeats et al. 1979). During the last four 
decades (1978–2018), seismicity along the CF has low mag-
nitude Mw 4–5 (Table 1). The largest earthquake occurred 
at CF was Mw 5.7 in 1978. The earthquakes magnitude clas-
sification in various parts of CF is shown through different 
colors and radii of circles in Fig. 2a. There are 23 colinear 
epicenters which overlaid the CF (18 jolts higher than Mw 
4, and 5 earthquakes higher than Mw 5). The focal depths of 
these events are used to create the subsurface planner view 
of focal depths created through interpolation (Fig. 2b). The 
iso-focal depth map of earthquakes lies in the buffer of CF 
and reveals that the middle section is related to multiple 
peaks of focal depth which may be interpreted as shallow 
subsections of the deformed CF. CF surface view is form-
ing a two-way gentle dipping plans in the subsurface under 
the surface fault trace of CF, i.e., the focal depths increase 
toward north and south. The FMS of Mw > 5 events unveils 
the fault nature and slippage of blocks along the CF. The 
FMS of CF consists four quadrants and exhibits strike-slip 

movement of the blocks (Fig. 3). It is apparent that the dip 
of the fault plan is toward north and responsible for more 
transpressional stress (Fig. 3). The recurrence period of CF 
is estimated in following section for intermediate magnitude 
events, i.e., Mw 4–5, which suggests that CF may trigger 
another event in 9 years (Table 2). CF is most vulnerable 
seismotectonic element of Pakistan. Surface fractures and 
ground displacement are evident from historic events along 
CF (1505 Kabul earthquake, Babur 1912). Griesbach (1893) 
documented that 1892 earthquake in Pakistan caused bend-
ing of iron made rail track by 0.75 m, and Mw 6.1 Naushki 
earthquake ruptured the surface.   

Seismicity of Ghazaband fault

GF accommodates strike-slip stress deformation in the 
MKOR between 27° and 31° N (~ 40 km east of Chaman 
town, Balochistan) and has a greater potential of seismic-
ity. Slip along the GF plane was responsible for the exten-
sive damage to Quetta in the 1935 Mw 7.7 earthquake 
(Byrne et al. 1992; Ramanathan and Mukherji 1938). This 
was the deadliest earthquake of the region, killing about 
35,000–60,000 people and injuring several thousands. The 
GF was recognized after this earthquake as the most seis-
mically active part of CFS. Recent research (Szeliga 2012) 
reported reliable estimate of combined velocity at CF and 
GF, determined through GPS network (30°−32°  N), is 
approx. 12 mm/year, while the Indian Plate is moving toward 
Eurasia (Afghan block) with a velocity of 24–28 mm/year 
(Altamimi et al. 2011). In the CFS block, velocity increases 
toward GF from 6 to 8.5 mm/year (Szeliga 2012). The GF 
faced a slip of approx. 9 cm from left-laterally displaced 
shallow fault from a Mw 5.5 earthquake occurred on Octo-
ber 2007 (Fattahi et al. 2015). During the last four decades 
(1978–2018), 38 earthquakes of varied magnitude have 
occurred on GF which are given in Table 1. The GF has 
ranked as the highest seismicity producing fault among the 
understudy faults of MKOR. Figure 4a demonstrates the 
earthquakes of different magnitudes lying on the GF surface 
traced over GDEM. The focal depths of these events are used 
to create the subsurface planner view of focal depths through 
the interpolation (Fig. 4b). The focal depths of the events lie 
within range of 10–33 km, which means the deformation of 
the GF is relatively shallow and fast as compared to adjacent 
CF. GF generated relatively more events within 0–10 km. 
The iso-focal depth plane of GF is forming an asymmetri-
cal pattern of alternate crest and trough suggesting highly 
deformed blocks (slip along z -axis) with some horizontal 
displacement ascertained in strike-slip deformation along 
the GF plane. FMS of earthquake higher than Mw 5.0 along 
the GF divulge the fault nature and slippage along the GF 
(Fig. 3). The spheres of FMS are four quadrants exhibiting 
the shear stresses of the blocks.

Table 1  Number of earthquakes occurred along the understudy faults

Magnitude range CF GF ONF MF

4.0–4.4 12 16 10 9
4.5–4.9 6 13 12 7
5.0–5.4 2 6 1 –
5.5–5.9 3 2 3 1
6.0–6.4 0 1 0 0
6.5–6.9 0 0 0 0
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Seismicity of Ornach‑Nal fault

The ONF extends in MKOR from 25.5 to 28°N. The sinistral 
motion elongates about 250 km in southernmost onshore 
region along the ONF (Szeliga 2012). The ONF is associated 
with a triple junction of Arabian, Eurasian and Indian plates 
which are located at the south of Somiani Bay and connects 
the Murray Ridge/Makran subduction zone. The literature 

review suggests that the slip rates of ONF are roughly 
20–40 mm/year (Lawrence et al. 1992) The average velocity 
measured on the triple junction south of ONF is 15.1 mm/
year (Szeliga 2012). The seismicity along the ONF is always 
noteworthy being closer to metropolitan city Karachi (east 
of ONF and the triple junction) and connecting onshore and 
offshore. It is observed that the ONF region was seismi-
cally quite before 1972 (International Seismological Center 

Fig. 2  a Earthquake data dis-
played over the georeferenced 
Chaman Fault, exported from 
ArcMap. The DEM surface 
depicts the surface topography 
along the CF. Legend displays 
the earthquake magnitude 
through different color and size. 
b Iso-focal depth of earthquakes 
occurred along the Chaman 
Fault, exported from ArcMap. 
Legend displays the focal depth 
in km classified in various color 
bars
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Dataset) either it is a delusion or non-recording era. After 
1970s, the seismicity observed at ONF nevertheless of small 
magnitude. This study highlights 23 earthquakes with Mw 
4–4.9, 3 earthquakes with Mw 5–5.9 and the highest Mw 5.6, 
occurred on ONF during the last four decades (Table 1). The 
earthquake magnitude distribution is classified (Fig. 5a) and 

overlaid the georeferenced ONF on GDEM Image. The ONF 
is a crust cutting fault as it has generated more deeper focus 
earthquakes up to 42 km (Fig. 5b). It is envisaged that there 
could be the involvement of the subducting Indian Plate sec-
tion or the underthrusting of the Arabian Plate to this depth. 
The iso-focal depth visualization follows a similar character 

Fig. 3  Focal mechanism solutions (Red and white shaded spheres) 
of events Mw> 5 magnitude displayed on Chaman fault, Ghazaband 
fault, Ornach-Nal fault and Minab fault (Source of focal mechanism 

parameters of earthquakes occurred along understudy faults was 
Global Centroid Moment Tensor Project Dziewonski et  al. 1981; 
Ekström et al. 2012)

Table 2  Estimations of 
recurrence interval for moderate 
events at corresponding fault

Faults T° (years) b-value M* M N Tr (year)

CF 40 0.457 ± 0.191 4 5.7 23 9 ± 1
GF 40 0.644 ± 0.074 4 6.1 38 14 ± 1
ONF 40 0.530 ± 0.404 4 5.5 26 07 ± 0.5
MF 40 0.666 ± 0.155 4 5.5 17 15 ± 0.8
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of the CF, i.e., two-way dipping, northward and southward; 
however, the middle portion of ONF has generated earth-
quakes from shallow depths. The undulating depth profile 
(Fig. 5b) of ONF plane highlights the horizontal and verti-
cal displacements of the ONF sections. The FMS of Mw> 5 
reveals the nature of block movements of ONF (Fig. 3) and 
shows transpressional stress. The earthquakes along ONF 
have deep focal depth (i.e., crust cutting events) than the 

other faults. Does Murray Ridge connect with ONF? It is 
suggested that a detailed study of intermediate to deep focal 
depths and seismic reflection images (synthetic seismic sur-
vey for E&P sector) may shed some light on the connection. 
The mechanism of left-lateral motion (onshore) and right 
lateral motion appeared along the Sonne fault (Kukowski 
et al. 2001) and Owen fracture zones (offshore Arabian 
sea) which also needs to be resolved (Yeats et al. 1979). 

Fig. 4  a Earthquake data dis-
played over the georeferenced 
Ghazaband fault over DEM 
surface. Legend displays the 
earthquake magnitude through 
different color and size. b Iso-
focal depth of earthquakes along 
the Ghazaband fault, exported 
from ArcMap. Legend displays 
the focal depth in kilometers 
classified in various color bars
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The estimate of recurrence interval on ONF has approx. 
707 ± 0.5 years for Mw 5.5.

Seismicity of Minab fault

MF is bounding the MKOR from west and represents 
the seismicity of western Makran onshore. MF connects 
the Zagros mountains and Makran subduction zone. The 

western Makran neighbors (strait of Hormoz and Zendan-
Minab fault) are seismically active (Regard et al. 2005); 
however, global seismic networks and historical records 
indicate that the seismic activity is low, and earthquakes 
depth is also shallow across the area around MF (Nemati 
2019). MF is located near the coast, perpendicular to the 
shoreline, and seems to have penetrated into Makran sub-
duction zone. It extends for about 50 km and runs parallel 

Fig. 5  a Earthquake data dis-
played over the georeferenced 
ONF over GDEM surface. 
Legend displays the earthquake 
magnitude through different 
color and size. b Iso-focal depth 
of earthquakes occurred along 
the Ornach-Nal fault, exported 
from ArcMap. Legend displays 
the focal depth in km classified 
in various color bars
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to the Strait of Hormoz (Regard et al. 2010). MF is 25°–45° 
dipping discontinuous and nonlinear thrust faults affecting 
the Late Cenozoic and the Quaternary geological deposits 
closely associated with the Minab fold (Burg 2018). The 
Arabian Plate is moving to the direction of Strait of Hor-
muz with a velocity of 23 mm/year (Ahmed et al. 2018). 
The Zagros thrust belt is moving in southeastern end up to 
10 mm/year. The average strike-slip rate of Minab–Zendan 
fault is 12 mm/year (Peyret et al. 2009). The seismicity 
source parameters associated with the MF (1978–2018) are 
overlaid with fault trace of MF. The spatial distribution of 
the magnitude highlights the 16 earthquakes with Mw 4–4.9 
and 1 earthquake with Mw 5.5 occurred on MF (Table 1, 
Fig. 6a). The MF has lowest seismicity potential among all 
the understudy faults. The iso-focal depth (Fig. 6b) exposed 
the shallow deformed middle portion of the MF plane with 
a sagging block/basin (in the northern MF). The associated 
FMS of Mw> 5 along the MF reveals dominant involvement 
of the reverse faulting and shear strain. The oblique fold 
cross-cuts MF in the south while the thrust splits two well-
defined structures in the northern MF. The western part is an 
east dipping reverse fault affecting the late Pleistocene front 
of the fold and thrust belt fans, while the eastern part is an 
inactive northeast oblique dipping thrust that cross-cuts the 
MF (Nemati 2015; Regard et al. 2005). The estimated recur-
rence period of MF is 1515 ± 0.8 years (Table 2).

Recurrence interval estimation

The historical data analysis of the catalog was performed, 
in addition to collection of historical events of the region 
from the exhaustive catalogs of Ambraseys and Bilham 
(2002), and published studies of Smith et al. (2013), Ali 
and Khan (2015), Khan et al. (2018). Since the seismologi-
cal network was established in 1970s, the information of 
the events pre-1970s uncertains the precise magnitude, focal 
depth and location in the complex geological environment. 
It is apparently found that those historic events with strong 
impacts/damageability were considered probably due to their 
tangible impacts on property and life. However, lack of seis-
mological knowledge and scientific background of the histo-
rian or people settled in remote tribble belts of Balochistan 
(Pakistan) and Sistan (Iran) preclude exhaustive information 
of historic events in MKOR. Still, the region is lacking in 
richness of seismological stations and state-of-the-art instru-
mentation to monitor static stress in the faulty blocks of 
Makran onshore region (MKOR) and early warning tsunami 
sensors along the Makran coast, etc. (Ellouz-Zimmermann 
et al. 2007; Kukowski et al. 2001; Minshull et al. 2015; 
Frohling and Szeliga 2016).

The understudy faults are originating earthquakes along 
their lineaments. The estimation of the recurrence of 

seismicity along CF, GF, ONF and MF is done by Eq. 1 of 
Ali and Khan (2015).

Tr = Recurrence Time Period in years, T° = Observational 
Time Period in years, M* = threshold magnitude, N = cumu-
lative number of earthquakes of magnitude M* and above. 
M = maximum credible magnitude.

The spatial distribution of b-values in southern Pakistan 
is shown in Fig. 7, which help to deduce the distribution of 
b-values in MKOR and key faults. Although some temporal 
and spatial variations in b-values are also reported in MKOR 
region (Rani et al. 2011; Ali and Khan 2015), the estimates 
of b-value for specific regions of CF, GF, ONF, and MF are 
abstracted in Table 2. There is a significant low b-value for 
CFS segment which generated events from 1978 to 2019. 
This is an anomalous situation in the light of the previous 
literature which attributes low-b values with high seismic 
probability. Thus, lowness of b-values in CFS segment might 
be treated as a precursor of future event (Shi and Bolt 1982; 
Smith 1981).

The researchers (Crupa et al. 2017; Fattahi and Amelung 
2016; Barnhart et al. 2014; Szeliga et al. 2012; Regard et al. 
2010) utilized satellite images, e.g., interferometric syn-
thetic aperture radar (InSAR) to infer quantitative informa-
tion about the ground deformation rates, along with locking 
depths of the CF and GF segments. The GPS- and InSAR-
based plate kinematics reported that the plates movement 
measured near 26° N across the ONF ranges between 13.4 
and 16.9 mm/year (avg. 15.1 mm/year) within less than 3 km 
locking depth (Fattahi et al. 2015; Szeliga 2012). The veloc-
ity measured at the town of Chaman (near 30° N) is 8.5 mm/
year (6.8–10.3 mm/year), and the CF is locked at ~ 3.4 km 
depth (Szeliga 2012). The creeping block velocity varies 
at places, e.g., across CF it is 14.1–19.5 mm/year, and the 
convergence rate is approx. 2 mm/year near western most 
strike-slip fault and 6–9 mm/year near the transpressional 
faulting (Frohling and Szeliga 2016; Altamimi et al. 2011). 
The different tectonic stresses associated with Indian, Ara-
bian and Afghan blocks are being accumulated at tectonic 
margins due to different geodynamics and megathrust block 
velocities in the study area (Khan et al. 2008; Hussain et al. 
2002).

Discussion

MKOR has been undergone diversified plate tectonic pro-
cesses such as the subduction, underthrusting, transpressional 
faulting and mountain building in geological times. In the west 
of Pakistan and southeast of Afghanistan, the oblique motion 
of Indian Plate relative to the Eurasian Plate has resulted in a 

(1)Tr =
(

T
◦ × 10

b(M−M∗)
)

∕N
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complex fold and thrust belt of Sulaiman range (Kazmi and 
Jan 1997). Makran (onshore) region shows an active seismicity 
which is linked with the interaction among three major plates 
(Arabian, Eurasia and Indian). The tectonic outcome in MKOR 

exposes on surface the prominent imbricate thrust slices, seg-
mented mountain topography and a dissimilarity in seismo-
genic behavior in western and eastern Makran as evident by 
the respective key faults (CF, GF, ONF and MF). Frohling and 

Fig. 6  a Earthquake data 
displayed over the georefer-
enced MF over GDEM surface. 
Legend displays the earthquake 
magnitude through different 
color and size. b Iso-focal depth 
of earthquakes occurred along 
the Ornach-Nal fault, exported 
from ArcMap. Legend displays 
the focal depth in km classified 
in various color bars
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Szeliga (2016) and Penney et al. (2017) investigated elastic 
strain accumulation in western Makran and expressed that his-
torical records are not long or reliable enough to expect a great 
event in future. Smith et al. (2013) investigated thermal mod-
eling of the subduction zones and concluded that a potential 
Mw> 9 earthquake is possible if full length of MSZ ruptures. 
The literature review (Ali and Khan 2015; Ambraseys and Bil-
ham 2003a, b), past earthquake reports and residents’ obser-
vations suggest that the regional intraplate earthquakes either 
occurred in onshore Makran or offshore Makran region [such 
as Dalbandin (400 km from Karachi), Pasni (500 km away), 
Awaran (210 km away from Karachi)] have proportionally 

jolted Karachi. Any significant earthquake in Makran and its 
contiguous coastline may have awful impact on populous city 
Karachi (Smith et al. 2013; Sarwar and Alizai 2013), thus, a 
significant regional hazard mitigation plan in coastal Pakistan 
(Barnhart et al. 2013; Smith et al. 2013; Hatzfeld and Mol-
nar 2010). October 8, 2005, Kashmir earthquake gave a spark 
to seismological studies of Pakistan which categorized the 
region adjacent to CF and GF as active seismotectonic zones, 
whereas ONF lies in the least seismicity zone (Waseem et al. 
2019). However, recent studies (Barnhart et al. 2013; Smith 
et al. 2013; Szeliga et al. 2012) and the existence of nearby tri-
ple junction of Eurasian, Arabian and Indian plates suggested 

Fig. 7  Spatial distribution of 
b-value in southern Pakistan. 
The b-values are computed at 
a grid of 1053 pixels consider-
ing N = 250 events and max. 
50 events less than the Mc. 
The color ramp indicates the 
contrasting variation in b-value 
in the study region. Smaller 
regions did not contain enough 
data for adequate resolution of 
the b-values computation raster 
particularly at margins (left and 
right sides—deep blue color)

Eurasian Plate 

Indian Plate 
Arabian
Plate 
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that entire Makran shall fall within high-risk seismotectonic 
zone of Pakistan. Although the earthquakes Mw 7.7 Dalbandin 
(January 18, 2012) and Mw 7.7 Awaran (September 24, 2013) 
have released most of the elastic strain energy accumulated in 
MSS, the remaining energy in the system under the influence 
of active tectonics of triple junction may trigger a major tremor 
affecting the Balochistan and Sindh. Hence, the recommenda-
tion of redesigning the building codes for proximal coastal cit-
ies of Karachi and Gawadar would be a safety measure against 
any disaster (Ali and Khan 2014).

Considering the short history of earthquake observations 
compared to the potential length of a seismic cycle, we can-
not exactly foresee the next rupture, when and where it can 
occur in MKOR. The uncertainty in evaluated seismic haz-
ard is due to moderate and large plate margins grinding the 
crust in various directions. Moderate thrust, strike-slip or 
transpressional motion can generate earthquakes in shallow 
depth < 10 km, whereas moderate and large earthquakes, in 
intermediate depth range (> 30 km), might occur along the 
under-investigation fault lines of MKOR. The comparative 
seismicity evaluation in this study contributes to understand 
the seismicity response of the major faults. It is apparent 
that GF has higher seismicity than the other faults because 
it accumulates more elastic stress, thus poses more risk than 
the other faults. The cities located in vicinity of CF and ONF 
closely associated with GF are also at risk. The statistical 
analysis showed that the MF generated most earthquakes 
in 2013, including an earthquake with Mw 5.5. The Hoshab 
fault recently generated a Mw 7.7 earthquake, which affected 
the seismicity of all the faults in the region. In the region 
of CF, Mw> 7 earthquakes have not been reported previ-
ously. Similarly, the ONF have not produced earthquake 
with Mw> 5.9. The GF has been triggered by two major 
events (1931 Mw 7.2 Mach earthquake, and 1935 Mw 7.5 
Quetta earthquake). The focal depth of earthquakes at ONF 
is roughly 42 km which is deeper than other faults. The ONF 
is observed as another fault system with different geometry 
of fault trace, FMS attributes, focal depth profile and swing-
ing splays to the western side of the main fault traces. ONF 
is closer to the coast and offshore region, with potential of 
generating Mw> 5.6 may cause a future threat of earthquake 
vibrations reaching to Karachi. This study highlights the 
insight of ONF seismicity potential, which may be consid-
ered for building codes of Karachi. The FMS provides an 
insight of the strike-slip nature of all the faults, with a slight 
influence of compression and subducting Indian Plate.

Conclusion

This study provides a seismicity comparison between key 
strike-slip faults of Makran, i.e., CF, GF, ONF and MF over 
last four decades which can help to evaluate the potential 

faults response. The GF is ranked as frequent and exhibiting 
high seismicity response than other faults. The neighbor-
hood region of GF elucidated by high b-values in south-
ern Pakistan. The middle section of CF generated shallow 
earthquakes than those of northern and southern segments. 
The FMS of CF, GF, ONF and MF consist four quadrants 
and exhibit dominant component of transpressional nature, 
certainly under the influence of collisional and/or subduction 
regime. MF originated seismicity infrequently; however, a 
major increase in seismicity was observed in after Awaran 
earthquake. The earthquakes along ONF have deep focal 
depth (i.e., crust cutting events) than the other faults. It can 
be postulated that Mw 7.0 or above earthquake might be 
another destructive event in MKOR; thus, an extensive prob-
abilistic seismicity hazard assessment has recommended for 
future study and safety.
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Abstract
An analysis of seismic risk using our tool QLARM has been performed for the Batken region including the cities of Aidarken 
and Kadamjay, 100 km SW of Osh. The damage to residential buildings and induced casualties has been estimated for a set 
of seismic scenarios of typical and maximum magnitude considering the existing seismicity data. Population and building 
datasets have been built based on up-to-date information, and for the two cities, satellite photographs and a field survey 
have been used. A preliminary soil response zonation is proposed using seismic ambient noise analyses. In the investigated 
region, the probability of damaging earthquakes with M > 6 is judged to be low because the slip accumulation rate along 
individual faults is only in the range of 0.01–0.3 cm/year. The amplification of seismic waves by soil deposits is estimated 
to be low; however, the proposed zonation needs to be complemented by additional seismic measurements. The calculations 
indicate that the combined fatalities of Kadamjay and Aidarken in a hypothetical earthquake of magnitude between 6.0 and 
6.6 are fewer than 100.

Keywords Earthquake · Risk · Residential buildings · Central Asia · Mitigation

Introduction

Estimating the damage and human losses due to possible 
future large earthquakes is of prime importance for miti-
gation and preparedness. Wyss (2017) pointed out that the 
number of losses could be largely reduced if loss estimations 
were used to retrofit critical buildings and promote safety 
and evacuation measures. The author noted that each US$1 
spent on earthquake mitigation saves $10 when the disaster 
strikes.

Kirghizstan is an earthquake-prone country located within 
the Tien Shan mountain belt. The on-going deformation of 
the region is associated with the continental collision of the 
Eurasian and Indian plates which generated several large 
historic thrust and reverse-faulting earthquakes (Xu et al. 
2006). According to Zhang et al. (2004), crustal velocities 
are around 5 mm/yr across the southern Tien Shan inducing 
shallow earthquakes. The map of Fig. 1 shows the earth-
quakes reported and recorded from up to 2014, included 

in the dataset of the Central Asia Seismic Risk Initiative, 
CASRI (Abdrakhmatov 2009).

In the Batken Province, SW of Kirghizstan, where the 
study was conducted, most of the earthquakes occur in the 
Pamir region as shown in Fig. 1. Ischuk et al. (2018) report 
that 75% of the focal mechanisms in this region are thrust 
faulting with shallow depth (> 45 km).

For the last 16 years, we have estimated the extent of 
earthquake disasters within less than 1 h for about 1200 
earthquakes worldwide (Wyss 2014) using our tool 
QLARM. Loss estimates contain the following information: 
a map showing the average degree of damage in settlements 
near the epicenter, a list of the number of people living in 
areas shaken by each intensity grade of V and larger, the 
total number of fatalities and the total number of injured.

The database of QLARM includes information for about 
1.93 million settlements containing the following param-
eters. (1) Up-to-date population numbers. (2) Distribution of 
buildings into EMS-98 classes. (3) Distribution of the popu-
lation in buildings of these classes. (4) Fragility curves for 
building resistance to strong ground motions. (5) Occupancy 
rates for different periods of the day. The program and data 
sets of QLARM are detailed in several publications (Rosset 
et al. 2015; Trendafiloski et al. 2009, 2011).
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Several global and regional attenuation relationships of 
seismic waves are available to calculate peak ground acceler-
ation (PGA) or intensity. For more than 50 important cities, 
information on soil conditions is provided to consider the 
effects of site amplification in the ground shaking calcula-
tion. In these cases, the settlement is divided into districts 
for which site amplification parameters are given as well as 
the population and building parameters described previously 
(Parvez and Rosset 2014).

QLARM has also been used to estimate losses for likely 
earthquakes in different regions of the world such as in the 
Azores (Fontiela et al. 2020), the Himalayas (Wyss and 
Chamlagain 2019; Wyss et al. 2018b), North India (Wyss 
et al. 2017), Algeria (Rosset and Wyss 2017), Mexico (Wyss 
and Zuniga 2016), Southern Sumatra and Central Chile 
(Wyss 2010) and Central Myanmar (Wyss 2008). The reader 
will also find in these publications details on QLARM.

The results presented in this paper concern the Batken 
region (population around 500,000) and most specifically 
the two cities of Kadamjay and Aidarken with popula-
tion 13,000 and 11,000, respectively. The project aimed at 

compiling data to build a dataset at regional and city scales 
used in QLARM for assessing the potential human losses 
and damage to residential building in the cases of various 
earthquake scenarios. The approach used in this project and 
the results presented in the paper are detailed in two internal 
reports (Wyss et al. 2018a, b; Torgoev et al. 2019).

Construction of the database

An extended compilation of data has been engaged in order 
to create the hazard and vulnerability models for the Bat-
ken oblast and the two investigated cities, Kadamjay and 
Aidarken.

Settlement and population dataset

A dataset of 621 settlements in a radius of 200 km around 
the two cities, including the geographical location, name in 
Latin and Cyrillic alphabets and population, is the base of 
our loss models.

Fig. 1  Seismotectonic context of Kirghizstan (shaded in blue) and 
surrounding countries. Earthquakes listed in the CASRI catalog up 
to 2014 are located by dots and grouped by magnitude ranges. For 
earthquakes with magnitude higher than 6 the year and magnitude M 
are indicated. Faults are marked with red lines as given by the CASRI 

dataset. The Kirghizia border is shown as a black line, and the prov-
ince borders are named in bold and marked by dashed lines. The two 
cities, Kadamjay and Aidarken, are indicated with a black square and 
yellow contour
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Population data updated for 2017 are derived from (a) 
official Kyrgyz sources for 200 settlements counting for 
67% of the total population, (b) OpenStreetMap (2017) and 
Global Human Settlement Layer (2016) database for 93 set-
tlements representing 11% of the total population and (c) 
visual counting of the number of houses in villages from 
satellite images for the remaining 11% of the population. 
The total population for the Batken oblast of our dataset is 
under-estimated by 2% compared to the 2017 official value 
of 503,500. For the Kadamjay district, our dataset over-esti-
mated the official population count by 5%. These differences 
are in the range of the expected uncertainty. In total, 85% 
of the settlements are rural, with fewer than 4000 people 
per village, 13% middle size and 2% urban settlements with 
population larger than 20,000 inhabitants. The map of Fig. 2 
shows the locations of the updated settlements grouped into 
these three city sizes for the updated dataset.

Residential buildings model at regional scale

At the level of Batken oblast, the distribution of buildings 
by construction types as described in Table 1, is based on 

the survey conducted by us on site and the literature (e.g., 
Lang et al. 2018; Wieland et al. 2015; Tolis et al. 2013; 
Wyss et al. 2013). Adobe houses (ADO) represent on aver-
age two-thirds of residential buildings in the three city 
sizes, followed by reinforced or confined masonry (RM) 
and unreinforced fired brick masonry (URM) structures. 
RM buildings are modeled to contribute 30% of the stock 
in urban settlements and 17.5% in rural ones. Precast con-
crete frame structures (RCPC) are mainly found in urban 
settlements. Photographs of Fig. 3 show the main types of 
buildings surveyed in the field. 

A distribution of residential buildings in terms of the six 
EMS-98 classes (Gruenthal 1998) of decreasing vulner-
ability, from A to F, for the three city sizes is derived from 
the count by building types using the percentages proposed 
in Table 2. For reinforced concrete moment frame (RC), 
RM and RCPC buildings, different vulnerability distribu-
tions were adopted, depending on the construction date in 
order to reflect the different construction methods applied 
during each period considered (1950–1970, 1970–1990 
and later). The resulting distributions are given in Fig. 4.

Fig. 2  Settlements database. Settlements updated with 2017 popula-
tion are shown with unfilled squares. Black dots are settlements avail-
able in the QLARM database outside the 200 km radius zone. Names 
are indicated for cities with more than 15,000 inhabitants. The Kir-

ghizia border is shown as a black line, and the province borders are 
named in bold and marked by red lines. The two cities, Kadamjay and 
Aidarken, are located by a black square with yellow contour
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City models for Aidarken and Kadamjay

The city models for Aidarken and Kadamjay were devel-
oped using the information collected in the field. The 

mobile application Kobotoolbox (2019) and a digital 
model created using the footprints of more than 8100 
building as they appear in the online satellite images have 
been used to document typical residential buildings and 

Table 1  Typical residential 
building types in Batken oblast

Types Description

ADO Adobe block (unbaked dried earth brick), mud mortar, wood roof and floors structures
W Timber structures
URM1 Unreinforced fired brick masonry, cement mortar, timber flooring structures
URM2 Unreinforced fired brick masonry, cement mortar, (precast) concrete flooring structures
RM Reinforced or confined masonry structures
RC Reinforced concrete moment frame with masonry infill wall structures with various 

level of earthquake-resistant design
RCPC Precast concrete frame structures

Fig. 3  Typical buildings in the 
investigated area. The abbrevia-
tion indicated for each building 
type is explained in the text

Table 2  EMS-98 vulnerability 
distribution for typical 
construction types for the 
Batken oblast (in %)

Building types EMS-98 vulnerability classes

A B C D E F

ADO 80 20 0 0 0 0
W 0 0 20 60 20 0
URM1 10 80 10 0 0 0
URM2 20 60 20 0 0 0
RM (1950–1990) 0 30 60 10 0 0
RM (1990–) 0 10 50 40 0 0
RC (1950–1970) 0 40 50 10 0 0
RC (1970–1990) 0 20 50 30 0 0
RC (1990–) 0 0 30 50 20 0
RCPC (1950–1990) 20 50 30 0 0 0
RCPC (1990–) 0 0 35 50 15 0
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districts in both cities (See the example for Aidarken in 
Fig. 5).

The response of the soil was investigated using ambient 
noise records on 82 sites, 39 in Aidarken and 43 in Kadam-
jay because no other information to estimate the soil condi-
tions locally was available and the number of days in the 
field was limited. The horizontal to vertical spectral ratio 
(HVSR) method was used to analyze the records and define 
zones with similar response frequencies which are often 
inversely correlated with the thickness of recent deposits 
(e.g., Lunedei and Malischewsky 2015).

The city of Aidarken is located on a flat EW deposition 
cone created by alluvial material carried from mountains 
in the south by the Gauyan river. The alluvial deposits are 
made of boulder, gravel and sand materials of different levels 
of compaction. The eastern part of the town is built on loess 
deposits (Neogene period) which are progressively eroded 
by seasonal streams.

High mountains surround the valley to the south and 
north. The distribution of predominant frequency f0 from the 
HVSR analysis is well correlated with the history of alluvial 

depositions coming from the southern mountain streams via 
the SE part of the city (Fig. 5).

The northern part of the city exhibits a high-frequency 
peak in the ambient noise records indicating a thin layer 
of soft sediment overlying hard rock constituting the min-
ing site. Sites in the center of the city show low-frequency 
peaks (0.3–1.5 Hz) indicating a thick layer of deposits. In the 
eastern part of the city, higher-frequency peaks reveal more 
recent thin deposits from the river or from loess erosion.

For Aidarken, the model is a normal settlement because 
the buildings are mostly single-family houses except in a 
quarter with a tens of RM five-floors buildings (Table 3) and 
the site amplification of the coarse alluvial deposits in the 
built areas is suspected to be low.

In Kadamjay, the soil response is influenced by the thick-
ness of the terraces in the eastern and western part of the 
city. The map of Fig. 6 shows the proposed zonation in terms 
of predominant response frequency f0 in the HVSR spec-
tra. The built environment in conjunction with site response 
characteristics allowed the division of Kadamjay in four 
zones delimited in bold lines in Fig. 6:

Fig. 4  Residential vulnerability distributions in terms of buildings (top) and population (bottom) for the three city sizes in Batken oblast
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• Zone 1 in the northern part where f0 is higher than 6 Hz; 
the built environment consists mainly of single-family 
houses with 1 or 2 floors.

• Zone 2 in the southern part where f0 varies between 6 
and 10 Hz; is covered with a mixture of commercial and 
residential buildings of fewer than 4 floors.

• Zone 3 is located inside zone 2 in the eastern section of 
Kadamjay, where most of the buildings are classified as 
URM, RM and RCPC with 4–5 floors. The estimated 
response frequency f0 varies between 4 and 5 Hz, values 
which are close to the dominant frequency of the build-
ings in this zone. In order to consider possible damaging 
resonance effects between soil and structure responses, 
the calculated intensities were increased adding 0.2 units; 

this value is empirical, arrived by expert judgment, and 
independent of the level of shaking; dynamic structural 
analyses should verify in a future stage the empirical 
value used.

• Zone 4 comprises Jiydelik, a district south of Kadamjay, 
with f0 between 6 and 8 Hz; most of the buildings are 
single-family houses with 1 or 2 floors.

The city models of Kadamjay and Aidarken are based on 
the scale of individual blocks thanks to the available foot-
print data used during the field survey. The most typical 
buildings in the different zones of the cities were visited 
in order to count and distribute the footprints dataset by 
construction types. Buildings with a footprint surface lower 

Fig. 5  City model for Aidarken. The map shows the footprints of buildings with unoccupied ones filled in black. Black dots locate the sites 
where ambient noise has been recorded. The zonation in terms of predominant frequency f0 (in Hz) is visible as background colors

Table 3  Building distribution 
by construction types in 
Kadamjay and Aidarken

Building distribution by construction type (%)

Kadamjay ADO W URM1 URM2 RM RC RCPC

Zone 1 68.0 1.0 6.0 0.0 23.0 2.0 0.0
Zone 2 64.5 0.0 5.5 5.0 17.0 7.5 0.5
Zone 3 38.5 0.0 13.0 17.0 19.0 8.5 4.0
Zone 4 85.0 1.0 5.0 4.0 5.0 0.0 0.0
Aidarken 65.0 1.5 5.0 2.0 22.0 4.0 0.5
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than 45 m2 were counted as unoccupied. Table 3 lists the 
distribution by construction types for the zones identified 
in both cities.

The building distribution in terms of EMS-98 presented 
in Table 4 for Kadamjay and Aidarken is based on the 
detailed city models described in Tables 2 and 3. In addition, 
the number of apartments in each building and the average 
occupancy rates were counted in order to define a distribu-
tion of the population living in buildings of the EMS-98 
vulnerability classes (Table 4).

Risk estimates at the city scale for Kadamjay 
and Aidarken

Calculation of the ground shaking in terms 
of intensity

The amount of ground shaking due to an earthquake can be 
estimated as intensity (I), peak ground accelerations (PGA) 
or other parameters. For scenario calculations, QLARM uses 
most often intensities, because these values can be com-
pared to observed intensities. This serves as verification of 
the algorithms and data in QLARM. Among the numerous 
equations to calculate intensities, the average equation used 
here has been proposed by Shebalin (1968, 1985) and is 
described by:

(1)I = C1 ∗ M− C2 ∗ log
(

sqrt
(

R
2
+ h

2
))

+ C3

Fig. 6  Division of the city of Kadamjay into zones. Four zones are 
delimited by bold lines in Kadamjay, three in the town itself (left 
map) and one in the south (right map marked 1). They are represented 
in the QLARM dataset by a X, Y coordinates (yellow hexagons). The 

maps show the footprint of buildings with unoccupied buildings filled 
in black. Black dots locate the sites where ambient noise has been 
recorded. The zonation in terms of predominant frequency f0 is vis-
ible as background colors
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where M is the magnitude, R is the closest distance to the 
rupture plane in km, h is the depth of the hypocenter in km, 
and C1, C2 and C3 are constants. This equation developed 
specifically for former USSR countries is used because it 
can easily be adjusted to local conditions by changing the 
constants. For this region, the constants were not adapted 
because there was no need as explained in Sect. “Validation 
of the QLARM model for Central Asia”; the standard aver-
age values 1.5, 4.5 and 3.5 were used for C1, C2 and C3, 
respectively.

Validation of the QLARM model for Central Asia

Calculated intensities were compared to those shown on 
maps for three earthquakes reported by Kalmetieva et al. 
(2009). These earthquakes were the 1911 M8.2 Kebin, the 

1946 M7.4 Chatkal and the 1992 M7.2 Suusamyr earth-
quakes. These events were located in Central Asia and pro-
vided an approximate validation of QLARM estimates of 
intensities when published magnitudes and locations were 
used, along with reasonable assumptions of shallow depths 
and average attenuation values. Although these comparisons 
cannot be considered a rigorous validation for QLARM 
estimates of intensities in the study area, they provided an 
approximate verification that QLARM calculates realistic 
values for Intensity in Central Asia.

The comparison of the estimates of casualties calculated 
by us with the reported ones allows to gauge to what extent 
QLARM furnishes reliable result, given only hypocenter and 
M. Table 5 lists all earthquakes large enough for a near-
real-time alert issued by the QLARM team since the fall 
of 2002 and which occurred in Kyrgyzstan, Tajikistan and 

Table 4  Distribution of buildings and population in terms of EMS-98 classes for Kadamjay and Aidarken

Building distribution in EMS-98 classes (%)

Kadamjay A B C D E F

Zone 1 59.9 21.9 15.1 3.0 0.0 0.0
Zone 2 57.7 27.2 12.5 2.7 0.0 0.0
Zone 3 38.3 44.7 17.0 0.0 0.0 0.0
Zone 4 70.0 25.0 5.0 0.0 0.0 0.0
Aidarken 59.8 26.7 12.5 1.0 0.0 0.0

Population distribution in EMS-98 classes (%)

Kadamjay A B C D E F

Zone 1 48.2 27.3 20.2 4.3 0.0 0.0
Zone 2 29.2 52.4 15.4 3.0 0.0 0.0
Zone 3 13.9 80.4 5.7 0.0 0.0 0.0
Zone 4 70.0 25.0 5.0 0.0 0.0 0.0
Aidarken 34.4 53.0 11.9 0.8 0.0 0.0

Table 5  Comparison between observed (obs.) and our estimated (estim.) casualties for important earthquakes in Central Asia

Year Month Day Lon. (deg) Lat. (deg) Depth (km) M Fatalities 
(estim.)

Fat (obs.) Injured 
(estim.)

Inj (obs.) Country

Min Max Min Max

2004 11 17 71.82 39.19 43 5.7 0 0 0 1 7 – Tajikistan
2005 2 25 72.70 38.1 107 5.9 0 0 0 0 0 – Tajikistan
2007 1 8 70.31 39.82 18 5.8 0 3 0 16 146 – Kyrgyzstan
2008 10 5 73.82 39.53 27 6.7 3 85 74 42 439 140 Tajikistan
2011 1 24 72.85 38.40 102 6.0 0 0 0 0 0 – Tajikistan
2011 7 19 71.41 40.08 20 6.1 2 50 14 99 935 86 Tajikistan
2013 5 26 67.31 39.96 18 5.7 1 22 0 68 598 – Uzbekistan
2015 11 17 73.26 40.35 15 5.5 0 1 0 2 82 – Kyrgyzstan
2015 12 7 72.78 38.21 22 7.2 38 411 2 174 1411 >100 Tajikistan
2016 6 26 73.34 39.48 13 6.4 1 17 2 12 116 14 Tajikistan
2017 5 3 71.44 39.49 11 6.0 0 6 0 5 47 0 Tajikistan
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Uzbekistan. The list contains events from these three coun-
tries because the building types and the tectonic setting are 
similar and one needs more cases of comparison than just 
the two that occurred in Kyrgyzstan.

Table 5 lists the updated latitudes, longitudes, depths 
and M after each earthquake and the reported fatalities and 
injuries as given by the significant earthquakes database of 
NOAA (2019).

The range of the casualty estimates is large because 
numerous uncertainties exist (Wyss and Rosset 2013). In 
cases of small numbers of fatalities, small differences are 
judged as an adequate result because a single building col-
lapsing or not can change the total numbers of fatalities on 
the order of the total estimate. Based on the comparison in 
Table 5, the intensity of shaking and the numbers of casual-
ties are calculated approximately correctly for significant 
earthquakes in Central Asia, especially in the eastern part 
of Kyrgyzstan where the database was updated.

Definition of the scenarios

There exist numerous maps with large scales showing myri-
ads of active faults in Central Asia (e.g., Abdrakhmatov et al. 

2003; Bindi et al. 2012; Ischuk et al. 2018). Most of the 
faults on these maps are irrelevant to damage in the study 
area because earthquakes generated along them are too far 
away. Only those faults matter, which are nearer to our loca-
tions of concern than about 40 km.

There are two sources for faults available in the study 
area. The collection of faults contained in the dataset of 
CASRI (Abdrakhmatov 2009) has been mapped by various 
geologists, but no references to these authors are given. The 
other source is a collection of maps placed on the web by 
Mohadjer et al. (2016) where the authors are cited. When 
comparing these maps, one sees that many faults are the 
same in both datasets, but some are different. The number 
of faults in the CASRI dataset near the two towns of interest 
is far greater than that by Mohadjer et al. (2016). Because 
mapped faults cannot be ignored, even if they should be 
inaccurate, the CASRI faults are considered as possible 
sources for earthquakes strongly affecting the study region 
(Fig. 7).

Two types of scenarios, Mmax and Mtypical, are pro-
posed based on their magnitude M; Mmax defines the largest 
magnitude earthquake that can be expected in a given region. 
Mtypical is defined as the M assigned to several earthquakes 

Fig. 7  Map of the quaternary faults (red lines) near Kadamjay and 
Aidarken from the CASRI dataset. Recorded and historic earthquakes 
are located by red and blue dots, respectively. Selected fault lines for 

likely scenarios are marked in black with the name of the scenario 
and its magnitude M as listed in Table 5. Aidarken and Kadamjay are 
marked by black squares contoured in yellow



988 Acta Geophysica (2020) 68:979–991

1 3

that happened during the period of the seismicity catalog 
within 100 km of the investigated point and which have 
caused fatalities. Their magnitudes ranged from 6.2 to 6.3. 
The hypothetical earthquakes are proposed by selecting fault 
segments for which end points of a possible rupture can be 
identified. For defining scenario ruptures, the information 
available is locations, lengths, azimuth of the strike of the 
fault and changes of strike. We assume that the faults shown 
in the map from CASRI are all active. We also assume that 
changes of strike in faults (kinks) may be the end of a rupture 
and that the relationships between M(length) and M(area) for 
thrusts given by Wells and Coppersmith (1994) are appli-
cable. The depth is fixed to 16 km which corresponds to the 
average value of calculated depths in the CASRI catalog 
for this region. The six scenarios selected, in the range of 
M6.2–M6.6 (as shown in Fig. 6 and listed in Table 6), are 
the following:

Scenario A The earthquake of M6.1 in 2011 was prob-
ably located on the fault north of the estimated epicenter. 
Assuming the fault had the standard length of an M6.1 
earthquake and the epicenter was located at the center 
of the break, we assign the probable eastern end of this 
rupture as 71.5E/40.15N. As in every earthquake, stress 
is transferred to the neighboring sections of the fault in 
question. Thus, the probability of rupture for the fault 
segment adjacent and east of this M6.1 earthquake in 
2011 are increased. Therefore, we assign as scenario A 
the fault section from this point to the interruption of this 
fault on the geologic map (Fig. 7). The rupture ends, the 
epicenter and the resulting length of 25 km are defined by 
these assumptions. Further assuming a width of rupture 
of 10 km the magnitude is estimated as M6.5.
Scenario B is an example of a Mtypical earthquake to 
occur near Kadamjay. The fault segment ends in the west, 
and in the east bifurcates, limiting its length to 10 km. 
This results in an M6.2 earthquake for which a width W 
of 10 km is assumed.
Scenario C Assuming that the 1902 M6 earthquake 
occurred on the fault mapped just north of its epicenter, 

a second fault segment is identified in which stress was 
recently increased and that ends close to Aidarken. With 
a length of 20 km and a width of 12 km, its magnitude is 
estimated as M6.6.
Scenario D A fault segment east of Aidarken offers 
itself as having fairly clearly defined ends that lead to 
L = 14 km. With an assumed W = 10 km, the magnitude 
is estimated to 6.3.
Scenario E The western end of the fault mapped just 
south of Aidarken may be capable of rupture in an M6.2 
earthquake.
Scenario F In the central part of the map of Fig. 6, a 
fault is located that had may have generated minor seis-
mic activity recently: A possible rupture is defined in its 
eastern half. With a rupture length of 12 km, one expect 
that this segment is capable of an M6.3 earthquake.

Discussion

In QLARM, calculated building damage for each individual 
settlement is divided into six levels. The maps of Fig. 8 show 
the calculated damage by degrees (left map) and mean dam-
age (right map) in each settlement around the fault (black 
dotted line) for the M6.6 scenario C. The damage, divided 
in six levels, is represented on a pie chart, each color repre-
senting the percentage of a certain degree of damage from 
no damage to collapse. The mean damage grade Md, which 
is the combination of the damage by degree and the distri-
bution of population by vulnerability classes, is given by a 
colored dot and again divided in six levels, from no damage 
(0) to complete (5).

At the scale of Kadamjay and Aidarken, similar results 
are proposed at a better resolution when the city is divided 
in zones like in Kadamjay. The map of Fig. 9 shows the 
calculated damage for the same M6.6 scenario C.

Fatalities that may result in Kyrgyzstan and for the 
zones of Kadamjay and Aidarken separately are based 
on the proposed six reasonable, but hypothetical scenar-
ios (Table 6). The estimated numbers of fatalities carry 

Table 6  Proposed scenario parameters for six hypothetical earthquakes in the study area

The two ends of the assumed ruptures are given as Lon1/Lat1 and Lon2/Lat2, respectively, and the location of the epicenter Lon_epi/Lat_epi is 
also listed. The assumed length (L) and width (W) result on average in the listed M, using the relationship by Wells and Coppersmith (1994)

ID Lon1 (deg) Lat1 (deg) Lon2 (deg) Lat2 (deg) Lon_epi (deg) Lat_epi (deg) Lenght (km) Width (km) Depth (km) Mw

A 71.5 40.15 71.72 40.17 71.61 40.16 20 10 16 6.5
B 71.74 40.10 71.86 40.09 71.80 40.10 10 10 16 6.1
C 71.17 40.00 71.41 40.00 71.29 40.00 20 12 16 6.6
D 71.43 39.98 71.6 39.96 71.52 39.97 14 10 16 6.3
E 71.2 39.91 71.3 39.91 71.25 39.91 8.5 10 16 6.0
F 71.55 40.05 71.69 40.07 71.62 40.06 12 10 16 6.3
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uncertainties larger than the averages listed in Table 7 for 
each scenario. These fatality estimates are calculated for 
nighttimes, which means maximum occupancy of dwell-
ings, and therefore worst case scenarios result.

Zero fatalities are possible as a minimum in all earth-
quake scenarios for both cities. On the other hand, the 
numbers of fatalities could also be factors of 2–3 larger 
than the values given in Table 7. The sources of uncertain-
ties are multiple as discussed in Wyss (2014). A significant 
difference in casualties can result from nighttime (high 
occupancy rate) to daytime earthquakes. Also a collapse 
of a single apartment building can more than double the 
numbers of casualties calculated. In addition, there are 
several earthquake source parameters that can vary and the 
soil conditions can modify the wave amplitudes. Thus the 
casualties are calculated with large uncertainties.

The fatalities due to the hypothetical scenarios with 
identification A–F of earthquakes in Table 5 are listed in 
Table 7, and the numbers of injured are given in Table 8 
for nighttime occurrences. All numbers of estimated casu-
alties are approximate. The numbers of fatalities have at 
least been verified, but the numbers of injured are unsure 
because the degree of “injuries” is not defined in reports 
of casualties in earthquakes. Here, “injured” means that a 
person needs to be admitted to a health facility.

The numbers of casualties in Tables 7 and 8 are rounded 
to the nearest integer. Two exceptions are made for very 
small numbers where value 1 is given instead of 0 when 
the average was between 1 and 2, and a value of 5 is given 
when the average was between 2 and 5.

In the present cases, uncertainties, such as population 
numbers, building type variations, varying soil condi-
tions and especially unknown earthquake source param-
eters, introduce many unknowns. Therefore, the casualty 

Fig. 8  Calculated building damage at regional scale in the case of 
scenario C. Each settlement around the fault line (black thick line) is 
located by a pie chart or a dot. (Left map) The surface of the pie chart 

is proportional to the percentage of heavy damage and collapse. The 
color corresponds to the level of damage. (Right map) The color of 
each dot is the mean damage grade as defined in the text

Fig. 9  Calculated building damage for Kadamjay in the case of sce-
nario C. Each zone with different building distribution and soil condi-
tions of the city model is delimited by bold lines and located by a dot 
with the color corresponding to the mean damage grade (here green 
as slight). Vertical histograms show the percentage of damage by 
degree from L0 to L5. The sum of damage is 100%
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estimates in Tables 7 and 8 are only order of magnitude 
estimates.

The estimated number of injured is typically about three 
times that of the fatalities. This is true for cases with large 
numbers of casualties. However, when the fatality estimate 
is near zero, the number of injured may still be substantial, 
that is 100 or more injured may be reported when there are 
no fatalities. The numbers of injured are given in Table 8. 
An “injured” may be counted if the person is admitted as 
a patient in a hospital, but also if the person is treated and 
released as an outpatient.

The main results are that (1) in the towns of Kadamjay 
and Aidarken in all of the proposed scenarios the expected 
fatalities are below 100, and (2) that only the two largest 
magnitude disasters generate moderate to serious numbers 
of fatalities (Table 7).

The numbers of injured people, however, are larger than 
100 in all cases, and they could number several thousand 
for the larger events (Table 8). If the medium size and large 
earthquake scenarios should happen, the country of Kyr-
gyzstan would face a serious problem of taking care of so 
many patients.

We have made a great deal of progress toward under-
standing seismic risk in Kadamjay, Aidarken and the 
surrounding area. However, the resources were limited 
and hence the results are not as complete as we would 
wish. To support the loss estimates for these hypothetical 

earthquakes, a detailed and careful review of local build-
ing types and an upgrade of the regional population dis-
tribution have been performed. As a result, the determin-
istic loss estimates due to earthquakes have become more 
reliable than most estimates of casualties and numbers of 
injured. Nevertheless, the accuracy of these case estimates 
should not be overestimated. A seismic measurements 
campaign should be carried out to assess the shear-wave 
velocity Vs and thickness of the different soil layers in the 
eastern terrace of Kadamjay and in selected zones of Aid-
arken. The building vulnerability database for residential 
and commercial buildings should be completed by launch-
ing local campaigns of crowd sourcing.
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Abstract
The seismic records acquired during the 1994 MW6.7 Northridge earthquake provide important data for studying the pulse-like 
ground motions in the vicinity of reverse faults. We selected 106 horizontal records from 468 strong ground motion records 
in the near-field region and rotated the original records into fault-parallel and fault-normal orientations. Large velocity pulses 
were simulated by the 3D finite difference method using a kinematic source model and a velocity structure model. Regres-
sion analysis was performed on the simulated and observed amplitudes of the velocity time history and response spectrum 
using the least-squares method. Our results show that the released energy and rupture time of asperities in the source model 
have important effects on the near-field velocity pulses, and the asperity near the initial rupture contributes more to the 
velocity pulses than does the asperity near the central region. The unidirectional and bidirectional characteristics of large 
velocity pulses are related to the thrust slip and rupture direction of the fault. The pulse period and the characteristic period 
are positively correlated with the rise time, and the pulse peak is regulated by multiple parameters of the subfaults. The 
distributions of the simulated PGV and Arias intensity agree well with the observed records, in which the contours exhibit 
asymmetric distribution and irregular elliptical attenuation in the near-field region, and the distributions exhibit a significant 
directivity along the fault. Moreover, the attenuation rate decreases with increasing distance from the fault. In addition, the 
fault-normal component is larger than that on the fault-parallel component, and the former decays faster. Velocity pulses 
larger than 30 cm/s are most likely to be distributed within approximately 15 km from the fault plane of the Northridge 
earthquake. Thus, the revealed pattern of the near-field velocity pulse-like ground motions indicates their close relation with 
the most severe earthquake effects.

Keywords Northridge earthquake · Finite difference method · Large velocity pulse · Source model · PGV · Response 
spectrum · Arias intensity

Introduction

On 17 January 1994, at 4:31 local time (12:31 UTC), an 
earthquake of magnitude MW6.7 took place in the North-
ridge area northwest of Los Angeles, California. The epi-
centre was located in San Fernando Canyon at (34.206° N, 
118.554° E) with a shallow focal depth of approximately 
17.5 km, as shown in Fig. 1. This strong earthquake caused 

many casualties and property losses, leading to more than 
60 deaths and 9000 injuries, and a large number of high-
rise buildings and bridges were damaged (Liu et al. 2012). 
The Northridge area is located on the West Coast of the 
USA within the largest seismic belt in the world, namely the 
circum-Pacific Ring of Fire, which displays a high incidence 
of earthquakes.

When a causative fault ruptures with a velocity close to 
the shear wave, the earthquake rapidly releases the enor-
mous strain energy accumulated during the long-term tec-
tonic movement. The large velocity pulses are characterized 
by high amplitude, long period, which arrive early at time 
histories as simple harmonic oscillations. Based on their 
characteristics, velocity pulses are divided into one-side and 
two-side pulses (Kawase and Aki 1990; Heaton et al. 1995; 
Oglesby and Archuleta 1997). These large velocity pulses 
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can cause substantial damage to large structures, as they can 
easily cause large inter-story displacements and permanent 
deformation (Bertero et al. 1978; Malhotra 1999; Li et al. 
2020). In recent years, a small number of velocity pulses 
have been recorded during global earthquakes; for exam-
ple, 29 pulses were recorded in the 1999 MW7.6 Chi–Chi 
earthquake, 9 in the 2010 MW7.0 Darfield earthquake, and 
7 in the 2008 MW7.9 Wenchuan earthquake. These earth-
quakes have attracted considerable interest in the fields of 
seismology and engineering. With the rapid development 
of the technology, buildings with higher natural vibration 
periods (large bridges, high-rise buildings, and oil storage 
tanks) are gradually proliferating. Therefore, the study of 
near-field long-period velocity pulses is of great significance 
for seismic hazard analysis and seismic design.

Because of the uncertainties in ground motions and the 
scarcity of seismographs, the Pacific Earthquake Engineer-
ing Research Center (PEER) has collected fewer than 200 
pulse recordings, which is a rather poor sample to provide a 
statistical model of the characteristics of pulse-like ground 
motions. In order to compensate for the shortage of pulse 
records, models that can effectively simulate velocity pulses 
have been proposed by several researchers (Dickinson and 
Gavin 2011; Li 2016; Pu et al. 2017). However, models 
based on engineering approaches do not account for the 
rupture history. To cope with this, deterministic methods 
have been proposed to simulate the near-field velocity pulses 
emitted from large seismogenic sources.

For the simulation of time histories within the low 
period range of engineering interest (< 1 s), the stochas-
tic (Boore 2003; Motazedian and Atkinson 2005; Zhang 
and Yu 2010) and empirical Green’s function (Irikura 

1983; Choudhury et al. 2016) methods are usually used. 
Beresnev and Atkinson (1998a) performed a successful 
simulation of the acceleration histories that recorded the 
1985 MW 8.1 Mexico earthquake by using the stochastic 
finite-fault method. Li et al. (2017) simulated the accel-
eration records of the 1997 Kyushu earthquake by using 
the empirical Green’s function method and analysed the 
relevant engineering parameters. The above methods are 
widely used for simulating short-period strong ground 
motions, but the simulation accuracy of near-field long-
period ground motions is low (Irikura 1983; Li et  al. 
2018). Alternatively, for the low-frequency components 
(less than 1 Hz) in near-field ground motions, it is more 
suitable to apply a deterministic method.

Long-period ground motions can be effectively simulated 
by the 3D finite difference method (Kramer 1996; Graves 
1998; Pitarka 1999; Luo et al. 2019). Many seismologists 
have verified the feasibility of the 3D finite difference 
method for simulating the near-field long-period ground 
motions of different earthquakes, the research results of 
which provide important guidance for disaster reduction. 
Gao et al. (2002) simulated the basin effect in Beijing and 
noted that the amplification factor of the local area is approx-
imately 2. Maeda et al. (2016) performed a seismic hazard 
analysis of long-period ground motions generated by many 
scenarios of a megathrust earthquake in Nankai. Furumura 
et al. (2019) simulated the propagation of seismic waves 
in heterogeneous structures and forecasted the long-period 
ground motions generated by large earthquakes in sedimen-
tary basins, and validated the effectiveness of the finite dif-
ference method by using observed waveform data from the 
2007 MW6.6 Niigata and 2011 MW9.0 Tohoku earthquakes.

Fig. 1  A topographic map of 
the Northridge area. The dashed 
rectangle depicts the surface 
projection of the causative 
fault plane for the Northridge 
earthquake. The strong ground 
motion stations are indicated 
by triangles, and stations with 
and without pulse records are 
indicated by red triangles and 
black triangles, respectively. 
The surrounding cities of the 
Northridge earthquake are 
marked with the blue open 
circles. The epicentre is marked 
with a star
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This study attempts to simulate the near-field large veloc-
ity pulses of the 1994 Northridge earthquake using the 3D 
finite difference method. This paper is organized as follows. 
Firstly, we describe the simulation method and the source 
function. Then, the near-field velocity pulses are identified 
from the seismic records of the Northridge earthquake. 
"Model and parameter setting" section establishes the kin-
ematic source model and velocity structure model and pre-
sents the regional calculation parameters. In "Results and 
discussion" section, the characteristics and distribution fields 
of the near-field velocity pulse-like ground motions are illus-
trated through the comprehensive analysis and discussion 
of the numerical simulation results. The results can reveal 
the causes of large velocity pulses and help to analyse the 
responses of large-scale engineering structures to ground 
motions. "Conclusions" section summarizes the whole study.

Finite difference simulation method

Compared with the finite element method and the discrete 
wavenumber method, the finite difference method proposed 
by Aki (1968) can effectively simulate long-period ground 
motions in a large area consisting of an inhomogeneous 
medium. In the finite difference method, which has been 
continuously improved by seismologists over the decades 
(Mikumo et al. 1987; Aoi and Fujiwara 1999), the study 
area can be divided into discrete grids in the horizontal and 
vertical directions based on the different characteristics of 
geological structures, which greatly improves the calculation 
efficiency while ensuring the calculation accuracy. The rela-
tionship between the velocity pulses and the source model 
parameters in the near-field long-period ground motions can 
be studied utilizing the 3D finite difference method.

To simulate the long-period velocity pulses with the 3D 
finite difference method, it is necessary to establish a suit-
able source model including the geometric parameters and 
kinematic parameters. The fault plane is divided into finite 
discrete grids, and then the slip, seismic moment, and source 
time function are embedded into the velocity–stress differ-
ence equation to obtain the velocity history generated during 
the earthquake (Aoi et al. 2012; Maeda et al. 2014; Iwaki 
et al. 2016). The source function is the temporal and spatial 
function of each subfault during the rupture process. We 
use the Ricker wavelet to simulate the near-field long-period 
velocity pulses generated by the Northridge earthquake:

where g(t) is the amplitude of the Ricker wavelet and fc is 
the characteristic frequency, i.e. the reciprocal of the rise 
time of the subfault from initial rupture to slip termination. 
Figure 2 shows waveforms with characteristic frequencies 

(1)g(t) = (1 − 2�2f 2
c
t2) exp(−�2f 2

c
t2)

of 0.5, 1, and 1.5 Hz. The wavelet function proposed by 
Ricker (1943) is widely used to simulate seismic waves (Ji 
et al. 2002; Wang 2015; Liu et al. 2016). The seismic wave 
received by a station on the surface is usually a short vibra-
tion that is excited by the subfault and propagates through 
the underlying medium.

Strong motion recordings

The Next Generation Attenuation (NGA) database includes 
a large number of strong motion records from the Northridge 
earthquake, providing valuable fundamental data for study-
ing near-field large velocity pulses. However, few stations 
are situated near the fault, and the spacing is variable; thus, 
a relatively small number of velocity pulses were recorded 
during this earthquake. Baker (2007) proposed three criteria 
for identifying velocity pulses: The pulse index in formula 
(2) is greater than 0.85, and the pulse appears early in the 
velocity time history and the peak ground velocity (PGV) is 
greater than 30 cm/s.

where PI is the pulse index,  PGVratio is the ratio of the 
residual PGV to the original record after the velocity pulse 
is extracted,  Eratio is the ratio of the residual energy to the 
original record.

We selected 106 horizontal records in the study area 
from 468 strong motion records and identified 14 stations 
with velocity pulses and 39 stations without pulses based 
on the above criteria. For the stations that recorded velocity 
pulses during the Northridge earthquake, PKC and NWP 
are located at the ends of the fault, and 7 stations (LAS, 
RRS, LAD, SCE, SCW, JFA, and JFG) are located on the 
hanging wall, while the remaining stations are located on 
the footwall; the pulse data from these stations are listed in 
Table 1. Because the velocity waveforms recorded in the ver-
tical direction do not meet the pulse standard and buildings 

(2)PI = 1∕[1 + e−23.3+14.6(PGVratio)+20.5(Eratio)] > 0.85

-3 -2 -1 0 1 2 3 4 5
t (s)

-0.5

0

0.5

1

g(
t)

 fc=0.5
 fc=1.0
 fc=1.5

Fig. 2  The waveforms corresponding to the source function with 
characteristic frequencies of 0.5, 1, and 1.5 Hz
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are affected mainly by horizontal vibrations, this paper stud-
ies only the horizontal components of the near-field ground 
motions. Considering that the directivity effect and the 
source radiation have different influences on the horizontal 
components, to obtain a reference for a seismic comparison 
and to establish a relationship between the original seismic 
records and the strike of the fault, we rotate the original 
orthogonal horizontal components into fault-parallel (N122° 
E) and fault-normal (N212° E) orientations.

Model and parameter setting

Source model

The focal depths determined by the CMT Project, PEER, 
and USGS range from 16.8 to 18.2 km (with an average of 
approximately 17.5 km); the strike is S58° E, and the dip 
angle of the fault plane is approximately 40° to the south-
west. To clarify the fault geometry and rupture motion char-
acteristics of the Northridge earthquake, numerous scholars 
have performed considerable research. Zeng and Anderson 
(1996) obtained a composite source model of the earthquake 
using a genetic algorithm and indicated that a large amount 
of slip occurred near the central source region. Wald et al. 
(1996) combined teleseismic, strong motion, GPS displace-
ment, and permanent uplift recordings to obtain the slip 
distribution characteristics of the Northridge earthquake. 
Beresnev and Atkinson (1998b) divided the fault plane into 
20 subfaults and verified the slip distribution characteris-
tics on the fault plane by using the simulated acceleration 

histories at 28 rock sites. The above results show that the 
fault geometry can be represented by a rectangular plane 
with a complicated and inhomogeneous distribution of slip.

The Northridge earthquake was triggered by a blind 
causative fault (Wald et al. 1996; Ji et al. 2002). The rup-
ture occurred along a thrust from approximately 20 km to 
5 km below the surface at a dip angle of 40° and was trun-
cated by the San Fernando fault (Mori et al. 1995). We have 
established a source model formed by a rectangular plane 
in this study (Fig. 3). The fault ruptured 18 km along the 
strike approximately 5 km below the surface and ruptured 

Table 1  Basic information of the 14 stations that recorded velocity pulses

ClstD is the closest distance from the recording station to the ruptured area. Owner is the name of agency that collected the data
USGS U.S. Geological Survey, LADWP Los Angeles Department of Water and Power, CDMG California Division of Mines and Geology, USC 
University of Southern California, SCE Southern California Edison

Abbrev. Station Name Lat. (°N) Long. (°W) PGV-FP (cm/s) PGV-FN (cm/s) ClstD (km) Owner

PKC Pacoima Kagel Canyon 34.296 118.375 29.5 56.3 7.26 CDMG
PDU Pacoima Dam Upper Left 34.330 118.396 22.9 67.8 7.01 CDMG
PDD Pacoima Dam Downstream 34.334 118.396 12.5 47.9 7.01 CDMG
LAS LA-Sepulveda VA Hospital 34.249 118.479 48.1 47.1 8.44 USGS
SOV Sylmar-Olive View Med FF 34.326 118.444 43.3 102.8 5.30 CDMG
RRS Rinaldi Receiving Station 34.281 118.478 46.2 117.4 6.50 LADWP
LAD LA Dam 34.294 118.483 51.5 74.7 5.92 LADWP
SCE Sylmar-Converting Station East 34.312 118.481 66.3 90.5 5.19 LADWP
SCW Sylmar-Converting Station West 34.311 118.490 81.5 121.0 5.35 LADWP
JFA Jensen Filter Plant Administrative Bld. 34.312 118.496 90.9 104.3 5.43 USGS
JFG Jensen Filter Plant Generator Bld. 34.313 118.498 58.2 69.3 5.43 USGS
NFS Newhall-Fire Station 34.387 118.533 33.6 84.6 5.92 CDMG
PSC Pardee-SCE 34.435 118.582 72.4 50.7 7.46 SCE
NWP Newhall-W. Pico Canyon Rd. 34.391 118.622 69.0 108.4 5.48 USC
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Fig. 3  The fault model of the Northridge earthquake. The fault plane 
is divided into 196 subfaults, each showing the direction of the aver-
age slip with an arrow and the magnitude of the average slip with col-
our. The hypocentre is indicated by a star
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downward approximately 24 km along dip. The projection 
of the fault plane on the surface forms the black dashed rec-
tangle shown in Fig. 1. We divided the entire fault plane into 
196 subfaults of 1.286 × 1.714 km.

The energy generated by the rupture of an asperity dur-
ing an earthquake greatly contributes to the strong ground 
motion; thus, the source model of an asperity is significant 
for evaluating the seismic effect on an engineering struc-
ture (Kamae and Irikura 1998). The strength of the asperity 
region is less than the stress field, thereby enhancing the 
fault rupture, which experiences a high stress drop during the 
rupture of the fault (Aki 1984). We extracted the position, 
quantity, and area of the asperities from the inhomogeneous 
slip distribution and assumed two asperities for the North-
ridge earthquake (Fig. 4): small asperity A is approximately 
19.8 km2, and large asperity B is approximately 72.7 km2. 
Somerville et al. (1999) studied the spatial slip distribution 
of 15 crustal earthquakes with magnitudes greater than 5.7 
worldwide and proposed that the area ratio of asperities to 
the entire fault is 0.22, and Murotani et al. (2008) proposed 
that the area ratio of a plate boundary earthquake is close to 
0.2. In this study, the ratio of the total area of both asperities 
to the area of the entire fault is approximately 0.21, which is 
basically consistent with Somerville et al. (1999). In previ-
ous studies, i.e. the 1997 MW6.0 Kagoshima, 2000 MW6.6 
Tottori, and 2004 MW6.6 Chuetsu earthquakes (Irikura 
and Miyake 2011; Iwaki et al. 2016), asperities have been 

approximated by a rectangle. However, the large slip on the 
fault plane is not necessarily located in a rectangular area. 
Based on the spatial inhomogeneity of the slip distribution 
(Wald et al. 1996), we set asperities A and B of the North-
ridge earthquake to have rectangular and irregular shapes, 
respectively.

The seismic moment is used to measure the energy 
released by an earthquake and thus has an important influ-
ence on the ground motion. The distribution of the seismic 
moment on the fault plane is shown in Fig. 4. This study 
determined that the total seismic moment of the North-
ridge earthquake is 1.15 × 1019  N  m, which is close to 
1.3 ± 0.2 × 1019 N m estimated by Wald et al. (1996). The 
seismic moment of the asperities and background region 
are distributed according to formula (3) proposed by Somer-
ville et al. (1999), where the total seismic moment of both 
asperities is approximately 7.47 × 1018 N m, and that of the 
background region is 4.03 × 1018 N m.

where μ is the average crustal rigidity, its value is about 30 
Gpa. Moa is the seismic moment of the asperity, and Sa is 
the area of the asperity. Da is the average slip of the asperity, 
and its value (approximately 2.7 m) is the total slip on the 
asperity divided by the number of subfaults.

In our model, the Northridge earthquake began with a 
circular rupture near the bottom of the fault plane that propa-
gated from the southeast to the northwest with an average 
rupture velocity of 2.8 km/s. Field et al. (1998) studied the 
nonlinear sediment response during the Northridge earth-
quake using a uniform circular rupture pattern, and the 
results indicated the effectiveness of circular rupture. Hart-
zell et al. (1996) found that the fault rupture velocity at the 
early stage of the earthquake was 2.8–3.0 km/s, while the 
velocity after 3 s was 2.0–2.5 km/s. We used a varying rup-
ture velocity for the source rupture pattern: the velocity rap-
idly decreased outward from 3.0 km/s in the nucleation zone 
to 2.5 km/s over a total rupture time of approximately 8 s. 
The rise time of the fault slip is inhomogeneously distributed 
(Hartzell et al. 1996; Wald et al. 1996), and the nucleation 
zone is relatively small at approximately 0.6 s, although the 
rise time tends to increase outward, as shown in Fig. 5.

Velocity structure model

The crustal velocity structure reflects the stratigraphic 
sequence from the surface to the Moho and the variation 
in the seismic velocity with depth. A reasonable velocity 
structure model, which has an important influence on the 
simulation results of long-period velocity pulses, can be 
established according to the changes in the physical proper-
ties of each layer. In the numerical simulation of near-field 

(3)Moa = �DaSa

Fig. 4  The seismic moment distribution of the Northridge earth-
quake. The asperities are surrounded by red lines. The black lines are 
contours of rupture time at 1 s intervals
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velocity pulses, the viscoelastic effect of the crustal medium 
needs to be considered. When the S-wave velocity is less 
than 1–2 km/s, the ratio of the attenuation factor Q to Vs is 
close to 0.02, and when the S-wave velocity is greater than 
2 km/s, the ratio in the Los Angeles area is approximately 
0.1 (Olsen et al. 2003). We set the viscoelastic properties 
of the velocity model according to existing studies in the 
region (Magistrale et al. 1992; Olson et al. 1984, 2003). The 
adopted velocity model is presented in Table 2.

The crust in the Northridge area is divided into grids with 
an interface of 8 km beneath the surface because the shallow 
strata in the region have smaller seismic velocities than the 
deep strata. The entire region is divided into small grids, 
considerable amounts of computational time and memory 
will be consumed. However, the region is divided into large 
grids, and the simulation results may numerically diverge. 
To satisfy the accuracy and efficiency of calculation at the 

same time, we used a non-uniform grid to divide the study 
region (Fig. 6). In the upper and lower regions, the grid 
spacing is 0.1 km and 0.3 km respectively, with a total of 
approximately 6.84 × 107 grids. To ensure the stability of 
the numerical simulation, five grids were used in one wave-
length under the condition of a fourth-order precision. At 
the same time, the simulated low frequency was appropri-
ately extended to a high frequency, and the upper limit of 
the frequency for the velocity pulses simulation was taken 
as 1.4 Hz. The detailed calculation parameters are listed in 
Table 3.

Results and discussion

Waveform comparison

The simulated and observed waveforms of the 28 velocity 
pulse histories of the near-field ground motions are shown 
in Fig. 7. The red dashed lines indicate the simulated results, 
the black solid lines indicate the observed records, and all 
the data are low-pass filtered with a cut-off frequency of 
1.4 Hz. Most velocity histories match well regarding the 
amplitude and phase, and fewer pulses are recorded on 
the fault-parallel (FP) component (displaying complex 

Fig. 5  The rise time distribution of the fault displacement; the adja-
cent contours are separated by 0.5 s intervals

Table 2  Relevant velocity 
structure model for the 
Northridge area

Depth (km) Thickness (km) Vp (km/s) Vs (km/s) Density (kg/m3) Q

0 0.5 2.1 1.08 2100 22
0.5 3.5 4.0 2.15 2500 215
4.0 2.5 4.8 2.65 2600 265
6.5 14.0 6.1 3.50 2900 350
20.5 14.5 7.0 4.00 3000 400
35.0 ∞ 7.8 4.50 3300 450

Fig. 6  Schematic diagram of 3D non-uniform grid configuration for 
the local region
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waveforms) than on the fault-normal (FN) component (dis-
playing simple waveforms). At the rupture front-end sta-
tion NWP, the velocity waveforms exhibit one-side long-
period velocity pulses, the pulse peak of the fault-normal 
component is greater than 100 cm/s, and the pulse period 
is approximately 2 s, while at the rupture back-end station 
PKC, the pulse peak and period of are approximately half of 
those at station NWP, and the fault-parallel component did 
not record the velocity pulse history. The velocity pulse is 
affected by the seismic Doppler effect and the orientation of 
the station, the energy of the rupture radiation of each sub-
fault is stacked at the front end of the rupture, while the time 
it takes for the energy to reach the back end of the rupture 
is delayed; thus, the velocity histories of stations NWP and 
PKC are characterized by forward directivity and backward 
directivity effects, respectively.

Among the 7 stations on the hanging wall, station LAS 
is the farthest (8.44 km) from the fault plane; at this station, 
the pulse peaks of the two components are the smallest and 
basically equivalent, and the fault-parallel component has a 
more obvious two-side pulse than the fault-normal compo-
nent in the velocity histories, which indicates that the fling-
step effect has a greater influence on the vicinity of station 
LAS than does the directivity effect. Mavroeidis and Papa-
georgiou (2003) argued that the peak of the near-field pulse 
does not increase indefinitely, but there is a typical thresh-
old of approximately 100 cm/s. In the actual recordings, the 
pulse peaks of the fault-normal component for stations RRS 
and SCW are approximately 120 cm/s. Compared with the 
fault-parallel components, the fault-normal components for 
stations RRS and LAD have larger peaks and smaller pulse 
periods, and the velocity pulses are also more significant. 
These differences are related to the positions of the stations 
on the active hanging wall and are greatly affected by the 
fling-step effect caused by the thrust motion along the fault. 
Stations SCE, SCW, JFA, and JFG are located at similar 
positions, but the actual recorded pulses are different, which 
is related to the local site of each station. For example, sta-
tions SCE and SCW are located on rock and soil, respec-
tively; thus, the velocity history of SCW records a larger 
pulse peak than that of SCE, reflecting the amplification 
effect of the soil layer on the pulse peak.

On the footwall, the three stations (PDU, PDD, and SOV) 
near the initial rupture end of the fault are closer to asperity 

Table 3  Calculation parameters used in this study

Model size (nx × ny × nz) 88.2 × 92.4 × 35
Total time steps 4000
Time step (s) 0.005
Upper limit frequency (Hz) 1.4
Total grid points 6.84 × 107

Receiving stations 53
Simulation area range 33.9° N–34.7° N, 

118° W–119° 
W

Fig. 7  Comparison of the 
simulated (red dashed lines) 
and observed (black solid lines) 
waveform for the 28 velocity 
pulses. The station abbreviation 
along with the component name 
is shown above each curve. 
The maximum amplitudes in 
cm/s are shown to the right of 
the curves, simulated value 
is indicated above the end of 
each curve, and observed value 
is indicated below the end of 
each curve. The strong ground 
motion data applied low-pass 
filtering at 1.4 Hz
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A than the two stations (NFS and PSC) near the front end 
of the rupture, and the former three stations exhibit more 
pronounced velocity pulses than the latter two, while the 
high amplitudes after the pulses on their velocity histories 
are mainly affected by the asperity B. Station SOV is the 
closest (5.3 km) to the fault plane with a recorded pulse 
peak greater than 100 cm/s on the fault-normal component, 
and the waveform has a large wave period after the initial 
pulse, which is related to the inhomogeneous distribution of 
the rise time on the fault plane. The small rise times of the 
nucleation zone produce short-period and high-amplitude 
velocity pulses, while the large rise times on the fault plane 
produce long-period and low-amplitude waveforms.

In the numerical simulation of velocity pulses, we found 
that the transverse component of the S-wave is larger than 
the radial component of the P wave due to the radiation of 
the ruptures on the subfaults, and thus, the fault-normal 
component has a larger pulse than the fault-parallel compo-
nent at most near-field stations. Comparing the pulse peaks 
between the hanging wall and footwall stations, there are 
three velocity pulses (RRS-FN, SCW-FN, and JFA-FN) that 
exceed 100 cm/s on the hanging wall, while only SOV-FN 
recorded a velocity pulse of approximately 100 cm/s on the 
footwall. At the same time, station SCW on the hanging wall 
displays a larger pulse peak than station SOV on the footwall 
at a similar distance from the fault. Therefore, the stations on 
the active hanging wall are more affected by the asperities on 
the fault plane and more easily record the velocity pulses. It 
can be seen from the simulation results of all the stations that 
recorded the velocity pulses of the Northridge earthquake 
that the 3D finite difference method can effectively simulate 
long-period velocity pulses, but some of the short-period 
velocity waveforms are not ideal. A large amount of data was 
recorded throughout the near-field region of the Northridge 
earthquake, but the distribution of strong motion stations 
with pulse records was unbalanced, and the number of sta-
tions near the front end of the rupture was much smaller than 
that near the back end. It is therefore necessary to analyse 
the characteristics of the velocity pulses from the spatial 
distribution of near-field ground motions.

PGV analysis

The peak ground velocity (PGV) is one of the most impor-
tant parameters reflecting the intensity of ground motion. 
It can provide a good reference for estimating the seismic 
intensity, determining seismic zoning, and future urban plan-
ning. The damage attributable to near-field strong motion 
is mainly related to long-period components, and the peak 
velocity is more likely than the peak acceleration to reflect 
the long-period characteristics of near-field ground motions 
(Wald et al. 1999; Xu and Xie 2005).

To analyse the distribution characteristics of the long-
period PGV in the near-field region, we plot contour maps 
with an interval of 10 cm/s by using the simulated peaks 
from 53 stations (no pulses were recorded at 39 stations) 
and perform low-pass filtering with a cut-off frequency 
of 1.4 Hz for all the data; the simulated long-period PGV 
distribution is then compared with the actually observed 
records, as shown in Fig. 8. The simulated PGV is simi-
lar to the observed PGV with distribution characteristics 
along the fault strike. The PGV at the front end of the fault 
rupture has a wider distribution than that at the back end 
of the rupture, the former exhibits slower decay, and the 
near-field ground motion reflects the typical directivity 
effect. The peak ground velocities are similar between the 
horizontal components, but the intensity and attenuation of 
each component are different. The PGV on the fault-parallel 
component is significantly smaller than that on the fault-
normal component, and velocity pulses are recorded more 
frequently on the fault-normal component. It can be seen 
from the spacing and intensity of the contours that the PGV 
decays faster in the vicinity of the fault, the decay rate of the 
PGV gradually decreases as the fault distance increases, and 
the fault-parallel component decays slower than the fault-
normal component.

Strong ground motions are mainly concentrated in the 
vicinity of stations SCW and NWP, and the maximum 
peaks on the fault-parallel and fault-normal components 
are approximately 90 cm/s and 120 cm/s, respectively. The 
simulated value of the near-field long-period PGV is slightly 
smaller than the observed value in the local area. The rea-
sons for this difference may include the uncertainties in the 
source parameters, the seismic wave disturbances caused by 
changes in the terrain, and the amplification of the ground 
motions in the Los Angeles Basin and San Fernando Basin.

Pseudo‑velocity response spectra comparison

The pseudo-velocity response spectrum is presented as 
the maximum pseudo-velocity response curve of a single-
degree-of-freedom elastic system that changes with the 
natural vibration period under a given ground motion. The 
response spectrum derives from the combination of struc-
tural dynamic characteristics (the natural vibration period, 
vibration mode, and damping) and ground motion; accord-
ingly, the resonance effect of a structure in an earthquake 
can be calculated by the response spectrum. The charac-
teristic period discussed in this paper refers to the period 
corresponding to the maximum amplitude of the pseudo-
velocity response spectrum; the near-field velocity pulse of 
the Northridge earthquake has a large characteristic period, 
resulting in serious damage to long-period large-scale struc-
tures, especially lifeline engineering and building structures 
in the near-field region. Therefore, the characteristic period 
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of the pseudo-velocity response spectrum is of great signifi-
cance for engineering research.

The pseudo-velocity response spectra for the horizontal 
components of each station that recorded velocity pulses 
during the Northridge earthquake are shown in Fig. 9. The 
damping ratio is 5%, the period is 1–10 s, the red dashed line 
indicates the simulated response spectrum, and the black 
solid line indicates the observed response spectrum. There 
are some differences among the characteristic periods of the 
pseudo-velocity response spectra. For example, the charac-
teristic period of the response spectrum of stations SOV, 
SCW, and NWP is approximately 2 s, and the characteristic 
period of stations PDU, LAS, and PSC is approximately 1 s, 
while the characteristic periods of stations RRS, LAD, and 
JFA on different components differ by approximately 1 s. 
Comparing the pseudo-velocity response spectra with the 
velocity histories, it can be determined that the characteristic 

period of the response spectrum is positively correlated 
with the pulse period of the velocity history. The maximum 
spectral value of the pseudo-velocity response spectrum also 
shows some differences between the different components 
of each station. For example, the maximum spectral val-
ues of station NWP on the fault-parallel and fault-normal 
components are approximately 130 cm/s and 200 cm/s, 
respectively. Therefore, the maximum spectral value of the 
pseudo-velocity response spectrum is related to the pulse 
peak of the velocity history. From the overall comparison 
of the pseudo-velocity response spectra, it can be seen that 
the simulated values are close to the observed values; how-
ever, the simulated and observed spectra of stations PDU 
and PDD on the fault-normal component display some dif-
ferences after the characteristic period, which is more likely 
to be affected by local site effects compared with the long-
period surface waves.

Fig. 8  Contour maps of PGV in cm/s obtained from 53 stations sur-
rounding the fault. All the data are low-pass filtered by a frequency 
of 1.4  Hz. a Simulated values of the fault-parallel components; b 

observed values of the fault-parallel components; c simulated values 
of the fault-normal components; d Observed values of the fault-nor-
mal components
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Arias intensity analysis

The distribution characteristics of the Arias intensity in the 
near-field region of the Northridge earthquake are shown 
in Fig. 10. The intensity decays with increasing fault dis-
tance, and the intensity in the vicinity of the fault decays 
faster than that in the region far from the fault; moreover, 
the area of the Arias intensity at the front end of the fault 
rupture is wider than that at the back end, and the Arias 
intensity on the fault-parallel component is smaller than 
that on the fault-normal component. There are some dif-
ferences in the concentrated areas of large intensity values 
around the fault. Large values are concentrated around sta-
tions PSC and SCW on the fault-parallel component and 
around stations NFS, RRS, and PDU on the fault-normal 
component; these large value areas are also indicative of 
large earthquake disasters. The simulated values of the 
Arias intensity are basically consistent with the observed 
values, but there are differences in some local areas far 
from the fault, which may be related to the whole earth-
quake procedure, as well as changes in the topography and 
local site conditions.

Regression analysis

To verify the numerical simulation results of the near-field 
velocity pulses by the 3D finite difference method, regres-
sion analysis is performed on the simulated and observed 
values based on the least-squares method. The PGV and 
regression results for the horizontal components of 53 sta-
tions in the near-field region are shown in Fig. 11. The simu-
lated values are similar to the observed values, and the PGV 
of each component exhibits a different attenuation trend 
with decreasing distance to the fault. The PGV on the fault-
parallel component is smaller than that on the fault-normal 
component. The attenuation of the fault-parallel component 
occurs more slowly (i.e. the absolute slope of the regression 
line is small) within 18 km from the fault, but the attenuation 
of the two components occurs at a similar rate at distances 
greater than 18 km from the fault, which is basically consist-
ent with the distribution characteristics of the PGV contours. 
One of the criteria for a velocity pulse that must be satisfied 
is a PGV greater than 30 cm/s. The velocity pulses on the 
fault-parallel and fault-normal components are most likely to 
be within 13 km and 15 km, respectively, of the fault, which 

Fig. 9  Comparison of the 
simulated (red dashed lines) 
and observed (black solid 
lines) pseudo-velocity response 
spectrum for the 28 pulses. The 
damping value is 5%
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also suggests that the source radiation effect produces large 
amplitudes along the direction perpendicular to the fault.

The characteristic period of the pseudo-velocity response 
spectrum is basically in the range of 1–2 s, and the spectral 
values corresponding to the vibration periods of 1, 1.5, and 
2 s are taken from the response spectra. The simulated and 
observed values are also regressed, as shown in Fig. 12. It 
can be seen that the simulated results agree well with the 
observed records; the spectral values on the fault-normal 
component are larger than those on the fault-parallel com-
ponent, and the attenuation of the former occurs more slowly 
than that of the latter, so the near-field velocity pulses are 
most likely to cause damage to structures along the direction 
perpendicular to the fault. In the seismic design of build-
ing structures, not only the short-period ground motions 
excited by active faults but also the long-period pulse-like 
ground motions should be considered. Clearly, the study of 

Fig. 10  Arias intensity in m/s distribution obtained from 53 stations 
surrounding the fault. a Simulated values of the fault-parallel com-
ponents; b observed values of the fault-parallel components; c simu-

lated values of the fault-normal components; d observed values of the 
fault-normal components

Fig. 11  Variations of PGV with the closest distance to fault plane for 
53 strong ground stations. The simulated and observed values of the 
fault-parallel components are represented by black open circles and 
black open triangles, respectively. The simulated and observed values 
of the fault-normal components are represented by red open circles 
and red open triangles, respectively. The comparison of the regres-
sions is represented by lines, where the simulated and observed val-
ues are indicated by the dashed and solid lines, respectively
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near-field velocity pulses is of great significance for earth-
quake prevention and disaster reduction.

Conclusions

The near-field long-period velocity pulses of the North-
ridge earthquake were simulated by the 3D finite difference 
method. The simulated velocity histories, PGV distribution, 
pseudo-velocity response spectra, and Arias intensities were 
compared with the real observed values, and regression 
analysis verified the feasibility of simulating the near-field 
velocity pulses by this method. The simulation results are 
expected to apply to near-field pulse-like ground motion 
assessments, seismic hazard analysis, and the study of non-
linear structural responses. The following conclusions can 
be drawn:

1. The source model affects the characteristics of the near-
field long-period velocity pulses and the distribution 
of pulse-like ground motions. The rectangular asperity 
provides an important contribution to the pulse peaks, 
and the irregular asperity mainly affects the waveforms 
after the velocity pulses. One-side pulses on the fault-
normal component are mainly affected by thrust slip and 
two-side pulses on the fault-parallel component affected 
by rupture direction. The velocity pulses on the fault-
normal component are more abundant than those on the 
fault-parallel component; besides, the pulse period is 
positively correlated with the rise time, and the pulse 
peak is regulated by the seismic moment, the amount 
of slip, and the rise times on the subfaults. Some peaks 
exceed 100 cm/s.

2. The PGV contours exhibit an asymmetrical distribution 
in the near-field region, and the distribution at the front 
end of the rupture is larger than that at the back end. 

The PGV exhibits irregular elliptical attenuation, and 
the PGV decay rate gradually decreases with increasing 
distance from the fault. Similar to the PGV distribution, 
the Arias intensity also exhibits a significant directivity 
effect and attenuation trend; the fault-normal component 
is larger than that on the fault-parallel component; and 
the intensity on the former decays faster than that on the 
latter, while the distributions of the maximum values on 
different components do not necessarily coincide.

3. The characteristic period of the pseudo-velocity 
response spectrum is basically in the range of 1–2 s, and 
the characteristic period is related to the pulse period. 
Velocity pulses greater than 30 cm/s are most likely to 
be distributed within approximately 15 km of the fault; 
in addition, the fault-normal component has a larger 
distribution range than the fault-parallel component. 
Hence, the near-field region should be considered an 
important area during the seismic design of building 
structures.
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Abstract
Zoeppritz equations form the theoretical basis of most existing amplitude variation with incident angle (AVA) inversion 
methods. Assuming that only primary reflections exist, that is, the multiples are fully suppressed and the transmission loss 
and geometric spreading are completely compensated for, Zoeppritz equations can be used to solve for the elastic param-
eters of strata effectively. However, for thin interbeds, conventional seismic data processing technologies cannot suppress 
the internal multiples effectively, nor can they compensate for the transmission loss accurately. Therefore, AVA inversion 
methods based on Zoeppritz equations or their approximations are not applicable to thin interbeds. In this study, we propose 
a prestack AVA inversion method based on a fast algorithm for reflectivity. The fast reflectivity method can compute the 
full-wave responses, including the reflection, transmission, mode conversion, and internal multiples, which is beneficial to 
the seismic inversion of thin interbeds. A further advantage of the fast reflectivity method is that the partial derivatives of 
the reflection coefficient with respect to the elastic parameters can be expressed as analytical solutions. Based on the Gauss–
Newton method, we construct the objective function and model-updating formula considering sparse constraint, where the 
Jacobian matrix takes the form of an analytical solution, which can significantly accelerate the inversion convergence. We 
validate our inversion method using numerical examples and field seismic data. The inversion results demonstrate that the 
fast reflectivity-based inversion method is more effective for thin interbed models in which the wave-propagation effects, 
such as interval multiples, are difficult to eliminate.

Keywords Amplitude variation with incident angle · Inversion · Thin interbed · Fast algorithm · Reflectivity method

Introduction

According to Aki and Richards (1980), the reflection and 
transmission coefficients depend on the incident angle and 
elastic parameters (the P- and S-wave velocities, as well as 
density). The technique of amplitude variation with offset 
(AVO) or amplitude variation with incident angle (AVA) 
inversion uses this dependency for the elastic parameter 
inversion. Owing to the complexity and nonlinearity of 
Zoeppritz equations, a considerable number of prestack AVA 

inversion methods have been based on approximate solu-
tions to Zoeppritz equations (Stewart 1990; Fatti et al. 1994; 
Larsen 1999; Jin 1999; Mahmoudian and Margrave 2004). 
Furthermore, to improve the inversion accuracy, many pre-
stack AVA inversion methods based on the exact Zoeppritz 
equations method (EZM) have been developed (Tiğrek 
et al. 2005; Wang et al. 2011; Lu et al. 2015). Although the 
abovementioned inversion methods can achieve satisfactory 
results, they still exhibit several restrictions and limitations. 
Because the inversion methods based on Zoeppritz equations 
and their approximations use the assumption that only pri-
mary reflections are target wavefields, the wave-propagation 
effects, such as multiples, transmission loss, and geometric 
spreading, are completely eliminated. However, it is difficult 
for existing technology to deal with the above wave propaga-
tion effects without affecting the energy of primary reflec-
tions, particularly for thin interbedded formations.

Considering the wave propagation effects, the reflectivity 
method (RM) provides an elegant algorithm for computing 
full-wave reflection coefficients. Fuchs (1968) first proposed 
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RM for generating synthetic seismic seismograms. Later, 
the RM scheme was extended to include elastic transmis-
sion loss and time shift due to multiple layers on the top of 
reflecting medium (Fuchs and Müller 1971). They demon-
strated that this improvement is necessary for practical RM 
applications, as only the reflections from the deeper parts of 
layered media are generally of interest, and the reflections 
from the deeper-layered media suffer from transmission 
losses. Kennett (1974) first proposed the recursive algorithm 
for the calculation of the total reflection and transmission 
coefficients for a stack of layers, in which the unconditional 
stability for all frequencies and slownesses was improved. 
The recursive algorithm basically solved the overflow prob-
lems in the calculation of exponential functions for high fre-
quencies and slownesses (Kennett 1983, 2009). To improve 
the unsatisfactory computational efficiency of the RM, Phin-
ney et al. (1987) proposed the fast reflectivity method (FRM) 
based on reorganization of the innermost loops of the Ken-
nett RM (Kennett 1983). The FRM converts the Kennett 
RM into a vectorizable algorithm, which achieves a speed 
enhancement of approximately 20 times when implemented 
on an array processor (Phinney et al. 1987). Another advan-
tage of the FRM is that the partial derivative of the reflection 
coefficient to the elastic parameters can be expressed as an 
analytical solution, which aids in improving the inversion 
speed and accuracy.

Under the assumption of the locally one-dimensional 
(1D) model, the RM has been used extensively in layered 
stratigraphic inversion. Sen and Roy (2003) compared 
the characteristics of the Kennett RM and FRM, and then 
designed a regularized Gauss–Newton-type algorithm for 
prestack waveform inversion by rearranging the recursion 
formula in the Kennett RM. However, this inversion was per-
formed in the intercept time and slowness domain. To pre-
vent the aliasing problem, the slowness must be adequately 
sampled, but the calculation time will increase exponentially 
with the slowness samples (Mallick and Frazer 1987). Liu 
et al. (2016) developed a Bayesian inversion methodology 
for the P-wave AVO inversion method based on the FRM. 
They implemented a modification to convert the inversion 
from the intercept time and slowness domain into the angle 
gather domain. Liu et al. (2018) proposed the FRM-based 
nonlinear multicomponent prestack AVA joint inversion 
method using the non-dominated sorting genetic algorithm.

In this study, we propose an FRM-based prestack AVA 
inversion method for thin interbed strata. Based on the theo-
ries of the Kennett RM and FRM, we establish the objec-
tive function by means of the least-squares approach. To 
estimate the elastic parameters (P- and S-wave velocity, as 
well as density), the objective function is achieved by the 
minimized difference between the simulated and observed 
data in the angle domain. Moreover, in our inversion theory, 
the Jacobian matrix is expressed in the form of an analytical 

solution, and we describe the derivation process in detail in 
the Appendix. Eventually, we implement the FRM-based 
inversion on the thin interbed model and field data, and then 
compare with the inversion method based on the EZM. The 
inversion results demonstrate that the FRM-based inversion 
approach is better than the EZM-based inversion technique 
in terms of accuracy and continuity to thin interbeds.

Theory

Kennett reflectivity method

Considering two consecutive regions AB and BC (Fig. 1), 
Kennett (1983) derived the following equations using the 
recursive method (Kennett 2009; p. 104), which can cal-
culate the overall reflection and transmission matrices of 
region AC when those of regions AB and BC are known:

where the superscripts denote the regions; the subscripts D 
and U denote the downgoing and upgoing waves, respec-
tively; and R and T are the reflection and transmission 
matrices.

Equation (1) presents the most fundamental development 
of the reflectivity formulations. This unconditionally stable 
algorithm can compute the full-wave response, including 
the interlayer wave propagation and interaction terms. Fur-
thermore, Fig. 1 clearly indicates that Eq. (1) includes all 
of the internal multiples and mode-converted waves. It is 
also possible to compute certain selected modes under the 
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Fig. 1  Schematic representation of first several terms of expansion 
of addition rules for reflection and transmission matrices, indicating 
interactions with regions ‘AB’ and ‘BC’ (Kennett 2009)



1009Acta Geophysica (2020) 68:1007–1020 

1 3

reflectivity formulation. Detailed descriptions of the theory 
and discussions can be found in the book by Kennett (2009).

Fast reflectivity method

In applications, the conventional RM described above is 
unsatisfactorily inefficient. Phinney et al. (1987) proposed a 
speed-up algorithm based on the reorganization of the inside 
loops of the conventional RM to permit vectorization. The 
vectorized procedure by itself is faster than the previously 
described procedures, simply because practically all of the 
redundancy has been eliminated. According to Phinney et al. 
(1987), the overall reflection coefficient of the PP-wave in 
the frequency domain is

where p is the horizontal slowness; ω is the angular fre-
quency; and  v01 and  v04 are the first and fourth elements 
of the vector v0, respectively. Moreover, v0 is a vector 
with six elements, as defined by Phinney et  al. (1987) 
in the frequency–slowness domain (ω–p) based on the 
Haskell–Dunkin minor matrix:

where Δ is a scaling factor; RPP, RPS, RSP, and RSS are the 
reflection coefficients of the PP-, PS-, SP-, and SS-waves, 
respectively; and detR is the determinant of the coefficients.

Supposing a stack of N isotropic horizontal layers, we 
can obtain v0 starting from vN via a sequence of matrix 
multiplications:

where vN is the initial six-element vector

and Qn is the wave propagator matrix of the nth layer. Each 
Qn is the product of an interface matrix Fn and a layer-cross-
ing matrix En, as follows:

The specific forms of En and Fn are as follows:

where  hn is the layer thickness of the nth layer; qP
n
 and qS

n
 

are the vertical slownesses of P and S; �n is the 6 × 6 delta 
matrix for the nth layer; and �−1

n
 is the inverse matrix of �n . 

Details regarding �n and �−1
n

 are presented in “Appendix 1”.

(2)R(p,�) =
v04

v01
.

(3)v0 =
[
Δ −RPSΔ −RSSΔ RPPΔ RSPΔ detRΔ

]T
,

(4)v� = ���� …�n …�N−1vN , n ∈ [0,N − 1],

(5)vN =
[
1 0 0 0 0 0

]T
,

(6)�n = �n�n.

(7)
�� = diag

[
e−i�hn(q

P
n
+qS
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) 1 e−i�hn(q
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n
−qS
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]
,

(8)�n = �−1
n
�n+1,

For thick layers, multiples can be suppressed by the pre-
dictive deconvolution method. However, for thin-bed and 
thin-interbed layers, the primary waves always interfere with 
internal multiples, which are difficult to eliminate using the 
existing technologies without destroying the amplitudes of 
primary waves. Therefore, internal multiples must be con-
sidered in the inversion for a single thin bed or thin interbed 
due to their significant impact on the overall reflection coef-
ficients. Besides, because there is no layer thickness limita-
tion, both the Kennett reflectivity method and fast reflectiv-
ity method can be applied to thin-bed and interbed strata.

P‑wave AVA inversion

Gauss–Newton algorithm

We use the Gauss–Newton algorithm to solve nonlinear 
least-squares problems in our AVA inversion. The inversion, 
which uses the FRM to simulate synthetic data, is achieved 
by the minimized differences between the simulated and 
observed data, so as to estimate the elastic parameters 
(P-wave velocity α, S-wave velocity β, and density ρ). The 
objective function is formulated as follows:

where M = (α, β, ρ) denotes the model parameter vector in 
the target time window, while Φobs and Φ are the observed 
and synthetic data, respectively.

It should be noted that Φobs and Φ are angular gathers in 
the time domain, while the reflection coefficient calculated 
by Eq. (2) is in the frequency–slowness domain; therefore, 
domain conversion is required. The entire domain transfor-
mation process can be divided into the following two steps.

a. Slowness to incident angle
  The incident angle of each trace in the angle gather is 

fixed. Thus, under the assumption of horizontal layers, 
we can obtain the corresponding slowness of the inci-
dent angle for each layer according to Snell’s law:

where θ is the incident angle and the subscript n indi-
cates the nth layer. Then, the reflection coefficient in 
the slowness domain can be converted into the reflec-
tion coefficient in the time domain, which is R(p,ω) to 
R(θ,ω).

b. Frequency domain to time domain
  We implement the conversion from the frequency 

domain to the time domain by means of an inverse Fou-
rier transform. The outcome is the reflection coefficient 

(9)Q(�) =
‖‖‖� −�obs‖‖‖

2

,

(10)pn =
sin �

�n
,
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datasets in the intercept time and angle (τ–θ) domain 
(Fryer 1980):

  Following the domain conversion, the synthetic 
seismogram can be obtained by the convolution of the 
reflection coefficients and wavelets:

where W denotes the wavelets of the PP-waves at differ-
ent incident angles and R is the matrix of the PP-wave 
reflection coefficients.

Model update

Under approximately ideal conditions, given an initial guess 
model M0 close to the true model, we can obtain the model 
update matrix using the Gauss–Newton method (Tarantola 
1986; Sheen et al. 2006; Lu et al. 2015, 2017):

where ΔM = (Δα, Δβ, Δρ) is the update of the initial model 
and J is the Jacobian matrix:

Following the damped least-squares method (Levenberg 
1944; Marquardt 1963), the regularized Gauss–Newton for-
mula is:

where λ is a scalar, I is the identity matrix, and H = JTJ is 
the Hessian matrix. The details of λ are described by Paige 
and Saunders (1982).

According to Eq. 15, we build an objective function con-
sidering sparse constraint (Yuan et al. 2019; Luo et al. 2018) 
for our AVO inversion as

where k is the weight for the sparse constraint, and the 
method of choosing k can be found in the paper (Chen et al, 
2001). Letting Q reach to a minimum, we can approximately 
derive

(11)R(�, �) =
1

2� ∫
∞

−∞

R(�, �)ei�td�.

(12)� = � ∗ �,

(13)Δ� =
[
�T�

]−1
�T(� −�obs),
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2
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)
≈ 0,

(18)k2
(
�inv −�true

)
≈ 0.

Under the approximate ideal conditions, given an initial 
guess model M0 close to the true model, we derive the approx-
imate model update matrix as

In the subsequent iteration, ΔM is used to update the initial 
M0, and the iteration stops when Φobs is close to Φ for a given 
accuracy.

Jacobian matrix

According to the definition of the reflection coefficients in 
Eq. (11), the analytical Jacobian matrix of the PP-wave is

where

From Eqs. (6) and (8), it can be found that only Qn-1 and 
Qn are related to the parameters Mn. Therefore, the partial 
derivative of v0 is

where

in which Mn denotes α, β, and ρ of the nth layer.
The partial derivative of Fn is

where

The partial derivative of Tn for the parameters Mn is 
presented in “Appendix 2”. We can also analytically calcu-
late the partial derivative of En for Mn, which is shown in 
“Appendix 2”.

(19)
Δ� ≈

(
� + �� + k2�

)−1[
�T
(
� −�obs

)
+ k2

(
�0 −�true

)]
.

(20)� = � ∗
1

2� ∫
∞

−∞

�R(�, �)

��n

ei�td�,

(21)
�R(�, �)

��n

=
v01

�v04

��n

− v04
�v01

��n(
v01

)2 .

(22)
�v0

��n

= �0�1 ⋯
�(�n−1�n)

��n

⋯�N−1vN,

(23)
�(�n−1�n)

��n

=
��n−1

��n

�n +�n−1

��n

��n

,

(24)
��n

��n

=
�En

��n

�n + �n

��n

��n

,

(25)
��n

��n

=
��−1

n

��n

�n+1 + �−1
n

��n+1

��n

,

(26)
��n+1

��n

=

⎧
⎪⎨⎪⎩

��n+1

��
,

��n+1

��
,

��n+1

��
.



1011Acta Geophysica (2020) 68:1007–1020 

1 3

Similar to the accelerated method presented by Phinney 
et al. (1987), we extend ��n

��n

 to �̂�n
 by including all frequen-

cies, which is the extension process from a specific fre-
quency to all frequencies for the nth layer. To optimize the 
computation of �̂�n

 , we generate the values for �̂�n
 recur-

sively, assigning the first six elements (zero frequency) as 
the starting values. Consequently, �̂�n

 is computed using the 
increment vector g’n to generate the higher-frequency values 
of �̂�n

 by means of complex multiplication.

where NF is the number of frequency.
The increment vector g’n is defined as

where
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When we extend ��n

��n

 to �̂�n
 , we need suitable extensions 

of Fn and v0 using the same method as that in Phinney et al. 
(1987).

Synthetic data test

Comparison of FRM and EZM

To verify the effectiveness of the FRM in AVA modeling and 
inversion, we used a horizontally layered model (as indicated 
in Table 1). The PP-wave synthetic angle gather was gener-
ated by the FRM and EZM with a 40 Hz Ricker wavelet. The 
detailed simulation steps are as follows.

1. Calculate zero-offset travel time.
2. Given the incident angle, calculate the corresponding 

reflection coefficient.
3. Calculated the angle gather by the convolution of the 

reflection coefficient and wavelet matrices.

Figure 2 shows that compared with the gathers based on 
the EZM, those based on the FRM contain more complete 
information (such as the multiples illustrated in Fig. 2c). 
This is because the synthetic seismogram using the EZM 
only reflects the primary reflection amplitudes, without 

(29)
{

s+
n
= eiΔ�dn(q

p+qs).

s−
n
= eiΔ�dn(q

p−qs).

Table 1  Parameters of the theoretical model

Layer VP (m/s) VS (m/s) Density (g/
cm3)

Thickness (m)

1 3200 1816 2.5 200
2 2200 1300 1.5 8
3 3200 1816 2.5 150
4 2200 1300 1.5 8
5 3200 1816 2.5 200

Fig. 2  Comparison of PP-wave 
synthetic angle gathers based on 
FRM and EZM: a angle gather 
based on FRM, b angle gather 
based on EZM, and c difference 
between angle gathers based on 
FRM and EZM. The red curve 
indicates the P-wave velocity
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containing wave-propagation effects. These multiples may 
cause errors in interpretation and inversion.

To display the difference between the FRM and EZM 
further, we extracted the AVA curves of two interfaces (illus-
trated in Fig. 3) with the same elastic parameters on either 
side of the interface (along the blue line in Fig. 2). Owing 
to the influence of transmission loss, the amplitudes of the 
three interfaces using the reflectivity method were gradually 
reduced with the depth and were smaller than those obtained 
using the EZM. If the transmission loss and internal mul-
tiples are not properly corrected in seismic data processing 
procedures, the synthetics obtained by the FRM can be more 
effectively matched with the field data.

Thin interbed model test

To test the inversion method, we selected a 1D thin interbed 
model, in which the thicknesses of all single thin layers were 
set to 8 m (as indicated in Table 2). The corresponding PP 
synthetic AVA gather was generated through the convolu-
tion of the reflectivity derived from the FRM and the Ricker 
wavelets, with dominant frequencies of 40 Hz.

Inversion of synthetic data without noise

The AVA inversions based on the FRM and EZM were tested. 
Both of the inversion methods used the same input data (as 
illustrated in Fig. 4) and the same initial model (the blue line 
in Fig. 5). The FRM- and EZM-based inversion results of the 
P- and S-wave velocities, as well as density, are presented 
in Figs. 5 and 6, respectively. It can be observed that the 
inversion parameters based on the FRM basically matched 
the true values. However, the inversion based on the EZM 
regarded internal multiples as primary reflections, leading to 
false images and instability. Considering the sparse constraint 
during the FRM-based inversion, we derived the improved 

Fig. 3  Comparison of AVA curves based on FRM and EZM. Phinney 
1 and Phinney 2 are two interfaces shown in Fig. 2a, and Zoeppritz is 
the interface shown in Fig. 2b

Table 2  Parameters of thin interbed model

VP (km/s) VS (km/s) Density (g/cm3) Thickness (m)

3.094 1.515 2.4 150
2.781 1.665 2.08 8
3.146 1.554 2.41 8
2.694 1.206 2.3 8
3.094 1.515 2.4 8
2.643 1.167 2.29 8
3.048 1.595 2.23 8
2.781 1.665 2.08 8
3.094 1.515 2.4 150

Fig. 4  Synthetic PP seismograms based on FRM. The red curve 
denotes the P-wave velocity

Fig. 5  Inversion results of a P-wave velocity, b S-wave velocity, and 
c density by FRM-based method. The blue, black, red, and green 
curves denote the initial model, true model, inverted result, and 
inverted result for sparse constraint, respectively
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inversion results shown in the green curves in Fig. 5. In order 
to quantitatively describe the inversion results of different 
inversion methods, we calculated the differences between 
the inversion results and true values, as shown in Fig. 7. It 
can be found that the inversion results considering the sparse 
constraint are closer to the true curves.

Inversion of synthetic data with noise added

As illustrated in Fig. 8, the robustness of the inversion method 
was then tested on the synthetic PP angle gather with a 15% 
level of random noise added. The FRM- and ZEM-based 
inversion results using the same initial model are presented in 
Figs. 9 and 10, respectively. It can be observed that under the 
influence of random noise in the angle gather, the inversion 
results from both inversion methods were noisy. However, 

the inversion results at the thin interbedded layers could still 
reflect the information of the true model parameters. Moreo-
ver, the FRM-based inversion results were closer to the true 
values, indicating that the FRM exhibited stronger robust-
ness. As shown in the green curves in Fig. 9, if we consider 
the sparse constraint during the inversion, we can hardly find 
the effect of random noise on the inversion results. Compared 
with the green curves in Fig. 5, the inversion results from 
the noisy condition are almost unchanged. In order to quan-
titatively describe the inversion results of different inversion 
methods, we calculated the differences between the inversion 
results and true values, as shown in Fig. 11. We can still find 
that even with the noise, the inversion results considering the 

Fig. 6  Inversion results of a P-wave velocity, b S-wave velocity, and 
c density by EZM-based method. The blue, black, and red curves 
denote the initial model, true model, and inverted result, respectively

Fig. 7  Absolute values of the differences between the true curves and 
inversion results of different methods. The black, red, and blue curves 
denote the differences between the true curves and FRM-based inver-
sion results considering sparse constraint, between the true curves 
and FRM-based inversion results, and between the true curves and 
EZM-based inversion results, respectively

Fig. 8  Synthetic PP seismograms based on FRM with 15% noise 
level. The gray curve denotes the P-wave velocity

Fig. 9  Inversion results of a P-wave velocity, b S-wave velocity, and 
c density by FRM-based approach under noisy conditions. The blue, 
black, red, and green curves denote the initial model, true model, 
inverted result, and inverted result for sparse constraint, respectively
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sparse constraint fit better with the true values. Therefore, our 
method has a certain ability to resist noise.

Application to field data

Our inversion method was also applied to the processed PP 
field AVA datasets (Fig. 12a) from Guqiao mine, located 
in the Huainan coalfield on the southern margin of the 
North China plate. The 3D seismic data were acquired in 
2006, which covered an area of 2.56 km2 with a bin size of 
10 × 10 m. The coal-bearing strata dip gently with an angle 
less than 5°, and the structure is relatively simple with few 
faults. The 3D acquisition offsets ranged from 0 to 1210 m, 
which led to 0°–35° incident angles on coal seam 13–1. In 

this application, we chose one 2D line across the well to 
show the inversion effect of the proposed method. The major 
stratigraphic units illustrated in Fig. 12a are the coal measure 
strata, where commercial coal beds have been developed. 
The coal seams in the angle gather can be identified with 
the aid of log curves (the red curve in Fig. 12), where the 
strata with a low density and velocity of 665–675 ms is coal 
seam 13–1. Moreover, the lithology of the surrounding rocks 
is dominated by sand and shale, exhibiting a thin interbed 
structure. We only acquired the acoustic and density logs 
at the well location. Then, for the area consisting of sand 
and mudstone strata, we adopted an empirical correlation 
between the P- and S-wave velocities to convert the acoustic 
logs into the S-wave logs (Lu et al. 2016).

For the transformation of the S-wave log into the coal 
seam, we adopted the empirical correlation provided by 
Wang et al. (2016):

Before implementing our inversion method, firstly, we 
had to ensure that the datasets were appropriately processed. 
Since the FRM-based inversion considers the transmission 
losses and internal multiples, the transmission loss compen-
sation and internal multiples suppression are not adopted 
in the data processing. Secondly, with the aid of synthetic 
seismograms calculated from the well logs (Fig. 12b), we 
could calibrate the logs (depth domain) and PP events 
reflected from each geological interface (time domain). The 
correlation coefficient between the actual and synthetic PP 
AVA datasets was 0.74. Thirdly, using the well logs and 

(30)VS = 0.433VP + 430.9

(31)VS = 0.5208VP + 110.67.

Fig. 10  Inversion results of a P-wave velocity, b S-wave velocity, 
and c density by EZM-based approach under noisy conditions. The 
blue, black, and red curves denote the initial model, true model, and 
inverted result, respectively

Fig. 11  Absolute values of the differences between the true curves 
and inversion results of different methods under noisy conditions. 
The black, red, and blue curves denote the differences between the 
true curves and FRM-based inversion results considering sparse con-
straint, between the true curves and FRM-based inversion results, and 
between the true curves and EZM-based inversion results, respec-
tively

Fig. 12  Angle gathers for field data and synthetic data: a field angle 
gather data and b synthetic angle data. The red curve denotes the den-
sity logs, while the green frame represents the location of coal seam 
13–1
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correlated angle gather, we estimated the wavelets, which 
were angle independent. The final step was to calculate the 
initial model, which was obtained by band-pass filtering, in 
which the range was 0–60 Hz.

Figures 13 and 14 display the inversion results using the 
two inversion methods at the well position. Figure 15 shows 
the difference between the inversion results and true val-
ues. The inversion results considering the sparse constraint 
have higher resolutions. Besides, compared with the EZM-
based inversion result, the majority of variation trends of 
the FRM-based inversion results closely matched the well 
logs. For example, the inversion results based on the FRM 
could accurately describe the position of coal seam 13–1, 
and the inversion results of the P- and S-wave velocities, as 
well as the density, were strongly matched with the logging 
data. Moreover, we could distinguish more thin layers from 
the FRM-based inversion results than from the EZM-based 
inversion results. Here, we take the P-wave velocity inversion 
results as an example. In Figs. 13a and 14a, the strata in the 
pink frame are thin interbedded strata. The inversion results 
illustrated in Fig. 13a can reflect the variation trend of the 
strata, while those in Fig. 14a exhibit significant fluctuations.

Figure 16 shows the FRM-based inversion results of the 
2D line across the well, where the black colors represent 
coal seams, which are calibrated by the well log. The wave-
lets used for inversion were extracted from the angle gath-
ers at all incident angles. Although the inversion results are 
of lower frequency compared with the well logs due to the 
limitation of seismic resolution, the FRM-based inversion 
method can produce high-resolution results, which is very 
helpful for identifying thin layers. According to the well 
tops and seismic horizons, we picked the top and bottom 
interfaces of coal seam 13–1 (green lines in Fig. 16). It is 

seen that the thickness of coal seam 13–1 is close to that 
indicated by the well log. Moreover, we can clearly find the 
thin interbed strata under coal seam 13–1 in the inversion 
sections (the red frames in Fig. 16).

Discussion

In seismic data processing, it is difficult to compensate for 
transmission loss completely using existing techniques. 
Although certain scholars (Xu et al. 1998; Zhang et al. 2003) 
attempted to compensate for transmission losses using post- 
or prestack migration, transmission loss compensation has 
not yet been sufficiently accurate (Deng and McMechan, 

Fig. 13  FRM-based inversion results for field data considering sparse 
constraint: a P-wave velocity, b S-wave velocity, and c density. The 
blue, black, red, and green curves represent the initial model, true 
model, inversion result, inversion result considering sparse constraint, 
respectively. The orange frame represents the location of coal seam 
13–1, and the pink frames represent the thin interbed strata

Fig. 14  EZM-based inversion results for field data: a P-wave veloc-
ity, b S-wave velocity, and c density. The blue, black, and red curves 
denote the initial model, true model, and inverted result, respectively. 
The orange frame represents the location of coal seam 13–1, and the 
pink frames represent the thin interbed strata

Fig. 15  Absolute values of the differences between the true curves 
and inversion results of different methods for field data. The black, 
red, and blue curves denote the difference between the true curves 
and FRM-based inversion results considering sparse constraint, 
between the true curves and FRM-based inversion results, and 
between the true curves and EZM-based inversion results, respec-
tively
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2007). However, the FRM takes the transmission loss into 
account during the reflectivity calculation, which can reduce 
the difficulty of prestack processing to a certain extent.

Numerous methods for weakening multiple amplitudes in 
seismic data are available (Weglein et al. 2011). However, 
the suppression of multiple waves, such as internal multiples, 
remains a challenge in data processing. Furthermore, the 
internal multiples are often mixed with the primary reflections 
of the surrounding rock. Therefore, the suppression of inter-
layer multiples often destroys the amplitude of the primary 
reflections to an extent. In this case, the FRM considers the 

multiples when calculating the reflection coefficients, which 
allows us to invert the target data without multiple attenuation.

When applying the FRM-based inversion method, the ini-
tial models are low-frequency models, which are obtained 
from the smoothed logs and must be able to reflect the 
strata trend approximately. As the frequency of the initial 
model increases, the rate of inversion convergence increases. 
Besides, if we adopt an initial model without the strata trend, 
such as the random model or linear model, the inversion will 
not achieve convergence.

The FRM-based inversion approach has stronger anti-
noise robustness than the EZM-based inversion technique. 
However, if the noise is as strong as the reflection amplitude 
of a thin layer, the inversion cannot distinguish between the 
thin layer reflection and noise, which will cause the inversion 
results to fluctuate.

Conclusions

According to the comparison of the synthetic angle gathers 
based on the FRM and EZM, the FRM takes into account 
the transmission loss and multiple waves when calculating 
the reflectivity. Moreover, we discussed the FRM-based 
inversion theory using the Gauss–Newton algorithm and 
tested the inversion method on thin interbed model data 
as well as field seismic data. It should be emphasized that 
the processing procedure prior to inversion should include 
surface-related multiple attenuations and geometric spread-
ing compensation, but it should exclude transmission loss 
compensation and internal multiples attenuation.

Based on the least squares approach, we considered the 
sparse constraint in the inversion. The model tests show 
that the proposed inversion method has stronger anti-noise 
robustness when considering the sparse constraint. Applica-
tion to the field data inversion results demonstrates that our 
inversion method can effectively improve the resolution of 
thin interbed.

Acknowledgements The authors are very grateful to the MWMC 
Group for processing the seismic data. We would also like to express 
thanks for the sponsorship of the National Natural Science Foundation 
of China (Nos 41574126 and U1910205).

Author contributions Each author has contributed to the present paper. 
Jun Lu conceived the idea of this research. Zhen Yang and Jun Lu 
designed and programmed the codes. Zhen Yang performed the simula-
tion tests. Zhen Yang and Jun Lu applied the method to the field data 
and analyzed the inversion results. The paper was written by all the 
authors.

Compliance with ethical standards 

Conflict of interest The authors declare that they have no conflict of 
interest.

Fig. 16  FRM-based inversion sections for field data considering 
sparse constraint: a P-wave velocity, b S-wave velocity, and c den-
sity. The inserted black curves are the well logs corresponding to the 
inverted parameter types. The green lines indicate the top and bottom 
interfaces of coal seam 13–1. The red frames mark the thin interbed 
strata



1017Acta Geophysica (2020) 68:1007–1020 

1 3

Appendix 1

Tn is the 6 × 6 delta matrix for the nth layer. The elements of 
Tn are formed from the Dunkin matrix, which is frequency 
independent. The following is a list of the 16 independent ele-
ments of the matrix Tn:

t11 = −(p2 + qpqs)∕� = t16,

t12 = −2pqp∕�,

t13 = −(p2−qpqs)∕� = −t14,

t15 = −2pqs∕�,

t21 = iqs∕�2 = −t23 = −t24 = −t26,

t31 = −ip(Γ + 2qpqs) = t36 = t41 = t46,

t32 = −4ip2qp,

t33 = −ip(Γ−2qpqs) = t43 = −t34 = −t44,

t35 = −2iΓqs,

t42 = −2iΓqp,

t45 = −4ip2qs,

t51 = −iqp∕�2 = t53 = t54 = −t56,

t61 = −�(Γ2 + 4p2qpqs) = t66,

t62 = −4�Γpqp,

t63 = −�(Γ2−4p2qpqs) = −t64,

t65 = −4�ΓpqS, and

t22 = t25 = t55 = t52 = 0,

where Γ = 2p2 − 1∕�2  ,  � = ��2  ,  qP = (�−2 − p2)1∕2  , 
qS = (�−2 − p2)1∕2 , and p = sin �p∕� = sin �S∕�.

�−1
n

 is the inverse matrix of Tn. The elements of �−1
n

 are 
simply a rearrangement of the elements of �n:

Appendix 2

Partial derivation of  En and  Tn

In general, the incident angle of angle gather will be controlled 
within 90°. Therefore, the vertical slowness and En can be 
expressed as:

(32)�−1
n

=

⎡⎢⎢⎢⎢⎢⎢⎣

t61 t51 t31 t31 t21 t11
−t65 0 −t45 −t35 0 −t15
−t63 −t51 −t33 −t33 t21 −t13
t63 −t51 t33 t33 t21 t13
−t62 0 −t42 −t32 0 −t12
t61 −t51 t31 t31 −t21 t11

⎤⎥⎥⎥⎥⎥⎥⎦

.

(33)qP = (�−2 − p2)1∕2 =
cos �p

�

(34)qS = (�−2 − p2)1∕2 =
cos �S

�

The partial derivative of En with respect to the parameters 
Mn can be calculated analytically:

where

(35)�n = diag
[
e−i�dn(cos �p∕�+cos �S∕�) 1 e−i�dn(cos �p∕�−cos �S∕�) ei�dn(cos �p∕�−cos �S∕�) 1 ei�dn(cos �p∕�+cos �S∕�)

]
.

(36)��
n

��
n

=

⎧
⎪⎪⎨⎪⎪⎩

��n

��
= i�d

n
diag

�
A�e

−i�dn(cos �p∕�+cos �S∕�) 0 B�e
−i�dn(cos �p∕�−cos �S∕�) −B�e

i�dn(cos �p∕�−cos �S∕�) 0 −A�e
i�dn(cos �p∕�+cos �S∕�)

�
,

��n

��
= i�d

n
diag

�
A�e

−i�dn(cos �p∕�+cos �S∕�) 0 B�e
−i�dn(cos �p∕�−cos �S∕�) −B�e

i�dn(cos �p∕�−cos �S∕�) 0 −A�e
i�dn(cos �p∕�+cos �S∕�)

�
,

��n

��
= 0 ,

(37)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A� =
�

cos �P

�2
+

cos �S

��

�
,

B� =
�

cos �P

�2
−

cos �S

��

�
,

A� =
�

cos �P

��
+

cos �S

�2

�
,

B� =
�

cos �P

��
−

cos �S

�2

�
,
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in which α and β are the P- and S-wave velocities at the nth 
layer, respectively.

The partial derivatives of Fn-1 and Fn with respect to the 
parameters Mn can also be calculated analytically:

where

The matrices ��n

��
 , ��n+1

��
 , and ��n+1

��
 contain 16 independent 

elements.

(38)
��n

��n

=
��−1

n

��n

�n+1,

(39)
��n−1

��n

= �−1
n−1

��n

��n

,

(40)
��n

��n

=

⎧
⎪⎨⎪⎩

��n

��
��n

��
��n

��

.

�t11

��
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4

�
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�t16

��
,
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��
= −

4
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4
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= −

4
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3
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= −

�t24

��
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,
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= −

3
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Abstract
With the development of oil and gas exploration, the conventional seismic migration imaging technology based on the 
isotropic assumption no longer meets our current requirements for high-resolution images. Migration in anisotropic media 
has become an essential requirement for oil and gas exploration. Marine seismic exploration has gradually entered the wide-
azimuth and high-density seismic data acquisition stage. However, even for current large high-performance computer clusters, 
it is still very difficult to implement pre-stack depth migration based on shot gathers. Thus, we present a double-square-root 
(DSR) equation based on three-dimensional (3D) pre-stack depth migration in midpoint-offset domain for a wide-azimuth 
dataset in transversely isotropic media with a vertical symmetry axis (VTI media). Considering VTI media, the DSR migra-
tion requires extensive memory and computation; we adopted the phase-shift plus interpolation approach to improve the 
computational efficiency. Then, we extract the angle-domain common-image gathers (ADCIGs) during DSR migration. For 
real large-scale seismic data, we designed an effective parallel implementation of 3D DSR migration with ADCIGs outputs. 
Finally, we applied the proposed angle-domain VTI DSR migration on wide-azimuth SEG/EAGE salt dome-based data 
and real data from the China South Sea. Numerical and practical data illustrate the effectiveness of the proposed method.

Keywords Angle domain · Double-square-root migration · VTI media · Wide-azimuth · Phase-shift plus interpolation

Introduction

As the target of seismic exploration is turning to complex 
structures and reservoirs, the broadband, wide-azimuth, 
and high-density (BWH) seismic data acquisition technol-
ogy with the long offsets and large observation azimuthal 
angles is the basic requirement of the high-precision seismic 
imaging. Developing an accurate seismic imaging technol-
ogy for wide-azimuth seismic data is a very important issue 

(Michell et al. 2006; Barley and Summers 2007; VerWest 
and Lin 2007; Bouska 2008; Yuan et al. 2019).

The anisotropy phenomenon in subsurface media is ubiq-
uitous. The seismic imaging technology in isotropic (ISO) 
media can no longer satisfy the high-accuracy reservoir 
description requirements. For example, ignoring anisotropy-
induced distortions due to the difference between the verti-
cal and stacking velocities causes imaging depth errors and 
ignoring the angle dependence of velocity creates serious 
problems in imaging dipping reflectors (Tsvankin 2012). 
Seismic migration imaging in anisotropic media has become 
an essential requirement for oil and gas exploration. Moreo-
ver, when dealing with the wide-azimuth and long-offset 
seismic data, the anisotropy problem has a more serious 
impact on migration imaging (Alkhalifah and Larner 1994; 
Herman and Larner 1995; Yan et al. 2004; Tsvankin 2012; 
Liu et al. 2014, 2015; Oh and Alkhalifah 2018).

In offshore seismic exploration, no matter the kind of 
towed-streamer acquisition technology or the kind of wide-
azimuth ocean-bottom acquisition technology used, numer-
ous shot gathers are recorded. Even with the current large-
scale, high-performance computers, the shot-index migration 
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imaging technology is extremely expensive and unbearable 
because the computational domain needs to expand with a 
huge number of zero traces so that the expected reflectors 
can be imaged in every shot migration. Migration in mid-
point-offset domain, which combines all data into one wave-
extrapolation procedure, can be an efficient solution (Biondi 
and Palacharla 1996; Biondi 2002; Alkhalifah et al. 2015).

Angle-domain common-image gathers (ADCIGs) are 
important outputs for wide-azimuth exploration. The ADCIGs 
can update the velocity model (Liu and Bleistein 1995; Biondi 
and Symes 2004) and can be used for extracting the informa-
tion of angle-dependent reflectivity information (Yan and Xie 
2012; Sava et al. 2001; Li et al. 2018). Currently, the image 
gathers are necessary outputs for any migration algorithms. 
Therefore, an efficient and robust migration algorithm with 
the output of image gathers to adapt the anisotropic media and 
wide-azimuth marine data acquisition is necessary.

Compared with Kirchhoff migration (Gray and May 
1994), the wave equation pre-stack depth migration (PSDM) 
uses accurate wave equations (mainly including one-way and 
two-way waves), which can obtain high-precision imaging 
results and is suitable for the current seismic exploration 
realities (Mulder and Plessix 2003). However, due to the 
huge computational complexity of reverse-time migration 
(RTM) (Baysal et al. 1983; Whitmore 1983), the current 
application of RTM is limited to some local exploration 
areas for high-precision imaging. The large-scale applica-
tions in real industrial exploration are still difficult, espe-
cially for TB-level wide-azimuth seismic data. The compu-
tational cost is prohibitive in RTM.

Considering computational complexity and imaging accu-
racy, the one-way wave migration method is a suitable choice. 
High-quality imaging results can be obtained by using accurate 
one-way wave equation migration in media with strong het-
erogeneity, complex structures and dramatic lateral changes 
velocity. Wavefield continuation migration is an accurate, 
robust algorithm, even with complex velocity models. There 
are two main methods for wave equation migration. One is 
single-square-root (SSR) migration (Reshef 1991; Ke et al. 
2004), which continues the up-going and down-going wave-
fields, respectively, based on the one-way equation and extracts 
the imaging value by cross-correlating these two wavefields. 
The second is double-square-root (DSR) migration based on 
the “survey sinking” concept (Claerbout 1985; Popovici 1996; 
Biondi and Palacharla 1996; Alkhalifah 2000b; Bevc et al. 
2003; de Hoop et al. 2003; Sun et al. 2005; Cheng et al. 2008; 
Song and Fomel 2011; Alkhalifah et al. 2015).

In the SSR PSDM, because the reflected wave may come 
from outside the range of offset coverage for both source 
and receiver wavefields, the extrapolated areas need to be 
expanded, which increases the computational workload. In 
addition, the source wavelet is a necessary input in the SSR 
migration. However, in real data processing, it is impossible to 

obtain the complete source wavelet. During the DSR PSDM, 
only the up-going wavefield is continued. In other words, the 
shot and receiver locations are sinking at the same time. When 
the two points coincide, the wavefield value at zero time is 
regarded as the imaging value. DSR migration does not suf-
fer the problem of migration aperture and has less acquisition 
footprints. Moreover, it is convenient to produce azimuth-
opening angle gathers. Therefore, the DSR migration is more 
efficient and preferable for real wide-azimuth dataset.

The full 3D DSR PSDM in the midpoint-offset domain is 
carried out in 5D computational space. In each extrapolation 
step, it involves totally 3D pre-stack seismic data, which is 
computationally intensive and difficult to manage. In addition, 
limited to the narrow azimuth field observation, the offset in 
the crossline direction of the previous acquired seismic data 
is small, and the sampling is very sparse, so that the calcula-
tion in the crossline direction will bring non-negligible errors. 
Therefore, in the past decades, due to the limitations of low 
computer operation speed and immature 3D seismic acquisition 
techniques, the DSR migration is superseded by the azimuth-
moveout (AMO) and common-azimuth migration method 
(Biondi and Chemingui 1994; Biondi and Palacharla 1996; 
Biondi et al. 1998; Alkhalifah 2004; Alkhalifah and Biondi 
2004). Jin and Wu (1999) and Jin et al. (2002) apply the gen-
eralized screen propagators (GSP) (Wu 1994, 1996; de Hoop 
et al. 2000) to the common-offset depth migration with the DSR 
operator and use limited azimuthal range of the 3D marine data 
to reduce the dimensionality. Cheng et al. (2003) proposed a 
crossline common-offset migration approach for narrow-azi-
muth datasets. Cheng et al. (2005) further implemented com-
mon-azimuth migration utilizing the limited range of the input 
data volume and the propagation direction of extended wave-
fields to migrate narrow-azimuth seismic data. However, these 
methods cannot accurately describe the propagation of seismic 
waves in the 3D situation and can only be applied to narrow-
azimuth dataset. Therefore, they are not suitable approaches 
for current wide-azimuth datasets. In recent years, high-perfor-
mance computing and seismic acquisition techniques have both 
evolved, so now the computational resources are available and 
the DSR migration has become feasible.

In addition, DSR equation can be implemented in time rather 
than depth domain (Biondi 2002). However, DSR equation as a 
time extrapolation operator has an inherent singularity for hori-
zontally traveling waves (Biondi 2002; Duchkov and de Hoop 
2009). This singularity can be avoided by using perturbation 
theory and Shanks transform (Alkhalifah 2012), Padé expan-
sions (Alkhalifah 2013), or limiting the range of wavenumbers 
treated in a spectral-based extrapolation referred to as the low-
rank method (Alkhalifah et al. 2015). In isotropic media, the 
traveltimes in the midpoint-offset domain can be given by the 
simple analytical DSR equation (Yilmaz and Claerbout 1980). 
However, the analytical offset-midpoint traveltime equation 
for transversely isotropic media does not exist. With stationary 
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phase approximations and perturbation theory, the analytic 
approximation representations of the offset-midpoint traveltime 
in the VTI media can be obtained (Alkhalifah 2000c). Further-
more, the offset-midpoint traveltime is approximately estimated 
in transversely isotropic media with a horizontal symmetry axis 
(Hao et al. 2015) and in homogeneous orthorhombic media 
(Hao et al. 2016).

In this paper, we present a pre-stack depth migration 
method based on the DSR equation in the midpoint-offset 
domain in VTI media. In order to reduce the memory and 
computation, we adopt the phase-shift plus interpolation 
(PSPI) method to approximate the VTI extrapolation opera-
tor. Then, we will discuss how to extract the angle-domain 
common-image gathers (ADCIGs) during DSR migration. 
For real large-scale seismic data, we designed a parallel 
implementation scheme of 3D DSR migration and ADCIGs 
outputs. Finally, numerical and practical data illustrate the 
effectiveness of the proposed method.

Method

In this section, first, we introduce the full 3D DSR wavefield 
extrapolation operator in VTI media and propose a PSPI 
method to improve the computational efficiency of wavefield 
extrapolation operator. Then, we will explain how to extract 
the ADCIGs during DSR migration. Last, we propose an 
effective implementation of 3D angle-domain DSR migra-
tion for large-scale seismic data.

Full 3D VTI double‑square‑root wavefield 
extrapolation

The qP wave equation, derived by Alkhalifah (2000a), using an 
acoustic media assumption for P waves in VTI media, yields 
good kinematics approximation to the familiar elastic wave 
equation for VTI media. The wavefield solutions obtained 
using this VTI acoustic wave equation are free of shear waves, 
which significantly reduces the computation time compared 
to the elastic wavefield solutions for exploding-reflector-type 
applications. The 3D qP wave equation is as follows.

where �=(x, y, z) is the spatial coordinate. VP0(�) is the verti-
cal P wave velocity, �(�) and �(�) are Thomsen’s parameters 
(Thomsen 1986) and p(�, t) is the qP wave wavefield.

(1)
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(
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The corresponding dispersion relation is (Alkhalifah 
2015).

where � is the angular frequency. �T =
(
kx, ky

)
 is the hori-

zontal wavenumber vector, and kz is the z direction vertical 
wavenumber.

The DSR migration uses the concept of “survey sinking 
observation” and takes the wavefield observed on the surface 
as the boundary condition and the shot and receiver loca-
tions are sinking at the same time. During the DSR migra-
tion, only the up-going wavefield is continued. According 
to the form of the one-way wavefield extrapolation operator, 
the DSR wavefield extrapolation operator in the midpoint-
offset domain can be written as follows.

where k� =
(
kmx, kmy

)
 and k�=

(
khx, khy

)
 are the wavenumbers 

of midpoint and half offset, respectively. p
(
��, ��, zj+1,�

)
 

and p
(
��, ��, zj,�

)
 are the extrapolated wavefields at depth 

zj+1 and zj , respectively. eikzΔz is the extrapolation propagator.
Based on the Born approximation, the VTI medium is 

divided into a homogeneous background medium and a per-
turbed medium.

where s0= 1∕Vp0 is the background slowness and Δs is the 
perturbed slowness. �0 and �0 are the background Thomsen’s 
parameters, and Δ� and Δ� are the perturbed Thomsen’s 
parameters, respectively.

The corresponding one-way vertical wavenumber is 
decomposed into the homogeneous background wavenum-
ber and the perturbed wavenumber. The generalized screen 
approximation (Wu 1994, 1996; de Hoop et al. 2000) is used 
to obtain the vertical wavenumber.

where kz0
(
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 is the vertical wavenumber in the homo-

geneous background medium and ks
(
�, �, z,��, ��

)
 is the 

vertical wavenumber in the perturbed medium. The vertical 
wavenumber kz0

(
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)
 can be obtained from the disper-

sion-relation Eq. (2).

(2)
�4 − (1 + 2�)�2

V
2

P0
�2
T
− �2

V
2

P0
k
2

z

+ 2(� − �)V4

P0
�2
T
k
2

z
=0,

(3)p
(
��, ��, zj+1,�

)
= p

(
��, ��, zj,�

)
eikzΔz,
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The ks
(
�, �, z,��, ��

)
 can be obtained by using the Taylor 

series expansion. When only the first-order perturbation term 
is obtained, the approximate wavenumber is as follows (Wu 
et al. 2007).

where k0 =
�

V0

=�s0 and �= kx

k0
 . asl , a�l and a�l are the Taylor 

series expansion coefficients of the anisotropic parameter 
perturbations with respect to slowness perturbations under 
the generalized screen approximation, respectively.

Using the approximation ex ≈ 1 + x , the final DSR extrapo-
lated wavefield in VTI media can be realized as follows:
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where F represents the Fourier transform and IF represents 
the inverse Fourier transform. pkz0 is the extrapolated wave-
field in the background medium. pΔs , pΔ� and pΔ� are the 
extrapolated wavefield in the perturbed medium with respect 
to the slowness, � , and � , perturbations, respectively.

In the midpoint-offset domain, the source and receiver 
wavefields are simultaneously extrapolated along the ver-
tical depth axis using the DSR operator. The migrated 
results are extracted by applying the Claerbout’s (1985) 
imaging condition.

where I(�, z) is the imaging result. P
(
�m, �h, z,�

)
 is the 2D 

Fourier transform of the extrapolated wavefield p(�, �, z,�) . 
The integrals of � and kh reflect the imaging condition: t = 0 
and h = 0.

Full 3D VTI DSR migration based on phase‑shift 
plus interpolation

From Eq. (8) and (9), we see that, in order to implement 
the full 3D VTI wavefield extrapolation, both 4D FFT and 
4D IFFT need to be applied 7 times at each extrapolated 
depth. Because the extrapolation operator is a hybrid 
domain operator, seven 4D arrays are required to store the 
wavefield. Therefore, the computational cost and memory 
requirements are quite high, especially for real wide-azi-
muth seismic data.

A small-scale wide-azimuth salt dome model is used to 
analyze the computational complexity and memory require-
ments. Table 1 shows the parameters of the salt dome model, 
and the computational time cost and memory requirements 
are shown in Fig. 1. As we can see, in the salt dome case, 
the needed random-access memory (RAM) is less and 
affordable for the ISO DSR migration. However, the RAM 

(8d)

pΔ�
(
�, �, , zj+1,�

)
= IF

{
a�1_se

ikz0(zj)Δz

F
{
ei�ΔsΔziΔ�sΔzp

(
�, �, , zj,�

)}}

+ IF
{
a�1_ge

ikz0(zj)ΔzF
{
ei�ΔsΔziΔ�gΔzp

(
�, �, , zj,�

)}}
,

(9)

I(�, z) = I
(
t = 0, �m, �

= 0, z + Δz)

= ∫ d�∫ d�he
ikz(�,�m,�h)ΔzP

(
�m, �h, z,�

)
,

(9a)

P
(
�m, �h, z,�

)
=∫ d�me

−i��m ∫ d�he
−i��hp(�, �, z,�),



1025Acta Geophysica (2020) 68:1021–1037 

1 3

requirement for the VTI DSR migration is several times 
higher than the ISO DSR migration. The RAM requirement 
of the VTI DSR migration becomes extremely large, so that 
it is not feasible in practical application, even with the cur-
rent high-performance computers. In addition, compared 
with the ISO DSR migration, the VTI DSR migration has 
low computational efficiency.

In order to reduce the RAM requirements and improve 
the computational efficiency, we propose using phase-shift 
plus interpolation (PSPI) method (Gazdag and Sguazzero 
1984) to realize the VTI DSR migration. Using perturba-
tion theory, we know that, compared with the anisotropic 
parameter perturbation, the velocity perturbation will affect 
the imaging results more significantly. Therefore, the new 
VTI extrapolation operator is obtained by considering the 
influence of the slowness perturbation and neglecting the 

influence of the anisotropic parameter perturbation. Equa-
tion (5) becomes:

where the vertical background wavenumber kz0
(
z,��, ��

)
 is 

given by the DSR Eq. (6). The first-order expansion formula 
of the scattering operator kΔs

(
�, �, z,��, ��

)
 is obtained as 

follows.

where Δss and Δsg are the slowness perturbations for the 
source and receiver positions, respectively.

Then, we use the PSPI method to compensate the influ-
ence of the anisotropic parameter perturbations and achieve 
a more accurate migration result. The PSPI method can be 
implemented in frequency-wavenumber domain. The basic 
principle of the method is to extrapolate using two or more 
reference anisotropic parameters downward to obtain mul-
tiple reference wavefields. Then, according to the relation-
ship between actual migration parameters and the reference 
parameters, we obtain the final extrapolated wavefield with 
the aid of the appropriate interpolation method. The DSR 
extrapolated wavefield can be written in the following form.

where �s, �s and �r, �r are the anisotropic parameters for the 
source and receiver wavefields, respectively. However, the 
computational cost of the interpolation process will become 
relatively high when simultaneously taking the influence of 
� and � into consideration, according to the fact that the 
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(12)
p
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��, ��, zj+1,�

)
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(
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)
ei(ks(�s,�s)+kr(�r ,�r))dz,

Table 1  The parameters for the salt dome model

Parameters Values Parameters Values (m)

Inline range (750 to 12,750 m) Dmx 30
Crossline range (4710 to 8310 m) Dmy 30
Offset range of inline (− 3000 to 3000 m) Dhx 30
Offset range of 

crossline
(− 3000 to 3000 m) Dhy 30

(a)

(b)
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Comparison of the Memory Cost (Gb)

VTI DSR Migration PSPI VTI DSR Migration ISO DSR Migration
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Comparison of the Computational Time Cost 

VTI DSR Migration PSPI VTI DSR Migration ISO DSR Migration

Fig. 1  Comparison of a major random-access memory requirement 
and b computational time cost for the salt dome model
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parameter � is usually associated with the parameter � and 
the parameter � has a greater impact on imaging than the 
parameter � . Therefore, in the wavefield interpolation proce-
dure, we just consider the effect of the parameter � . Finally, 
the wavefield interpolation is implemented in the following 
manner.

Step 1: We calculate the phase shift by an ISO DSR prop-
agator to obtain the wavefield p1

z

(
��, ��, zj,�

)
;

Step 2: We use the average parameter of (�avg, �avg) to get 
the phase shift result of the wavefield p2

z

(
��, ��, zj,�

)
 with 

the proposed VTI DSR propagator, and obtain the wavefield 
p3
z

(
��, ��, zj,�

)
 using the parameter (�max, �max);

Step 3: Finally, we adopt the following formula for inter-
polation to get the final DSR wavefield.

These coefficient parameters a1
z
 , a2

z
 and a3

z
 can be obtained 

by the relationship.

In addition, Alkhalifah (1998, 2000a) and Alkhalifah 
et al. (2001) proposed a new parameterization representa-
tion in terms of just two parameters in anisotropic media.

where v is the velocity and � is the anisotropy coefficient. 
The approximation is far more accurate than the weak-ani-
sotropy (Thomsen 1986) or the small-angle approximation 
(Cohen 1997), while it can simplify the equations (Alkhali-
fah 1998).

Therefore, under this representation, the vertical back-
ground wavenumber kz0

(
z,��, ��

)
 and the perturbed wave-

number kΔs
(
�, �, z,��, ��

)
 become
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(15)�=
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where Δss and Δsg are the perturbed slowness for the source 
and receiver positions, respectively.

The DSR extrapolated wavefield with the PSPI method then 
has the following form.

where the wavefield p1
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 is obtained using the 
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p3
z

(
��, ��, zj,�

)
 are calculated with the parameters of �avg 

and �max,respectively.

Extraction of the ADCIGs during 3D DSR migration

The quality and computational efficiency of image gathers 
are the main objectives of the migration procedure. The 
ray-based migration methods, such as Kirchhoff and Beam 
migrations, can conveniently produce ADCIGs, at the cost 
of a decreasing imaging accuracy (Cai et al. 2013; Liu et al. 
2018). On the other hand, RTM can produce relatively accu-
rate ADCIGs, but the computational cost is much higher (Xu 
et al. 2011; Jin et al. 2014; Hu et al. 2015; Wu et al. 2019). 
However, the 3D-DSR equation can output ADCIGs which 
has a good balance between the imaging accuracy and the 
computational cost (Sava and Fomel 2005; Biondi 2007; 
Sava and Vlad 2011; Sava and Alkhalifah 2013).

In the midpoint-offset domain, we can obtain the imaging 
result by integrating the extrapolated wavefield along the 
dimensions � and kh in Eq. (9). If we don’t stack the offset 
information in the extrapolated procedure, the offset-domain 
common-image gathers (ODCIGs) can be extracted through 
the imaging condition as follows.

We generate and store the local-offset gathers using the 
ODCIGs imaging condition. The local-offset gathers can be 
transformed into the Fourier domain.

where → represents the mapping process.
Then the azimuth-opening ADCIGs can be extracted 

through radial trace construction.

The relationship between the angle and wavenumber is as 
follows (Sava and Fomel 2003).

where � is the reflection angle and � is the azimuthal angle 
shown in Fig. 2.

The final angle imaging result can be obtained by inverse 
Fourier transform.

(19)I
(
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)
.
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(
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)
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(
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)
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(21)I
(
�, �h, �z
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→ I

(
�, � ,�, �z

)
.

(22a)tan � = −sign
(
khx

) ||�h||
kz

,

(22b)tan � =
�hx

�hy
,

The above process is called post-migration angle gathers 
extraction implemented in the imaging space (Fomel 2004; 
Alkhalifah and Fomel 2011), which does not require a large 
storage space and extra computation. Therefore, the associ-
ated ADCIGs can be applied for subsequent velocity inver-
sion (Biondi and Symes 2004).

In addition, in full 3D DSR migration, when the wavefield 
is transformed into the frequency-wavenumber domain, we 
can also conveniently extract the offset ray parameter CIGs 
using the mapping formula (Sava and Fomel 2003).

where �h =
(
phx, phy

)
 is the offset wavevector. Then, the 

image gathers are extracted through radial trace transforms 
in the Fourier domain in the data space. The conversion to 
angle gathers is implemented at every extrapolation step 
and is less sensitive to inaccuracies in the location of sharp 
velocity boundaries.

An effective scheme for 3D angle‑domain DSR 
migration

In order to achieve best computational efficiency with the 
available computer cluster, the realization of 3D DSR migra-
tion and ADCIGs output must adapt to the hardware struc-
ture of computer cluster. Multiple nodes with large single-
node memory with a global disk and limited local disks, and 
multiple input/output (I/O) channels are the main character-
istics of the cluster. Considering the memory usage, seis-
mic data I/O, imaging results I/O and the migration imaging 
accuracy, we designed a parallel implementation scheme for 
3D DSR migration and ADCIGs outputs considering a large-
scale seismic data volume, which is shown in Fig. 3. The 
scheme mainly includes three parts as follows.

(1) Preprocessing of migration data.
The main purpose of this part is to convert the input data 

into the frequency domain to prepare them for DSR migra-
tion. Generally, the time dimension is the fastest dimension 
(innermost loop) of the input seismic data. However, the 
outermost loop in DSR migration imaging is the frequency 
dimension. Therefore, the input data must be reordered to 
adapt to the migration algorithm. In order to adapt to the 
inconsistent observation systems, which the order of data is 
inconsistent, the following strategy is implemented.

Firstly, we use the header index information to sort the 
data and store the coordinates of midpoint, offset and stor-
age location. Then, the required data are sorted by a two-
step method (see formula 25). Taking 3D CMP seismic data 
as an example, the input data are five-dimensional, and the 

(23)I
(
�, � ,�, �z

)
→ I(�, � ,�, z).

(24)�h =
�h

�
,
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directly transformed procedure is memory-consuming. How-
ever, this process can be easily implemented without con-
suming too much storage, if we adopt the two-step method 
to realize this process.

In the meanwhile, the transformed data are placed on 
the right order depending on the recorded information. 
Furthermore, we use the MPI and parallel I/O to improve 
efficiency. Moreover, in order to reduce the final storage 
space, we only store the position where the CMP point is 
illuminated by the source and receiver. The storage format 
now becomes as follows.

where the nfold_max is the maximum illuminated number. 
For example, in the wide-azimuth salt dome example, if the 
frequency range is 2–60 Hz and the time sampling is 4 ms, 
the origin storage size is nearly 7000 GB. However, the new 
storage procedure only requires 211.75 GB, because the 
other approach includes a lot of zero elements.

(2) DSR migration.
The main purpose of this part is to extrapolate the 

input data in the frequency domain with the anisotropic 
extrapolation operator and output the imaging result and 
the subsurface migration gathers. The loop process of 
DSR migration is shown in Fig. 3b. Firstly, we determine 

(25)
(t, hx, hy,mx,my) → (hx, hy,�,mx,my) → (hx, hy,mx,my,�)

(26)(hx, hy,mx,my,�) ⇒ (nfold_max,mx,my,�)

the output crossline range based on the size of computer 
memory and apply the MPI master–slave parallel loop for 
all frequencies and crossline range. The DSR extrapolation 
operator requires Fourier transform from the midpoint-
offset domain to wavenumber domain. The sampling in 
the wavenumber domain is often irregular and under-
sampled. Binning and regularization are implemented 
using the migration operator and taking into account the 
image grid spacing to alleviate the aliasing in the wave-
number domain. The OpenMP parallelism is used in the 

Fig. 3  Flowcharts for the 3D angle-domain DSR migration, a pre-
processing of the migration data, b DSR migration, c imaging gathers 
output

Fig. 2  Schematic representation of the azimuth angle � and opening 
angle � at the common imaging point O by source and receiver ray-
parameter vectors ( PS and Pr)
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extrapolation step, and the 4D Fourier transform between 
the space and wavenumber domains is implemented by the 
multi-threaded FFTW (Frigo and Steven 2005) to improve 
the computational efficiency. In order to avoid the direct 
output of 5D image gathers and reduce the required mem-
ory, we store the image gathers in the local disk of the 
current node during each extrapolation step. The output 
image from a single node is stored on the current local disk 
after the depth extrapolation. Finally, all images and image 
gathers are superimposed on the global disk.

(3) The image gathers output.
Converting the subsurface migration gathers into azi-

muth-opening ADCIGs is easy to implement and thus allow 
for an ease in the implementation of the parallel strategy 
shown in Fig. 3c. The interpolation and regularization are 
used to improve the quality of angle gathers. Compared with 
the DSR migration step, the computational time cost and 
memory requirements in the mapping process are negligible.

Numerical examples

In this section, we illustrate the effectiveness of the proposed 
VTI DSR migration method on both synthetic and field data 
examples.

In the first example, we use the wide-azimuth SEG–EAGE 
salt dome model to demonstrate the validity of the proposed 

3D VTI DSR migration. The size of the velocity model and 
the anisotropic parameters are 13.5 km and 13.5 km in X 
and Y directions with a 30-m grid interval and 5 km in the 
Z direction with a 20-m grid interval. The parameters of 
the acquisition system are as follows: The inline range of 
shots is 750–12,750 m, and the crossline range of shots is 
4710–8310 m. The interval of between shots is 120 m in the X 
direction and 360 m in the Y direction. In every shot gathers, 
the offset range of geophone is − 3000 to 3000 m with a 30 m 
grid interval in both directions. The synthetic data are gener-
ated with a finite-difference forward modeling method. The 
source function is a Ricker wavelet, with a dominant frequency 
of 20 Hz, and the time of the shot gathers extends to 8 s with a 
4-ms sampling interval. The frequency range used in migration 
process is 2–60 Hz. Figure 4a is an inline section of the veloc-
ity model, and Fig. 4b–c shows the Thomsen’s anisotropic 
parameters ( � and � ) along the same inline where � ranges 
between 0 and 0.233, and � spans the range 0-0.116. The � and 
� values are large on both sides of the salt dome; meanwhile, 
inside salt dome the � and � values are small. Ignoring the 

Fig. 3  (continued)

Fig. 3  (continued)
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anisotropic effects, the imaging result with an ISO extrapola-
tion operator is shown in Fig. 5a. Figure 5b shows the migrated 
result with the proposed VTI wavefield extrapolation operator. 
As we can see, because the influence of anisotropic parameters 
is neglected, the result of the isotropic migration is generally 
poor. However, the VTI imaging result is better focused and 
clearer than the ISO result.

Moreover, the difference can be better analyzed and more 
obvious in the image gathers. In this example, we extract the 
offset ray parameter CIGs to illustrate the effectiveness of 
the proposed VTI DSR migration. Figure 6a, b shows the 

common-image gathers by the ISO migration and the pro-
posed VTI migration, respectively. Because we adopt the cor-
rect migration velocity model and anisotropic parameters in 
the migration process, the image gathers should be even for 
the reflection events. However, in the ISO imaging result, the 
reflection events are uneven and there is some curvature such 
as the red circles on the left side of salt dome. Compensating 
for the influence of anisotropic parameters in the proposed 
VTI image gathers produces reflection events that are flat 
and have better focused. The gathers can provide more useful 
input information for velocity tomography, which picks up the 
curvature of residual moveout for model updates.

In addition, we compare the computational time and 
memory costs of the ISO and VTI migration methods 
shown in Fig. 1. It is obvious that in the conventional 3D 
VTI migration, the major memory requirement is very large. 
Even for the current computer cluster, the conventional 3D 
VTI migration is almost impossible to perform. However, 
the memory requirement of the proposed PSPI VTI migra-
tion method is much lower than the conventional 3D VTI 
migration and it is almost twice as much as the ISO migra-
tion. Compared with the computational efficiency shown in 
Fig. 1, the proposed PSPI VTI migration method is more 
efficient than the conventional 3D VTI migration.

The second example illustrates the application of the pro-
posed 3D VTI DSR migration to a marine wide-azimuth 
seismic dataset from the South China Sea. The field data 
contain 1300 lines with a 12.5-m line interval and 901 CDPs 
in each line with a 12.5-m CDP interval. The time extends 
to 8.192 s with a 4-ms sampling interval. The offset range of 
hydrophone is − 6272 to 6256 m in the inline (CDP) direc-
tion and − 1634 to 3070 m in the crossline direction. The 
frequency range used in the migration process is 2-60 Hz.

The inline section at line 4500 of the velocity model and 
Thomsen’s anisotropic parameters ( � and � ) is shown in 
Fig. 7. The model contains mainly anisotropic (VTI) sedi-
mentary layers. In the sedimentary layers, � values range 
from 0 to 0.27 and � values range from 0 to 0.13. There is 
no significant lateral variation in the horizontal layers of the 
anisotropic values. Figure 8a, b is the corresponding inline 
migrated profile of the ISO and proposed VTI migrations, 
respectively. Comparing the ISO and VTI results, the reflec-
tor is corrected by the VTI migration and the seismic event 
is more continuous and focuses better than the ISO migra-
tion. The imaging resolution and signal-to-noise ratio are 
dramatically enhanced after the VTI migration. This illus-
trates the validity of the proposed method.

Figure 9 shows three different locations azimuth-opening 
ADCIGs by the proposed VTI migration, which contain four 
azimuths with 90° increments and the reflection angle is 
from 0° to 60° with 2° increment. As we can see, the dis-
tribution of angle gathers in different azimuths is different, 
which reflects the illumination information with azimuthal 

Fig. 4  Inline profile of the SEG–EAGE Salt dome model for a 
migrated velocity model and b Thomsen’s anisotropic parameters ( � ), 
and c Thomsen’s anisotropic parameters ( �)
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change. Therefore, according to the characteristics of the 
image gathers, the corresponding illumination information 
in different directions can be extracted. In addition, we can 
see that the ADCIGs are well formed and have high reso-
lution. The subsurface angle-dependent reflectivity can be 
extracted easily. Moreover, these azimuth-opening ADCIGs 
can be superimposed by optimizing the angle and azimuth to 
improve the final image quality. Figure 10 shows the angle 
gathers stacked over all azimuth angle.

The process of preprocessing the migrated data and the 
image gathers output require very little computation time. 
Because the MPI and parallel I/O are adopted, the preproc-
essing of almost 2 Tb data can be completed in about 2 h. 
Meanwhile, the image gathers calculations can be completed 
in half an hour. The DSR migration process is time-con-
suming, and the computational time is related to computing 
nodes. In our example, we use 30 nodes and each node has 2 
processes. (The computer configuration consists of Intel(R) 

Xeon(R) CPU E5-2680 v2 @ 2.80 GHz, 40 threads, GeForce 
GTX 780 Ti in one nodes. In the depth extrapolation, the 
multi-threaded FFTW with 4 threads and the OPENMP with 
8 threads are used in one process.) There are 477 frequency 
slices, which take 56 h altogether. If we use the same calcu-
lation nodes for the frequency slices, it only takes about 8 h 
to realize the pre-stack depth migration processing.

In the migration process, the RAM and the hard disk 
storage are concerning issues. The DSR preprocessing part 
does not consume RAM at all. Because of the new storage 
approach, the space of the hard disk is largely reduced. In this 
processing, the size of the prepared data is only 249G. In the 
migration imaging process, the total RAM is about 3–4 times 
of the single-frequency data in the current calculated range. 
Because the image gathers are necessary outputs, the size of 
the required hard disk depends mainly on the offset range of 
output. In the post-processing of migration, the RAM is almost 
not consumed. The output size of the hard disk is related to 

Fig. 5  Inline profile of the 
migration results generated 
using a ISO DSR extrapolation 
operator, and b proposed VTI 
DSR extrapolation operator
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the number of azimuths. It can be determined according to the 
actual situation. In our example, only four azimuths are output.

Discussion

Conventional 3D DSR migration based on narrow azimuth 
is no longer enough for the current wide-azimuth seismic 
data. It results in non-negligible errors in the crossline direc-
tion. Therefore, the full 3D DSR migration must be consid-
ered. In order to accurately describe the wave propagation 
in anisotropic media, the DSR extrapolation operator must 
be implemented using Eq. (8). However, the computational 
cost of the full 3D DSR migration is very expensive and not 
applicable to large-scale seismic data, so it is necessary to 
approximate the anisotropic operator. The proposed phase-
shift plus interpolation method is a simple approximation 
method. Its main purpose is to improve the computational 
efficiency and reduce the memory requirements. If we want 

to further improve the image quality, a more precise approxi-
mation method needs to be considered. For example, the 
split domain method (Stoffa et al. 1990) is even more effi-
cient and possibly accurate.

With the different approximations in anisotropic media, 
we can construct various implementations. For the weak-
anisotropy approximation (Thomsen 1986), the interpola-
tion method needs to consider two parameters � and � at the 
same time. For the purpose of improving the computational 
efficiency, the interpolated coefficient just depends on the 
parameter � . For Alkhalifah’s parameterization (Alkhalifah 
1998, 2000a), only one parameter � needs to be considered 
in the interpolation process. In this case, the interpolation 
is more accurate than the weak-anisotropy approximation.

The proposed angle-domain DSR migration scheme 
is suitable for any type of seismic data and can be easily 
matched with the current observation system. The advantage 
of this strategy is that there is no need to sort the seismic 
data and generate new data, which could occupy a large 

Fig. 6  Inline profile of the com-
mon-image gathers generated 
using a ISO DSR extrapolation 
operator, b proposed VTI DSR 
extrapolation operator
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number of hard disks. For a specific computer workstation, 
only the storage usage of the local and global disks needs to 
be adjusted. Therefore, the proposed scheme can be conveni-
ently used in real seismic data. In addition, the current 3D 
angle-domain DSR migration framework is suitable for both 
isotropic and heterogeneous media. Only the extrapolation 
operator needs to be modified. The different interpolation 
methods can be integrated in this framework.

For the azimuth-opening ADCIGs, the number of output 
azimuth and reflection angles is related to the input observa-
tion system and the actual application. The smaller the num-
ber, the smaller the memory and storage needed, but the less 
information available; if the number is large, the pressure of 
the computer’s memory will be prominent. When generat-
ing the subsurface migration gathers in the DSR migration 
step, and converting the subsurface migration gathers into 
azimuth-opening ADCIGs in the image gathers output step, 
proper regularization and other processing techniques can 
significantly improve the quality of image gathers.

Fig. 7  Inline profile of marine wide-azimuth seismic dataset from the 
South China Sea, for a migrated velocity model and b Thomsen’s ani-
sotropic parameters ( � ), and c Thomsen’s anisotropic parameters ( �)

Fig. 8  Inline profile of the migration results generated using a ISO 
DSR extrapolation operator, and b proposed VTI DSR extrapolation 
operator
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RTM has some advantages over downward-continuation 
migration. It can image complex geology and is not sub-
ject to dip angle limits and is the most accurate imaging 
method for complex areas. RTM can produce high quality 
angle gathers. However, the computational cost of extracting 
the azimuth-opening angle gathers in RTM with the current 
high-performance computers is still unaffordable for large-
scale seismic data. Compared with RTM, in which the com-
putational cost increases linearly with the number of shots, 
the proposed DSR migration in midpoint-offset domain, 
which combine all data into one wave-extrapolation proce-
dure, is computational efficient for large number shots. In 
addition, the DSR migration explicitly produces subsurface 
offset as part of the wavefield extrapolation, which is con-
venient in extracting azimuth-opening angle gathers directly. 
The memory requirement for RTM-ADCIGs is related to the 

Fig. 9  Azimuth-opening ADCIGs generated by the proposed VTI DSR migra-
tion. The ADCIGs is selected at five CDP positions (a 5350; b 5550; c 5750; 
d 5950; e 6150) and in every ADCIGs, there are four azimuths with 90° incre-
ment, and the opening angle range is 0°–60° with a 1° interval

Fig. 9  (continued)
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source–receiver aperture, while the memory requirements 
of DSR are proportional to the offset. Thus, the memory 
requirement for DSR is larger than that for RTM. Therefore, 
large memory capacity in the computing node is required for 
DSR migration.

Moreover, the proposed angle-domain DSR migration 
can be conveniently applied on the tomographic inversion. 
In the tomographic inversion, the key factor is whether the 
azimuth-opening angle gathers can be generated quickly and 
accurately in the migration process and can be conveniently 
integrated in migration velocity analysis (MVA). Because 
migration velocity analysis requires multiple iterations, 
the migration algorithm also needs to be calculated many 
times. Therefore, the computational efficiency of the migra-
tion algorithm determines whether the MVA can be used in 
practical applications. With the aid of the high computa-
tional efficiency of the proposed method, it is possible for 
the corresponding MVA to be fast and efficient in practical 
applications.

The DSR migration is implemented in the frequency 
domain. The proposed angle-domain DSR migration 
method can be easily extended to viscoelastic medium, just 
by changing the frequency to a complex one. As a result, we 
can apply various attenuation models to realize the ampli-
tude attenuation and phase dispersion and correct for them.

Conclusions

We propose a full 3D DSR operator for VTI media, which 
can simultaneously downward extrapolate the whole data-
set, efficiently. To realize the wavefield extrapolation, we 
use the phase-shift plus interpolation method to improve 
the computational efficiency. Moreover, we show that the 
3D azimuth-opening ADCIGs can be generated conveni-
ently in a post-migration scheme, making it possible to 

update the velocity and anisotropic parameters through 
tomographic inversion.

Numerical examples on the salt dome model and real 
data show that the proposed angle-domain 3D DSR migra-
tion can produce high-quality imaging results and output 
azimuth-opening angle gathers, efficiently. Compared 
with RTM, the proposed 3D DSR migration method needs 
large computer memory. The memory requirement is still 
affordable for modern computer clusters. In addition, the 
fast ADCIGs outputting scheme are very attractive for 3D 
model building, which will be published in a companion 
paper.
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Abstract
The presence of seismic absorption distorts seismic record and reduces seismogram resolution, which can be partially 
compensated by application of absorption compensation algorithms. Conventional absorption compensation techniques are 
based on 1D forward model with each seismic trace being compensated independently. Therefore, the 2D results combined 
by each compensation trace may be noisy and discontinuity. To eliminate this issue, we extend the 1D forward model to the 
2D forward system and further add an additional lateral constraint to the compensation algorithm for enforcing the lateral 
continuity of the compensated section. Solving the proposed laterally constrained absorption compensation (LCAC) problem, 
we simultaneously obtain the multiple compensated traces with lateral smoother transition and higher signal-to-noise ratio 
(S/N). We testify the effectiveness of the proposed method by applying both synthetic and field data. Synthetic data examples 
demonstrate the superior performance of the LCAC algorithm in terms of improving algorithmic stability and protecting 
lateral continuity. The field data tests further indicate its ability to not only improve seismic resolution, but also inhibit the 
amplification of high-frequency noise.

Keywords Absorption compensation · Lateral constraint · Seismic resolution · Lateral continuity

Introduction

Seismic wave propagating through the Earth undergoes 
seismic absorption due to the anelasticity of the subsurface 
medium, resulting in the reduction in vertical resolution 
and the stretching of seismic wavelets (Kolsky 1956; Fut-
terman 1962; Kjartansson 1979). The quality factor Q is 
commonly used to quantitatively characterize these absorp-
tion effects (Li et al. 2016), and it is also a basic parameter 
in the absorption compensation processing (Wang 2002; 
Zhang and Ulrych 2007). So far, various absorption com-
pensation schemes, including nonstationary deconvolu-
tion (Margrave et al. 2011; Van der Baan 2012; Oliveira 

and Lupinacci 2013; Yuan et al. 2017), inverse Q filtering 
(Robinson 1979; Bickel and Natarajan 1985; Hargreaves and 
Calvert 1991; Wang 2006; Li et al. 2015; Wang et al. 2018b), 
and Q-compensated migration (Mittet et al. 1995; Dutta and 
Schuster 2014; Zhao et al. 2018; Wang et al. 2018c, 2019), 
have been developed to compensate for the absorption of 
seismic energy and to enhance the resolution of seismic data.

Inverse Q filtering, also known as absorption compensa-
tion, has been addressed by many researchers (Zhang and 
Ulrych 2007; Braga and Moraes 2013; Chai et al. 2014). The 
core problem of inverse Q filtering is the inherent instability 
of the amplitude compensation, which includes an expo-
nential amplification term in the compensation operator 
(Zhang and Ulrych 2007). In recent years, many attempts 
have been explored to suppress the high-frequency noise 
amplification and further to obtain a stable compensation 
solution (Wang 2002; Zhang and Ulrych 2007; Braga and 
Moraes 2013; Chai et al. 2014; Yuan et al. 2016). To our 
knowledge, the stabilized strategies can be classified into 
two categories. The first category focuses on modifying 
the compensation operator to achieve a stable result. For 
example, Robinson (1979) proposes a phase-only inverse Q 
filtering, which neglects the amplitude exponential ampli-
fication term, to correct the phase distortion in the seismic 
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data. Wang (2002) presents a gain-limited inverse Q filter-
ing, which implements amplitude compensation only within 
the limited frequency band, to avoid amplifying of high-
frequency noise. He further develops the stabilized inverse Q 
filtering by adding a regularization factor into the amplitude 
compensation operator to improve the stability of absorption 
compensation. The second category formulates the absorp-
tion compensation as an inverse problem by minimizing the 
misfit between observed data and modeled data (Chai et al. 
2014; Wang et al. 2018b). In the objective function, they 
only exploit the forward (exponential decay) operator and 
do not require the inverse exponential amplification opera-
tor, which means the instability due to exponential ampli-
tude amplification is avoided by using inverse scheme. 
However, as discussed by Wang (2011), the compensation 
result by using inverse scheme is about solving the first kind 
Fredholm integral equation; thus, its numerical solution is 
unstable. For obtaining a stable solution, we need to incor-
porate some prior information or constraints in the inver-
sion framework. For example, Zhang and Ulrych (2007) 
use the Cauchy–Gauss prior model to regularize the inverse 
problem by means of Bayes’ theorem. Braga and Moraes 
(2013) apply the L2 norm constraint to accomplish inverse 
Q filtering in the wavelet domain. Wang et al. (2018b) pre-
sent a L1−2-regularized absorption compensation algorithm 
for stable seismic compensation. Nevertheless, the above 
absorption compensation methods are based on 1D forward 
model and apply trace-by-trace compensation strategy; thus, 
the compensated 2D section combined by each 1D result 
may be noisy and shows a poor lateral continuity (Auken and 
Christiansen 2004; Auken et al. 2005; Hamid and Pidlisecky 
2015; Wang et al. 2018a; Ma et al. 2019; Ji et al. 2019; Yuan 
et al. 2019; Ma et al. 2020).

To reduce the lateral discontinuity problems in the trace-
by-trace inversion algorithm, Auken and Christiansen (2004) 
originally develop a laterally constrained inversion algorithm 
for resistivity data processing. Afterward, Schmalz and Tez-
kan (2007) use this algorithm for transit electromagnetic 
inversion. Hamid and Pidlisecky (2015) further introduce it 
to seismic exploration and develop a lateral constraint algo-
rithm for seismic impedance inversion. In addition, Zhang 
et al. (2013) modify the lateral constraint to the ‘Z’ shape 
constraint for multi-trace seismic reflectivity inversion. In 
this paper, we incorporate the lateral constraint between 
adjacent seismic traces into the absorption compensation 
processing and furthermore present a laterally constrained 
absorption compensation (LCAC) algorithm to enforce the 
lateral continuity of the compensated section. Synthetic and 
field data examples indicate that the proposed LCAC method 
improves seismic resolution and lateral continuity.

The structure of this paper is as follows: Firstly, we 
briefly review the conventional 1D absorption compensa-
tion algorithm. Then, we extend the 1D algorithm to the 

2D algorithm and incorporate a lateral constraint term into 
inversion system for developing a novel LCAC algorithm. 
Next, we use synthetic and field data experiments to verify 
the superiority of the proposed LCAC method in terms of 
improving algorithmic stability and protecting lateral conti-
nuity. Finally, we draw some conclusions.

Theory and method

Laterally unconstrained absorption compensation

In the elastic medium, the post-stack seismic record can be 
modeled by the convolution of a source wavelet with the 
reflectivity sequences (Yilmaz 2001),

where the notation ⊗ represents the convolutional operator, t 
and � are the record time, s0(t) is the non-attenuated seismic 
trace, w(t) is the source wavelet, and r(�) is the reflectivity 
series.

When considering seismic wave propagation in absorp-
tion medium, Eq. 1 can be modified as the nonstationary 
convolution model (Margrave 1998):

where s(t) is the attenuated seismic trace and ŵ(t, 𝜏) is the 
time-varying wavelet due to Q filtering effects which can be 
expressed as,

where � is angular frequency, i denotes the imaginary unit, 
W(�) is the frequency spectrum of the source wavelet w(t), 
and A(�, �) is the Q-filtering function determined by the 
selected absorption model. In this paper, we use the modified 
Kolsky–Futterman model (Wang and Guo 2004) to describe 
seismic wave propagation in absorption media. Then, the 
Q-filtering function A(�, �) is expressed as:

where �r represents the reference angular frequency, � =
1

�Q
 

is a dimensionless factor, and Q is the quality factor.
According to Eqs. (1)–(4), we can derive the relationship 

between the attenuated signal s(t) and the non-attenuated 
signal s0(t) which is written by (see Appendix and Braga 
and Moraes 2013):

(1)s0(t) = w(t)⊗ r(𝜏),

(2)s(t) = ŵ(t, 𝜏)⊗ r(𝜏),

(3)ŵ(t, 𝜏) = ∫
∞

0

W(𝜔)A(𝜔, 𝜏)ei𝜔td𝜔,

(4)A(�, �) = exp

[
−i��

||||
�r

�

||||
−�(

1 −
i

2Q

)]
,

(5)s(t) = a(t, 𝜏)⊗ s0(t),
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where a(t, �) = ∫ ∞

0
A(�, �)ei�td� is the time domain Q-fil-

tering function.
Equation 5 is the basis of 1D absorption compensation, 

and it can be interpreted that the attenuated seismogram is 
obtained by the convolution of the attenuation function with 
the non-attenuated signal. The matrix-vector form of Eq. 5 
is,

where � and �0 are, respectively, the vectors of the attenuated 
and non-attenuated seismic signals and the matrix 

� =

⎡
⎢⎢⎢⎣

a(t1, �1) a(t1, �2) ⋯ a(t1, �N)

a(t2, �1) a(t2, �2) ⋯ a(t2, �N)

⋮ ⋮ ⋱ ⋮

a(tN , �1) a(tN , �2) ⋯ a(tN , �N)

⎤
⎥⎥⎥⎦
 stands for the Q fil-

tering effects.
According to Braga and Moraes (2013), the numerical 

solution �0 of Eq. 6 is unstable and we should apply some 
regularization terms to stabilize the compensation (non-
attenuated) result. By using the L2 norm regularization, the 
following objective functional is established which can be 
represented by,

where ‖∙‖2 represents L2 norm and � is the regularization 
parameter.

Equation 7 is a standard least-squares problem, and its 
solution can be expressed as (Braga and Moraes 2013):

where � = �T� + �� , � = �T� and the superscript T 
denotes the transpose. Using Eq.  8,  Braga and Moraes 
(2013) compensate a 2D seismic section trace-by-trace and 
then combine all 1D results to form a 2D compensation 
section. In this algorithm, he only regularize the inverted 
solution in the vertical (or time) direction but with the lat-
eral direction unconstrained, so we refer it to as laterally 
unconstrained absorption compensation (LUAC) algorithm.

In the LUAC algorithm, the regularization parameter 
� has some influences on the compensation result. The 
parameter � should be small when the S/N of seismic data 
is high and � should be relatively larger when the S/N of 
seismic data is lower. For determining a suitable � , we can 
use L-curve technique (Hansen and O’Leary 1993), which 
applies a cross-plot of the data error versus the solution 
length as a function of � . A good value for the parameter is 
the one located at the corner of the L-curve.

Laterally constrained absorption compensation

The LUAC algorithm neglects the lateral constraint in its 
objective functional (Eq. 7); thus, the compensated profile 

(6)� = ��0,

(7)J(�0) =
‖‖��0 − �‖‖2 + �‖‖�0‖‖2,

(8)�0 = �−1�,

may be discontinuous in the lateral direction when the atten-
uated signals are contaminated by random noise. Therefore, 
in this section, we focus on incorporating a lateral constraint 
term into the inversion objective functional and further 
developing a LCAC algorithm.

For taking the lateral continuity information into consid-
eration, we should extend the 1D forward model (Eq. 6) to 
multichannel forward system (Ma et al. 2020):

where � = [�1, �2,… , �M]
T and �0 = [�01, �02,… , �0M]

T are, 
respectively, the concatenated attenuated data vector and 

non-attenuated data vector, and � =

⎡
⎢⎢⎢⎣

�1 � � �

� �2 � �

� � ⋱ �

� � � �M

⎤
⎥⎥⎥⎦
 is a 

block diagonal matrix representing the multichannel Q filter-
ing effects.

Based on multichannel forward model (Eq. 9), we take 
the lateral constraint into consideration and set up a laterally 
constrained objective functional:

where � is the lateral regularization parameter, which con-
trols the relative strength of the lateral constraint term to the 
d a t a  m i s f i t  t e r m ,  a n d 

�x =

⎡
⎢⎢⎢⎣

−1 0 ⋯ 0 1 0 ⋯ 0 0 0

0 − 1 0 ⋯ 0 1 0 ⋯ 0 0

⋮ ⋯ ⋯ ⋯ ⋮

0 0 0 ⋯ 0 − 1 0 ⋯ 0 1

⎤⎥⎥⎥⎦
 is the horizon-

tal first-order derivative matrix.
The least-squares solution of this problem is:

where �̃ = �T� + �� + ��T
x
�x and �̃ = �T� . Compared 

with the LUAC method, the proposed LCAC algorithm com-
pensates all seismic traces simultaneously and protects the 
lateral continuity of the inverted results. The overall perfor-
mance of the LCAC approach is verified by using synthetic 
and field data examples in the next section.

For the proposed LCAC method, there are two regulariza-
tion parameters, � and � , to select and these two parameters 
regularize the strength of vertical and lateral constraints, 
respectively. Until now, the optimization for hyperparam-
eters functional remains a complex problem (Clapp et al. 
2004). In this paper, we select them by trial and error, but we 
apply a relatively elegant strategy. Firstly, we set the lateral 
regularization parameter � = 0 and use L-curve technique to 
choose a proper parameter � . Secondly, we fix the parameter 
� calculated in the first step and then optimize � by trial and 
error. For synthetic data test, we can evaluate the compen-
sated results by comparing them with referenced data based 

(9)� = ��0,

(10)J(�0) =
‖‖��0 − �‖‖2 + �‖‖�0‖‖2 + �‖‖�x�0

‖‖2,

(11)�0 = �̃−1̃�,
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on similarity or cross-correlation criterion. For field data 
application, we can judge the compensation results from two 
aspects, that is, seismic resolution and S/N. A good result has 
not only improved seismic resolution but also higher S/N.

Examples

Synthetic data example

In the section, we exploit the partial Marmousi model to 
demonstrate the effectiveness and superiority of the pro-
posed LCAC algorithm. Figure 1a shows the velocity model. 
We assume the density is constant, and then, we obtain the 
reflectivity model displayed in Fig. 1b. Figure 1c displays 
the stationary seismic data generated by convolving a 40 Hz 
Ricker wavelet with the above reflectivity model. The non-
attenuated data are served as the reference data to evaluate 
the compensation performance of both LUAC and LCAC 
approaches. Figure 2d depicts the attenuated seismogram 
with the quality factor Q = 50 and contaminated by 20% 
Gaussian noise. Due to the Q filtering effects, the energy 
of deep reflection events is attenuated and the resolution of 
recorded seismic data is decreased.

We use both LUAC and LCAC algorithms to process the 
attenuated seismic data for recovering the seismic events 
and improving the seismic resolution. In both methods, we 
apply the true Q value as input. In LUAC method, we choose 
the parameter � = 0.008 and display the inverted section in 
Fig. 2a. As we can see, the LUAC compensated section 
partially recovers the seismic reflections and enhances the 
vertical resolution of seismic data, but the lateral continuity 
of compensated data is poor and the S/N is low. Moreo-
ver, we calculate the correlation coefficient (CC) between 
the LUAC result and the reference data (Fig. 1c) and the 
value is 0.7566. In the proposed LCAC algorithm, we fix 
� = 0.008 and determine the lateral regularization parameter 
as � = 0.5 . The corresponding compensation data are shown 
in Fig. 2b. We observe that the LCAC algorithm generates a 
result with better lateral continuity (see red arrows) and with 
relatively higher S/N than LUAC result. The CC between it 
and reference data reaches to 0.8902.

For a clear comparison, seismic traces extracted from 
the attenuated data (Fig. 1d) and the compensated results 
(Fig. 2) at CDP=101 are shown in Fig. 3a and their corre-
sponding spectra are displayed in Fig. 3b. From the extracted 
traces, we see that the overall compensation performance of 
both algorithms is similar except for the seismic noise ampli-
fication in some places (see red arrow). The comparison of 
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Fig. 1  Forward modeling for generating stationary and nonstationary data. a The velocity model, b the reflectivity model, c the synthetic station-
ary seismic data without seismic noise, and d the synthetic nonstationary (attenuated) data with 20% Gaussian noise
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their spectra further confirms that the proposed method can 
not only recover seismic events but also suppress the high-
frequency noise amplification.

We also use the attenuated data shown in Fig. 1d to study 
the influence of the lateral regularization parameter � on the 
compensation results. We fix the parameters � = 0.005 , and, 
respectively, select � as 5, 0.5, and 0.01. The corresponding 
compensated data are displayed in Fig. 4a–c, respectively. 
When � is too large, the compensated data appear to be 
over-smoothed and the faults are blurry (see arrows). When 
� is too small (Fig. 4c), the amplification of seismic noise 
is evident. When � is moderate (Fig. 4b), the compensated 
results achieve a good balance between the noise suppres-
sion and the lateral continuity enhancement. Figure 5 shows 
the attenuated seismic traces, the reference traces, and the 
LCAC compensated traces at CDP=100. It is confirmed that 

the large lateral regularization parameter � leads to the result 
(Fig. 5a) with stronger noise suppression (see green arrows) 
and with relatively weaker signal recovery (see blue arrows). 
Therefore, we should be careful about enforcing the lateral 
continuity too strong because sometimes the spatial discon-
tinuity could be a response of the real geological structure, 
such as faults or pinch-out.

Noticing that the quality factor Q is difficult to estimate, 
and it is important to examine the effects of using inaccurate 
Q values in the proposed LCAC algorithm. The attenuated 
data shown in Fig. 1d are exploited again to conduct the 
experiments. In the tests, the true Q value is QTrue = 50 . The 
relative error of Q factor is defined as:

Moreover, we use the CC of the compensated data and 
the reference data (Fig. 1c) to evaluate the compensation 
performance.

Table 1 shows the correlation coefficients by using 
several different Q values. Since the input data (Fig. 1d) 
contain random noise, the LCAC results cannot be very 
close to the reference data (Fig. 1c) even if the Q value 
is accurate. Specifically, when using an accurate Q value 
Q = 50 , the CC is 0.8902 (shown in row 3 of Table 1) and 
it is treated as a reference value for our comparison below. 
As expected, when using the inaccurate Q values, the cor-
relation coefficients of the LCAC results are decreased, 
which means the precision of the compensation results 
is reduced by using inaccurate Q values. In the case of 
a slightly inaccurate Q (e.g., Q = 45 or 55), the correla-
tion coefficients (e.g., CC = 0.8536 or 0.8783) are close 
to the reference value CC = 0.8902 . This means a slightly 
inaccurate Q value produces only minor perturbations 
in the LCAC results. In the case of a moderately inac-
curate Q (e.g., Q = 40 or 60), although the corresponding 

(12)er =
Q − Qtrue

Qtrue

× 100%.
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Fig. 2  Absorption compensation results. a The LUAC compensation data with the regularization parameter � = 0.008 , b the LCAC compensa-
tion result with the vertical regularization parameter � = 0.008 , and the lateral regularization parameter � = 0.5
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correlation coefficients (e.g., CC = 0.8142 or 0.8586) are 
decreased compared with those using slightly inaccurate 
Q values, these compensation results are still acceptable. 
Furthermore, as shown in Table 1, overestimation of Q 

(the positive Q error) may have less influence on the com-
pensation results than that underestimation of Q (the nega-
tive Q error). A too small Q value will overcompensate 
for seismic absorption, while a large Q value will lead 
to undercompensation. In the absorption compensation, 
we prefer undercompensating for seismic absorption to 
overcompensating so as to suppressing the high-frequency 
noise amplification. In the tests, the relative error of Q 
ranges from −20% to 100% , but the CC of the LCAC results 
shows relatively small fluctuation, which indicates that rel-
atively imprecise Q estimates can still produce acceptable 
compensation results.
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Fig. 4  Investigation of the influence of the lateral regularization parameter � on the compensation results. We fix the vertical regularization 
parameter � = 0.005 and, respectively, select � as a 5, b 0.5, and c 0.01
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Table 1  Correlation coefficients 
by using different Q values

No. Q
true

Q er CC

1 50 40 − 20% 0.8142
2 50 45 − 10% 0.8536
3 50 50 0% 0.8902
4 50 55 10% 0.8783
5 50 60 20% 0.8586
6 50 100 100% 0.8077
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Field data tests

For further verifying the practicability of the LCAC algo-
rithm, we apply both the LUAC and LCAC algorithms to 
field data as shown in Fig. 6a. This field data are acquired 
in East China and free of absorption compensation pro-
cessing. The energy of deep reflections is weak, and the 
resolution of the raw seismic data is poor. We use both 
LUAC and LCAC methods to compensate for the raw data. 

Before implementing absorption compensation, we esti-
mate Q value via the attenuation-based Q analysis (Ma 
et al. 2017). Figure 6b, c display the compensation sec-
tions by using LUAC and LCAC methods respectively. 
Compared with the raw data, two compensated results 
partially recover the seismic data absorption and enhance 
the seismic resolution. The further comparison of LUAC 
and LCAC compensation sections indicates that the 
LCAC algorithm provides a result with higher S/N and 
smoother spatial continuity without losing evident verti-
cal resolution.

For viewing more detailed compensation features, we 
display the black and green boxes portion of Fig. 6 in a 
zoomed view (Figs. 7, 8). From these figures, we find that 
the proposed LUAC compensation results inhibit the high-
frequency noise amplification and exhibit an improved 
lateral continuity compared with the LUAC result, which 
demonstrates that the proposed method is more robust 
to random noise. Figure 9 shows the amplitude spectra 
of the raw data, the LUAC compensation result, and the 
LCAC compensation result. We observe that the amplitude 
spectra of compensated data are broadened and the mid-
high frequency components are boosted after absorption 
compensation processing, but the LUAC algorithm has 
boosted more seismic energy owing to the amplification 
of seismic noise.
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Fig. 6  Seismic attenuation compensation for field data. a The field 
data, b the compensation result from LUAC method, and c the com-
pensation result from LCAC approach
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Discussion

In recent years, many multichannel approaches have been 
developed to deal with the nonstationary seismic data, such 
as nonstationary multichannel reflectivity inversion or non-
stationary multichannel deconvolution (Haghshenas Lari and 
Gholami 2019). The objective function of these methods can 
be written in the following formula,

(13)J(�) = ‖�� − �‖2 + �V(�) + �H(�),

where � is the desired result, � is the input data, � is the 
operator linking � to � , and V(�) and H(�) are, respectively, 
the vertical (time) and horizontal constraints.

Compared with the multichannel deconvolution meth-
ods, there are certain differences between them and our 
proposed approach. Firstly, the output result � is different 
in these two kind of approaches, that is, the desired result � 
is reflectivity sequences in the multichannel deconvolution 
algorithms (Haghshenas Lari and Gholami 2019), while it 
is the non-attenuated or compensated seismic data in our 
multichannel compensation algorithm (see Eq. 10). The 
reason for this difference lies in the different goals. For 
the stationary multichannel deconvolution algorithms, the 
main goal is to remove the wavelet effects and extract the 
high-resolution reflectivity sequences from the stationary 
seismic data (Du et al. 2018). If the input seismic data is 
nonstationary, the stationary deconvolution algorithms can 
be extended to the nonstationary deconvolution algorithms 
which may simultaneously eliminate the wavelet-filtering 
and Q-filtering effects (Haghshenas Lari and Gholami 2019). 
This means the nonstationary deconvolution algorithms have 
certain theoretical advantages. However, as we all know, 
both wavelet estimation and Q-compensation are great chal-
lenges in field data processing. Therefore, the nonstationary 
deconvolution algorithms which try to deal with these two 
problems simultaneously may show relatively poor appli-
cability in field data processing. In this paper, we treat the 
wavelet estimation (or elimination) and Q-compensation as 
two separated problems and the proposed multichannel com-
pensation algorithm focuses on compensating for seismic 
absorption due to Q-filtering effects. Thus, we do not need 
any wavelet information in our algorithm. This also explains 
why the output result � of the proposed method is non-atten-
uated or compensated seismic records rather than reflectivity 
sequences. After we obtain the compensated seismic data, 
many stationary deconvolution algorithms can be used to 
further get the high-resolution reflectivity sequences. This 
two-step strategy has relatively strong applicability in field 
data application.

Secondly, the proposed method has higher computational 
efficiency than the multichannel deconvolution algorithms. 
In the multichannel deconvolution algorithms, a sparse regu-
larization, e.g., L1 norm regularization, is usually imposed 
on the reflectivity sequences. In other words, the vertical 
constraint V(�) in Eq. 13 can be written as V(�) = ‖�‖1 . 
Because the L1 norm regularization is a nonlinear function, 
the objective function of the deconvolution algorithms is 
also nonlinear. To solve this nonlinear problem, many itera-
tive algorithms, such as iterative reweighting algorithm 
(Sacchi 1997), split the Bregman method (Haghshenas Lari 
and Gholami 2019) and alternating direction method of mul-
tipliers (Du et al. 2018), are generally used which transform 
the nonlinear problem into linear problem in each iteration 
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step. The computational cost depends on the number of iter-
ations and the cost in each iteration step. As for the proposed 
algorithm, we employ the L2 norm in both the vertical and 
horizontal constraints (see Eq. 10); thus, we obtain a linear 
objective function which can be directly solved by employ-
ing gradient algorithms, such as conjugate gradient method.

Conclusions

In this paper, we incorporate the lateral constraint into 
absorption compensation algorithm and develop a LCAC 
method. Compared with LUAC approach, the proposed 
LCAC method provides a compensation profile with better 
lateral continuity and higher S/N, which may be more geo-
logically realistic. The synthetic data tests demonstrate the 
strong stability of the proposed LCAC method in enhancing 
the vertical resolution while suppressing the seismic noise 
amplification. The application of field data further indicates 
its practicability and viability as a robust absorption com-
pensation method. In addition, we should be careful about 
enforcing the lateral regularization too strong because some-
times the lateral discontinuity may be a response of the real 
geological structure. In our future research, we will focus on 
improving our algorithm to be more edge-preserving.
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Appendix: Derivation of Eq. 5

As we all know, the convolution in the time domain is equal 
to the product in the frequency domain, and then, the fre-
quency domain expressions of Eq. (1) and Eq. (2) are 

and

where S0(�) and S(�) are, respectively, the non-attenuated 
and attenuated seismic signals in the frequency domain, 
R(�) is the frequency domain reflectivity, and Ŵ(𝜔, 𝜏) is the 
time-varying wavelet in the frequency domain. According 
to Eq. (3), the frequency domain time-varying wavelet can 
be written by:

(A.1)S0(�) = W(�)R(�),

(A.2)S(𝜔) = Ŵ(𝜔, 𝜏)R(𝜔),

Substituting Eq. (A.3) back into Eq. (A.2), we have,

By transforming Eq. (A.4) into the time domain, we obtain 
Eq. (5),

where a(t, �) = ∫ ∞

0
A(�, �)ei�td� is the inverse Fourier 

transform of frequency domain Q-filtering function.
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Abstract
The gradient-based optimization methods are preferable for the large-scale three-dimensional (3D) magnetotelluric (MT) 
inverse problem. Compared with the popular nonlinear conjugate gradient (NLCG) method, however, the limited-memory 
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method is less adopted. This paper aims to implement a L-BFGS-based 
inversion algorithm for the 3D MT problem. And we develop our code on top of the ModEM package, which is highly 
extensible and popular among the MT community. To accelerate the convergence speed, the preconditioning technique by 
the affine linear transformation of the original model parameters is used. Two modifications of the conventional L-BFGS 
algorithm are also made to get a comparable convergence rate with the NLCG method. The impacts of the preconditioner 
parameters, the regularization parameters, the starting model, etc., on the inversion are evaluated by synthetic examples 
for both L-BFGS and NLCG methods. And the real MT Kayabe dataset is also inverted by the inversion algorithms. The 
synthetic tests show that through our L-BFGS inversion algorithm the similar resistivity models can be obtained with that 
from the NLCG method. For the real data inversion, the L-BFGS method performs more efficiently and reasonable results 
could be obtained by less iterations of the inversion process than the NLCG method. Thus, we suggest the common usage 
of the L-BFGS method for the 3D MT inverse problem.

Keywords 3D · MT · Line search · NLCG · Quasi-Newton

Introduction

Three-dimensional magnetotelluric inversion has been 
receiving substantial attention in the context of complex 
geological structures for the last two decades (Newman 
et al. 2008; Sass and Ritter et al. 2014; Devi et al. 2019). 
To solve the inverse problem, various optimization meth-
ods could be taken into consideration which are classified 
into two categories. The sensitivity-based methods, such 
as the Gauss–Newton method (Jahandari and Farquharson 
2017) and data-space Occam method (Siripunvaraporn 
and Egbert 2000), requiring computing the second-order 
derivatives of the objective functional, can be time-con-
suming and resource-intensive despite good convergence 
properties. When dealing with large-scale model and large 

dataset, the gradient-based methods, such as the steepest 
descent method and nonlinear conjugate gradient method, 
are of greater interest, especially for NLCG method which 
has gained great popularity among the MT community due 
to its clarity and effectiveness (Newman and Alumbaugh 
2000; Rodi and Mackie 2001; Kelbert et al. 2008; Kelbert 
et al. 2014). Siripunvaraporn and Sarakorn (2011) combined 
the conjugate gradient method with the data-space Occam 
method, so as to obtain the convergence behavior from the 
sensitivity information and reduce the computation time and 
memory. Likewise, the quasi-Newton (QN) method respects 
the sensitivity information by approximating the Hessian 
matrix, which could result in similar benefits. The limited-
memory Broyden–Fletcher–Goldfarb–Shanno algorithm, 
belonging to the family of the quasi-Newton method, proved 
to be a competitive method (Liu and Nocedal 1989). It only 
calculates and stores a small number of gradient vector dif-
ference pairs and model vector difference pairs to approxi-
mate the Hessian matrix (Byrd et al. 1994), thus reducing 
memory requirement. Furthermore, the L-BFGS method can 
be adjusted to solve the bound constraint problem in which 
the parameters are limited within a given range (Byrd et al. 
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1995). And it is very meaningful for a geophysical inverse 
problem like magnetotellurics.

Provided that the L-BFGS method has shown promising 
features, it is increasingly employed in geophysical elec-
tromagnetic inverse problems. For example, Newman and 
Boggs (2004) adopted the L-BFGS method in three-dimen-
sional cross-well electromagnetic imaging. As for magne-
totellurics, Avdeeva and Avdeev (2006) applied the limited 
memory quasi-Newton method to one-dimensional magne-
totelluric inversion. By applying the QN scheme proposed 
by Ni and Yuan (1997), their algorithm had the capability 
of limiting the resistivity values within a given range. They 
further extended the algorithm to the 3D MT case and tested 
it on synthetic models (Avdeev and Avdeeva 2009; Avdeeva 
et al. 2012). Moorkamp et al. (2011) also chose the L-BFGS 
method to jointly invert multiple kinds of geophysical data, 
including MT data.

It was shown that using a preconditioner on the NLCG 
or L-BFGS method could speed up the convergence (New-
man and Boggs 2004). The approximate Hessian as such 
a preconditioner is a possible choice but brings additional 
computation cost. Avdeev and Avdeeva (2009) introduced 
an additional regularization technique through which the 
original gradient was scaled by a sequence of coefficients. 
Not only could the erratic structures causing by the singu-
larity of the gradient be eliminated, but also less iterations 
were needed in their example. Apart from those, a compa-
rable preconditioning could be achieved by the affine linear 
transformation of the model parameters (Kelbert et al. 2008; 
Egbert and Kelbert 2012). And they implemented this trans-
formation technique with the NLCG method in the ModEM 
code (Kelbert et al. 2014). Liu and Yin (2013) tried the aff-
ine linear transformation for the 3D Helicopter electromag-
netic inversion. While the ModEM code is readily in use 
and absent of the L-BFGS method, we have developed the 
L-BFGS inversion for 3D MT into which the transforma-
tion technique is ported. Another aspect of the inversion is 
the line search scheme. It is doubtful to run large number of 
line search involving large-scale problems. To avoid exces-
sive computation cost, we propose a relaxation line search 
scheme in this paper.

The outline of this paper is as follows. In “Methods” sec-
tion, we give the methodology behind our approach. The 
3D MT inverse problem is briefly expressed, together with 
the affine linear transformation. Two modifications of the 
original L-BFGS code, including the proposed line search 
strategy, are explained. We also state the major differences 
between the NLCG and L-BFGS method in this section. 
In “Results and discussion” section, through synthetic and 
real data tests, we will investigate the impact of the control-
ling parameters, such as smooth factor and smooth number 
in constructing the model covariance matrix, on the stabil-
ity and convergence rate of the inversion. We also compare 

the results of the L-BFGS inversion with that by the NLCG 
inversions. Finally, we draw conclusions in “Conclusions” 
section.

Methods

Objective functional and gradient calculation

The magnetotelluric inversion, together with other geophysi-
cal electromagnetic inversions, is to seek a best model by 
minimizing the following objective functional

where m is the current model, d is the measured data, and 
F(m) indicates forward mapping over the given model. λ is 
the regularization parameter or trade-off parameter which 
controls the balance of the data fidelity term and regulari-
zation term. Cd and Cm are the data covariance matrix and 
model covariance matrix, respectively. And m0 is a prior 
model or reference model (Siripunvaraporn and Egbert 
2000; Siripunvaraporn et al. 2005).

The minimization of the functional in Eq. 1 can be solved 
by an iterative optimization method, such as the L-BFGS 
method. Different from the sensitivity-based method, it only 
requires the gradient of the functional to get a model update. 
And the gradient of the functional is given by

where J is the sensitive matrix. Although the sensitivity 
matrix is included in Eq. 2, the reciprocal method can be 
used to avoid forming the explicit sensitivity matrix. Instead, 
the product of JT with a given vector is computed. In such 
way, the computation time and memory usage are signifi-
cantly reduced (Newman and Alumbaugh 2000; Rodi and 
Mackie 2001). Kelbert et al. (2008) introduced the following 
affine linear transformation

and changed the original objective functional to the follow-
ing form,

Here  Nd and  Nm are the total numbers of data and model 
parameters, respectively. By dividing with these two enti-
ties, the corresponding data term and model regularization 
term tend to be dimensionless. Then the gradient of the new 
objective functional is

(1)
f (�) = [� − �(�)]T∗�−1
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And the original model parameters can be recovered as 
follows:

From Eq. 5, we see that C1/2 m serves as a smooth opera-
tor on the original gradient. Kelbert et al. (2008) suggested it 
as a preconditioner for the NLCG inversion. So, we assume 
it can be also incorporated into the L-BFGS method.

The formation of the smooth operator

Among most geophysical inversion framework, the forma-
tion of the model covariance matrix C m or its square root 
C1/2 m would result from a finite-difference operator or 
Laplacian operator, so as to get a smoothed model in the 
inversions. Another way of expressing smoothness can be 
accomplished by using filter operators, among which is the 
recursive filter (Lorenc 1992). In general, the application of 
a one-dimensional first-order recursive filter has two steps 
(Purser et al., 2003):

 where p is the input field, s is the output field, q is an inter-
mediate state, and subscript i indicates the grid index. α 
is the smooth factor which lies between 0 and 1. A simple 
illustration of the recursive filter is given in Fig. 1

A compact matrix form can be derived for the recursive 
filter which is given by (Purser et al. 2003)

Here P is the input field vector, and S is the output field 
vector. From Eq. 6, if we define

the inverted model m should be smoothed by the recursive 
filter. In 3D, Eqs. 7 and 8 will be successively used along 
the horizontal directions for every slice and along the verti-
cal direction for every layer. Moreover, we can apply the 
first-order recursive filter n times repeatedly to get a roughly 
equivalent higher-order one (Purser and Wu et al. 2003). 
And this number n is termed as smooth number.

(5)
∇f (�̃) = −2�1∕2

m
Re
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�T�−1

d
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m
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Major differences between L‑BFGS and NLCG

In this section, we will state the major differences between 
the L-BFGS and NLCG methods. The first one is the search 
direction. For NLCG, the search direction is determined by 
Kelbert et al. (2014)

where hk and hk-1 are the current and last model search 
directions. gk and gk-1 are the current and previous gradient 
vectors. For L-BFGS, we require the recent several points 
and gradients to approximate the inverse Hessian matrix Hk 
and construct the search direction by the following formula 
(Nocedal and Wright 2006),

The NLCG update formula is regarded as an extremely 
L-BFGS method only when giving up information about 
previous model difference and gradient difference pairs 
(Koyama et al. 2014).

The second difference is their initial trial step length for 
every iteration. At the first iteration in both methods, the first 
trial step length can be computed by

where α is the step length and l is a constant value. For the 
rest of iterations, their trial step lengths differ from each 
other and are given by (Nocedal and Wright 2006)

(11)
�k = −�k + ��k−1

� = �T
k

(
�k − �k−1

)
∕�T

k−1
�k−1

(12)�k = −�k�k

(13)� = l∕‖‖�0
‖‖2

Fig. 1  Illustration of the recursive filter. Apparently, the recursive fil-
ter produces a smooth local weighted average of the input field
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Different strategies of the initial trial step length are based 
upon the converge properties of these methods.

The last important difference is the termination of the line 
search. For a successful line search, the Armijo rule ensures 
sufficient decrease of the functional value, which is

Here  c1 generally equals 0.0001. Another condition is the 
so-called curvature condition, expressed as

(14)
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2
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≤ f

(
�k

)
+ c

1
�k�

T
k
�k

(16)�
(
�k + �k�k

)T
�k ≤ c

2
�T
k
�k

The L‑BFGS inversion framework

While convergence rate is of great concern for 3D inverse 
problem, we will make two modifications in the conventional 
L-BFGS algorithm which is given below. For the NLCG 
algorithm in ModEM, we noticed that the initial trial step 
length at the first iteration, i.e., α0, 0 in algorithm 1, is scaled 
by a real scalar (Kelbert et al. 2014). And the search direc-
tion at the first iteration is the same in both methods, which 
is the steepest descent direction. However, in L-BFGS, this 
entity is fixed in algorithm 1. So, we attempted to change 
it to the same form as that of NLCG according to Eq. 13.

And  c2 generally equals 0.9. For the NLCG method in 
ModEM, line search procedure just needs to find a step 
length satisfying condition 15. However, in Nocedal’s 
L-BFGS algorithm, both conditions must be satisfied. From 
condition 15, in order to check whether a new step length 
is suitable or not, the objective functional must be evalu-
ate again, which will cost a significant amount time if the 
forward computation is expensive. Additionally, if we want 
to find a step length restricted to condition 16, a new gradi-
ent needs to be calculated. Therefore, it will be more com-
putationally expensive for the L-BFGS method if an equal 
number of line search runs at an iteration in both methods, 
which leads to our proposition of the relaxation line search 
in this paper.

The other modification relates to the line search pro-
cedure. We find that sometimes the line search procedure 
might not find an acceptable step length that satisfies condi-
tions 15 and 16 quickly. Reducing the maximum line search 
number, i.e., lsmax in algorithm 1 (initially set to be 20), 
could limit the line search iterates but risk the success of line 
search procedure. Instead, we limit the line search under 2 
iterates by a relaxation strategy as follows:
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from − 38 to 38 km along the Y direction, with a distance 
of 4 km between two adjacent points. For the models 4 and 
5, the model domains are divided into 56 × 56 × 41 cells. 
And the stations are located from − 39 to 39 km along the 
X direction and from − 39 to 39 km along the Y direction, 
with a distance of 2 km between each point. The synthetic 
data are firstly modeled using ModEM which is based on 
the staggered grid finite difference method. And then 5% 
of Gaussian noise is added to the impedance tensor compo-
nents. The periods we selected for all the models are 0.1, 1, 
5, 10, 20, 30, 50, 80, 100, and 1000 s. The data variance is 
set to be 5% of |Zxy × Zyx |1/2. The grids are the same for the 
inversion and forward modeling. In addition, the forward 
iterative solver is terminated when the normalized misfits 
are below  10−9 and  10−8 for the first three models and last 
two models, respectively. And the normalized misfits of the 
adjoint solver for the gradient calculation are set at  10−6 for 
all models. We determine the inversion should be terminated 
when the root mean square (RMS) of data misfit is less than 
1.05 or cannot further decrease before it reaches target value.

Fig. 2  The section and plane view of the five theoretical models for the synthetic inversion tests. The background resistivity is 100 Ω m. The low 
and high resistivities are 10 Ω m and 1000 Ω m, respectively

By using this strategy, two evaluations of the function 
value and gradient are needed at most. While the selected 
point will be used at the next iteration of the inversion, the 
actual calculation requires only one evaluation of the func-
tion value and gradient. In such way, the computation work-
load of the line search is comparable with that implemented 
in ModEM.

Results and discussion

To evaluate our inversion algorithm, we will run a number 
of synthetic tests on five theoretical models and compare the 
results with that by the NLCG method in ModEM. And we 
run these tests under different controlling parameters includ-
ing the smooth factor and smooth number, the regularization 
parameter, the initial trial step, and the starting model to 
investigate the influence of those parameters on the effects 
of the inversion. The theoretical models are shown in Fig. 2. 
The first three models are divided into a 36 × 36 × 37 grid 
(with 10 air layers). The measured points for those models 
are located from − 38 to 38 km along the X direction and 
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Synthetic tests for different smooth factors

As mentioned previously, the model covariance matrix plays 
an important role in preconditioning the inverse problem. 
One of the parameters that control the derivation of the 
matrix is the smooth factor. Therefore, we will run tests for 
different smooth factors to see how it affects the inversion 
result. The regularization parameter and the smooth num-
ber are fixed at 1.0. The initial trial step length of the first 
iteration is 10/||g0||2 and the starting model is a 50 Ω m half 
space. The curves of rms values and step lengths are plotted 
in Fig. 3. The final inverted resistivity models are shown in 

Fig. 3  The rms values versus iteration during the synthetic tests for 
different smooth factors in the NLCG inversions (the first row) and 
L-BFGS inversions (the second row). The third row of panels shows 

the step lengths in the L-BFGS inversions. The results for the five 
models, model 1 to model 5, are displayed sequentially from the left 
to the right column of panels

Fig. 4  The cross-section (x = 0 km) of the inverted resistivity models of the synthetic tests for different smooth factors in the NLCG and L-BFGS 
inversions. The results for the five models, model 1 to model 5, are displayed from the top to the bottom of panels

Fig. 4. And the information about computation cost is given 
in Fig. 5. The smooth factor is notated by s in all the figures.

Generally, the inversion under larger smooth factor gives 
us smoother model. However, it suggests that larger smooth 
factors slow down the convergence rate in Fig. 3. And setting 
smooth factor greater than 0.5 should be avoided since the 
rms misfit could not converge to the target value which will 
result in underfitted models, as shown in Fig. 4. Little dif-
ferences on the inverted resistivity models are shown by the 
NLCG and L-BFGS inversions. For the computation cost, 
the L-BFGS inversions are comparable with the NLCG’s 
results. In some cases, the L-BFGS inversions turn out to be 
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slightly more efficient which is due to the line search strate-
gies as we infer. For NLCG, the line search procedure needs 
to find a suitable step length. For L-BFGS, the step length 
is 1.0, which is just the initial trial, during the majority of 
the iterations.

Synthetic tests for different smooth numbers

As with the smooth factor, the smooth number described 
earlier also controls the model covariance. So, the inversion 

tests for different smooth numbers are investigated as well. 
For all the inversion tests, we fix the regularization param-
eter at 1.0 and the smooth factor at 0.3. The initial trial step 
length of the first iteration is 10/||g0||2 and the starting model 
is a 50 Ω m half space. The curves of rms values and step 
lengths are plotted in Fig. 6. The final inverted resistivity 
models are shown in Fig. 7. And the information about 
computation cost is given in Fig. 8. The smooth number is 
notated by n in all the figures.

Fig. 5  The panels in the first row show the total iterations and func-
tion evaluations in the NLCG and L-BFGS inversions for different 
smooth factors. The corresponding final rms values and computation 

time are plotted in the second and third row of panels, respectively. 
Note that the computation time is normalized by the time used in the 
NLCG inversion for the first smooth factors, i.e., 0.1 in the examples

Fig. 6  The rms values versus iteration during the synthetic tests for 
different smooth numbers in the NLCG inversions (the first row) and 
L-BFGS inversions (the second row). The third row of panels shows 

the step lengths in the L-BFGS inversions. The results for the five 
models, model 1 to model 5, are displayed sequentially from the left 
to the right column of panels
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From the results, we see that larger smooth number will 
slow down the convergence rate, as shown in Fig. 6. Setting 
the smooth number to be 1 or 2 shall be a proper choice since 
larger values prevent the rms misfit from converging to the 
target level. The inverted resistivity models by both NLCG 
and L-BFGS inversions are very similar in Fig. 7. As with 
the smooth factor, the L-BFGS inversion tends to be slightly 
more efficient.

Synthetic tests for different regularization 
parameters

As we know, the regularization parameter controls the bal-
ance between data term and model regularization term in 
the objective functional. Large regularization parameter 
could be used to prevent the inversion from overfitting and 
solve the inverse problem when it is ill-posed. So, we inves-
tigate the impact of different regularization parameters on 
the inversion. The other controlling parameters are set as 

Fig. 7  The cross-section (x = 0  km) of the inverted resistivity models of the synthetic tests for different smooth numbers in the NLCG and 
L-BFGS inversions. The results for the five models, model 1 to model 5, are displayed from the top to the bottom of panels

Fig. 8  The panels in the first row show the total iterations and func-
tion evaluations in the NLCG and L-BFGS inversions for different 
smooth numbers. The corresponding final rms values and computa-
tion time are plotted in the second and third row of panels, respec-

tively. Note that the computation time is normalized by the time 
used in the NLCG inversion for the first smooth number, i.e., 1 in the 
examples
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follows: the smooth factor is 0.3, and the smooth number is 
2; the initial trial step length of the first iteration is 10/||g0||2, 
and the starting model is a 50 Ω m half space. The curves of 
rms values and step lengths are plotted in Fig. 9. The final 
inverted resistivity models are shown in Fig. 10. And the 
information about the computation cost is given in Fig. 11.

We see that an extremely large regularization parameter 
will slow down the converge rate in Fig. 9. And the data 
misfit might fail to reduce to the target level. That is because 
too much constraint is taken into the model while fitting 
data is put behind. Additionally, it is surprising that the 
inverted model is nearly insensitive to small regularization 

parameters. We interpret this phenomenon as a benefit from 
the preconditioning (as in Eq. 5) which produces stable con-
vergence behavior even for the ill-posed problem. And the 
data misfit is safeguarded above the target level. However, it 
does not imply that only the small regularization parameters 
should be used. The selection of the regularization param-
eters depends on the data and problem. A useful strategy 
is by using a cooling strategy in which the regularization 
parameter starts from large values and decreases if the data 
cannot be fitted properly. As we notice, the recovery of the 
conductors performs better than that of resistors. And the 

Fig. 9  The rms values versus iteration during the synthetic tests for 
different regularization parameters in the NLCG inversions (the first 
row) and L-BFGS inversions (the second row). The third row of pan-

els shows the step lengths in the L-BFGS inversions. The results for 
the five models, model 1 to model 5, are displayed sequentially from 
the left to the right column of panels

Fig. 10  The cross section (x = 0 km) of the inverted resistivity models of the synthetic tests for different regularization parameters in the NLCG 
and L-BFGS inversions. The results for the five models, model 1 to model 5, are displayed from the top to the bottom of panels
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L-BFGS inversion shows considerable improvement in com-
putation time compared with the NLCG inversion.

Synthetic tests for different initial trial step lengths

In this section, we test for different initial trial step lengths 
which have been described previously. The other control-
ling parameters are set as follows: the smooth factor is 0.3 
and the smooth number is 2; the regularization parameter is 
fixed at 1.0 and the starting model is a 50 Ω m half space. 

The curves of rms values and step lengths are plotted in 
Fig. 12. The final inverted resistivity models are shown in 
Fig. 13. And the information about the computation cost is 
given in Fig. 14.

As can be seen from Fig. 13, we get similar inversion 
results from the L-BFGS method with that from the NLCG 
inversions. From Fig. 12, we see that more decrease in rms 
value happens during the early stage of the inversion when 
a larger initial trial step length is set. The results of model 
4 and 5 imply that the NLCG inversion tends to be more 

Fig. 11  The panels in the first row show the total iterations and func-
tion evaluations in the NLCG and L-BFGS inversions for different 
regularization parameters. The corresponding final rms values and 
computation time are plotted in the second and third rows of panels, 

respectively. Note that the computation time is normalized by the 
time used in the NLCG inversion for the first regularization param-
eter, i.e.,  10–6 in the examples

Fig. 12  The rms values versus iteration during the synthetic tests for 
different initial trial step lengths in the NLCG inversions (the first 
row) and L-BFGS inversions (the second row). The third row of pan-

els shows the step lengths in the L-BFGS inversions. The results for 
the five models, model 1 to model 5, are displayed sequentially from 
the left to the right column of panels
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sensitive to this parameter. In most cases, the L-BFGS inver-
sion shows a slight efficiency gain in computation time.

Synthetic tests for different starting models

The starting model, which determines the search path of 
the inversion methods, will be tested for in this section. The 
other controlling parameters are set as follows: the smooth 
factor is 0.3 and the smooth number is 2; the regularization 
parameter is fixed at 1.0. The curves of rms values and step 
lengths are plotted in Fig. 15. The final inverted resistivity 

models are shown in Fig. 16. And the information about the 
computation cost is given in Fig. 17.

In practice, the inversion starting from a model with the 
background or regional resistivity is preferred. And the rms 
curves in Fig. 15 show that less iterations are required for 
such a starting model along with computation time. The 
inverted models are similar for the L-BFGS and NLCG 
method, as shown in Fig. 16. Again, the L-BFGS inversion 
needs less time than NLCG in most cases.

Fig. 13  The cross section (x = 0 km) of the inverted resistivity models of the synthetic tests for different initial trial step lengths in the NLCG 
and L-BFGS inversions. The results for the five models, model 1 to model 5, are displayed from the top to the bottom of panels

Fig. 14  The panels in the first row show the total iterations and func-
tion evaluations in the NLCG and L-BFGS inversions for differ-
ent initial trial step lengths. The corresponding final rms values and 
computation time are plotted in the second and third row of panels, 

respectively. Note that the computation time is normalized by the 
time used in the NLCG inversion for the first initial trial step length, 
i.e., 1/||g0||2 in the examples
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The real data inversion

To investigate our algorithm on the real data, we perform 
the L-BFGS inversion on the MT Kayabe dataset (Takasugi 
et al. 1992). And the inversion with the NLCG method is 
also conducted as comparison. The dataset consists of 209 
sounding points, of which 161 points are highly densely 
distributed in a rectangular area, as shown in Fig. 18. We 
choose to invert the data from those highly dense points, 
excluding 2 irregularly positioned points. Thus, we will 
invert the data at 159 sites which are equally spaced in the 

inversion station grid, as shown in Fig. 18. The selected 
frequencies are ranging within 425 Hz–85.3 s. We divide 
the model domain into 35 × 35 × 45 (with 10 air layers) cells. 
The minimum normalized misfits for the forward solver and 
adjoint solver are  10−8 and  10−6, respectively. The inversion 
will be terminated when the rms misfit is less than 1.05 or 
cannot decrease further before reaching the target level. And 
the error floors are set to be 0.1*|Zxy × Zyx |1/2 for the full 
impedance tensor components. The maximum number of 
inversion iterations is set to be 200.

Fig. 15  The rms values versus iteration during the synthetic tests for 
different starting models in the NLCG inversions (the first row) and 
L-BFGS inversions (the second row). The third row of panels shows 

the step lengths in the L-BFGS inversions. The results for the five 
models, model 1 to model 5, are displayed sequentially from the left 
to the right column of panels

Fig. 16  The cross section (x = 0  km) of the inverted resistivity models of the synthetic tests for different starting models in the NLCG and 
L-BFGS inversions. The results for the five models, model 1 to model 5, are displayed from the top to the bottom of panels
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As presented in the previous sections, the inversions 
under different parameters could lead to inconsistent results. 
Therefore, we run the inversions for the dataset under two 
distinct parameter settings, as given in Table 1.

The curves of rms misfit and step lengths during the 
inversions are plotted in Fig. 19. The statistical informa-
tion about the inversions is given in Table 2. And the final 
inverted resistivity models are shown in Fig. 20. From 
Fig. 19, we see that the inversions under parameter set P2 
stops early for both L-BFGS and NLCG, resulting in vague 
models shown in Fig. 20. Meanwhile, the inversions under 
parameter P1 reached a lower rms misfit and local heteroge-
neities are recovered better. More importantly, Table 2 shows 
that the computation time of the L-BFGS inversions is less 
than that of NLCG under both parameter settings. Accord-
ingly, the L-BFGS method seems to be more efficient than 
NLCG for the real data inversion.

As can be seen from Fig. 20, the inversions under both 
parameter settings show a conductive zone at depth from 

Fig. 17  The panels in the first row show the total iterations and func-
tion evaluations in the NLCG and L-BFGS inversions for different 
starting models. The corresponding final rms values and computation 
time are plotted in the second and third row of panels, respectively. 

Note that the computation time is normalized by the time used in 
the NLCG inversion for the first one, i.e., a 10 Ω m half space in the 
examples

Fig. 18  The station locations 
of the Kayabe MT dataset in 
geographic coordinate system 
(left panel) and in inversion 
coordinate system (right panel). 
The MT sites denoted by solid 
dots (excluding 2 irregularly-
positioned points) are used in 
this paper, while those in open 
circles are not

Table 1  The parameters used in the inversions for the MT Kayabe 
dataset. P1 and P2 mean two different kinds of parameter settings. 
The starting models for all the inversions are the half-space with a 
resistivity of 100 Ω m

Parameter set Smooth factor Smooth 
number

Regulariza-
tion param-
eter

Initial trial 
step length

P1 0.2 2 0.1 5/||g0||2
P2 0.4 3 5 15/||g0||2
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Fig. 19  The rms curves (left 
panel) and the step length 
curves (right panel) for the 
L-BFGS and NLCG inversions 
of the Kayabe MT dataset under 
different controlling parameters. 
The parameter settings are 
denoted by P1 and P2

Table 2  Iteration information and computational cost for the L-BFGS and NLCG inversions under different parameters.  Ni,  Nf, and  Ng denote 
total number of iterations, function evaluations, and gradient calculations, respectively

Parameter setting Method Ni Nf Ng RMS Time (h)

P1 L-BFGS 200 207 207 4.79 39.05
NLCG 200 401 200 4.95 44.17

P2 L-BFGS 40 48 48 6.85 10.78
NLCG 40 77 40 6.86 11.40

Fig. 20  The plane views of the final inverted resistivity models for the L-BFGS and NLCG inversions under different parameter settings which 
are denoted by P1 and P2
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Fig. 21  Comparison of the observed data with the predicted responses of the model inverted by the L-BFGS inversion under the parameter set-
ting P1. The frequency for the data is 24 Hz

Fig. 22  Comparison of the observed data with the predicted responses of the model inverted by the L-BFGS inversion under the parameter set-
ting P1. The frequency for the data is 8 Hz
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100 to 200 m. The drilling wells indicated the existence of a 
geothermal reservoir. Lin et al. (2011) inverted the Kayabe 
data by the conjugate gradient method. To some extent, their 
results are similar to our inverted model under parameter 
set P2. We also find the inversion results under parameter 
P1 show consistency with that by Zhang et al. (2013). To 
evaluate our inversion results, we compare the observed data 
with the predicted responses for the inverted model. The 
comparison results are given in Figs. 21, 22, and 23. As we 
can see, the data at the frequencies of 24 Hz and 8 Hz are fit 
considerably well whereas those data at 2 Hz need further 
improvements. Yamane and Takasugi (1997) suggested the 

Kayabe dataset ranging from 3.4 to 250 Hz would provide 
satisfactory results, which is verified in our inversion. And 
it might be one of the reasons why the rms misfit could not 
decrease any further. We are also aware that the data in TM 
mode are more difficult to fit than that in TE mode, which 
could be due to the coast effects, as suggested by Takasugi 
et al. (1992). Therefore, we think our inversion results for 
the shallow structures should be valid.

Finally, we attempt to interpret the discrepancy of the 
L-BFGS and NLCG inversions for the real data. From 
Fig. 19, we can see that the rms misfit in the NLCG inver-
sions is always greater than that in the L-BFGS inversions. 

Fig. 23  Comparison of the observed data with the predicted responses of the model inverted by the L-BFGS inversion under the parameter set-
ting P1. The frequency for the data is 2 Hz

Fig. 24  The plane views of the inverted resistivity model at the 112th iteration for the L-BFGS inversion under the parameter setting P1
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And the inverted models at the 200th iteration for the two 
methods have some obvious differences. We give the 112th 
inversion results of L-BFGS inversion in Fig. 24, which 
is similar to the results at the 200th iteration from NLCG. 
However, over 80 iterations of the inversion are needed 
for the NLCG method. We can explain by Eq. 11: when 
the convergence rate becomes slow and a large number of 
iterations require during the inversion, the current gradient 
vector gk and previous gradient vector gk−1 will gradually 
become very close, in which situation the search direction 
of NLCG gradually approximates the minus gk. However, the 
L-BFGS method uses the last several and current gradients 
to approximate the inverse Hessian matrix and construct its 
search directions by Eq. 12. Hence, the L-BFGS method 
outperforms NLCG under such circumstance due to the 
second-order sensitivities.

Conclusions

We have developed a three-dimensional magnetotelluric 
inversion algorithm based on the L-BFGS method in this 
paper. The synthetic tests indicate our algorithm is compara-
ble with the NLCG method in ModEM. The recovered resis-
tivity images are similar between one and the other under 
the same parameter settings. And in most cases, the L-BFGS 
method could be slightly more efficient than NLCG. The 
inversion parameters, such as the regularization parameter, 
should be carefully selected; otherwise, we might fail to get 
a good interpretation of the subsurface structures. While 
the ModEM code is widely used among the MT commu-
nity, our inversion tests for the controlling parameters could 
be referred to before inverting real data. For the real data 
inversion, a large number of iterations are needed. Then, not 
only is the convergence rate of NLCG slow, but also more 
forward computations are required. However, the L-BFGS 
method could be more efficient in such situation. Those 
results show that the L-BFGS algorithm in this paper is a 
useful and efficient method for 3D MT inverse problem. In 
addition, our research can be also adopted for other electro-
magnetic inverse problems whose forward computation is 
expensive.

Acknowledgements This research was funded by the National Natu-
ral Science Foundation of China (Grants No. 53200859804 and No. 
41830429). The authors are grateful to Nocedal’s team for providing 
the L-BFGS code, Egbert for providing ModEM and NEDO for provid-
ing the Kayabe dataset. This paper’s research is based on their work.

Compliance with ethical standards 

Conflict of interest The authors declare that they have no conflict of 
interest.

References

Avdeev D, Avdeeva A (2009) 3D magnetotelluric inversion using 
a limited-memory quasi-Newton optimization. Geophysics 
74(3):F45–F57

Avdeeva A, Avdeev D (2006) A limited-memory quasi-Newton inver-
sion for 1D magnetotellurics. Geophysics 71(5):G191–G196

Avdeeva A, Avdeev D, Jegen M (2012) Detecting a salt dome overhang 
with magnetotellurics: 3D inversion methodology and synthetic 
model studies. Geophysics 77(4):E251–E263

Byrd RH, Lu P, Nocedal J et  al (1995) A limited memory algo-
rithm for bound constrained optimization. SIAM J Sci Comput 
16(5):1190–1208

Byrd RH, Nocedal J, Schnabel RB (1994) Representations of quasi-
Newton matrices and their use in limited memory methods. Math 
Program 63(1–3):129–156

Devi A, Israil M, Gupta PK et al (2019) Transverse tectonics struc-
tures in the Garhwal Himalaya Corridor inferred from 3D 
inversion of magnetotelluric profile data. Pure Appl Geophys 
176(11):4921–4940

Egbert GD, Kelbert A (2012) Computational recipes for electromag-
netic inverse problems. Geophys J Int 189(1):251–267

Jahandari H, Farquharson CG (2017) 3-D minimum-structure inver-
sion of magnetotelluric data using the finite-element method and 
tetrahedral grids. Geophys J Int 211(2):1189–1205

Kelbert A, Egbert GD, Schultz A (2008) Non-linear conjugate gradient 
inversion for global EM induction: resolution studies. Geophys J 
Int 173(2):365–381

Kelbert A, Meqbel N, Egbert GD et al (2014) ModEM: a modular 
system for inversion of electromagnetic geophysical data. Comput 
Geosci 66:40–53

Koyama T, Khan A, Kuvshinov A (2014) Three-dimensional electri-
cal conductivity structure beneath Australia from inversion of 
geomagnetic observatory data: evidence for lateral variations in 
transition-zone temperature, water content and melt. Geophys J 
Int 196(3):1330–1350

Lin C, Tan H, Tong T (2011) Three-dimensional conjugate gradient 
inversion of magnetotelluric impedance tensor data. J Earth Sci 
22(3):386–395

Liu DC, Nocedal J (1989) On the limited memory BFGS method for 
large scale optimization. Math Program 45(1–3):503–528

Liu Y, Yin C (2013) 3D inversion for frequency-domain HEM data. 
Chin J Geophys Chin Ed 56(12):4278–4287

Lorenc A (1992) Iterative analysis using covariance functions and fil-
ters. Q J R Meteorol Soc 118(505):569–591

Moorkamp M, Heincke B, Jegen M et al (2011) A framework for 3-D 
joint inversion of MT, gravity and seismic refraction data. Geo-
phys J Int 184(1):477–493

Newman GA, Alumbaugh DL (2000) Three-dimensional magnetotel-
luric inversion using non-linear conjugate gradients. Geophys J 
Int 140(2):410–424

Newman GA, Boggs PT (2004) Solution accelerators for large-scale 
three-dimensional electromagnetic inverse problems. Inverse Prob 
20(6):S151–S170

Newman GA, Gasperikova E, Hoversten GM et al (2008) Three-dimen-
sional magnetotelluric characterization of the Coso geothermal 
field. Geothermics 37(4):369–399

Ni Q, Yuan YX (1997) A subspace limited memory quasi-Newton 
algorithm for large-scale nonlinear bound constrained optimiza-
tion. Math Comput 66(220):1509–1520

Nocedal J, Wright S (2006) Numerical optimization. Springer, New 
York, pp 135–163

Purser RJ, Wu WS, Parrish DF et al (2003) Numerical aspects of the 
application of recursive filters to variational statistical analysis. 



1066 Acta Geophysica (2020) 68:1049–1066

1 3

Part I: spatially homogeneous and isotropic Gaussian covariances. 
Mon Weather Rev 131(8):1524–1535

Rodi W, Mackie RL (2001) Nonlinear conjugate gradients algorithm 
for 2-D magnetotelluric inversion. Geophysics 66(1):174–187

Sass P, Ritter O, Ratschbacher L et al (2014) Resistivity structure 
underneath the Pamir and Southern Tian Shan. Geophys J Int 
198(1):564–579

Siripunvaraporn W, Egbert G (2000) An efficient data-subspace 
inversion method for 2-D magnetotelluric data. Geophysics 
65(3):791–803

Siripunvaraporn W, Sarakorn W (2011) An efficient data space conju-
gate gradient Occam’s method for three-dimensional magnetotel-
luric inversion. Geophys J Int 186(2):567–579

Siripunvaraporn W, Egbert G, Lenbury Y et al (2005) Three-dimen-
sional magnetotelluric inversion: data-space method. Phys Earth 
Planet Int 150(1–3):3–14

Takasugi S, Tanaka K, Kawakami N et al (1992) High spatial resolu-
tion of the resistivity structure revealed by a dense network MT 
measurement—a case study in the Minamikayabe Area, Hokkaido 
Japan. J Geomagn Geoelectr 44(4):289–308

Yamane K, Takasugi S (1997) Data processing procedures for Minami-
Kayabe magnetotelluric soundings. J Geomagn Geoelectr 
49(11–12):1697–1715

Zhang K, Dong H, Yan J et al (2013) A NLCG inversion method of 
magnetotellurics with parallel structure. Chin J Geophys Chin Ed 
56(11):3922–3931



Vol.:(0123456789)1 3

Acta Geophysica (2020) 68:1067–1082 
https://doi.org/10.1007/s11600-020-00461-w

RESEARCH ARTICLE - APPLIED GEOPHYSICS

Prestack AVO inversion for brittleness index of shale based on  
BI_Zoeppritz equation and NSGA II

Chenchen Bi1 · Yanchun Wang1  · Wei Xie2 · Wei Sun3 · Wei Liu1

Received: 12 February 2020 / Accepted: 30 June 2020 / Published online: 9 July 2020 
© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2020

Abstract
As one of the evaluation characteristics of shale sweet spots, the brittleness index (BI) of shale formations is of great sig-
nificance in predicting the range of sweet spots, and guiding hydraulic fracturing. Based on the three elastic parameters of 
P-wave velocity (VP), S-wave velocity (VS) and density obtained by conventional prestack AVO inversion, BI can be calcu-
lated indirectly using the Rickman formula. However, the conventional AVO inversion based on Zoeppritz approximation 
assumes that incident angle is small and elastic parameters change slowly, which affects the inversion accuracy of the three 
elastic parameters. Additionally, using these three elastic parameters to obtain BI indirectly also leads to cumulative errors 
of the inversion results. Therefore, we propose an inversion method based on BI_Zoeppritz equation to directly estimate VP, 
VS and BI. The BI_Zoeppritz equation is an exact Zoeppritz equation for BI, which is used as the forward operator for the 
proposed method. The multi-objective function of the inversion method is optimized by a fast nondominated sorting genetic 
algorithm (NSGA II). An initial model and an optimized search window are used to improve the inversion accuracy. The 
test results of model data and actual data reveal that this method can directly obtain the BI with high precision. In addition, 
the stability and noise immunity of the proposed method are verified by the seismic data with random noise.

Keywords Brittleness index · Shale · AVO inversion · BI_Zoeppritz equation · NSGA II

Introduction

Recently, the exploration and development of unconven-
tional shale reservoirs has attracted great attention from the 
industry (Glorioso and Rattia 2012; McGlade et al. 2013). 
Unlike conventional reservoirs based on trap evaluation, the 
goal of shale oil and gas exploration is to predict sweet spots 
and define reservoir boundary (Jia 2017). As one of the six 
characteristics for evaluation of shale sweet spots, the BI 
of shale formations is significant to predict the distribution 
scope of sweet spots and guide the design of the hydraulic 
fracturing operation (Zou et al. 2014).

The shale formations of most shale oil and gas fields in 
the world contain relatively less clay minerals and more brit-
tle minerals (Jarvie et al. 2007; Fu et al. 2015; Gholami 
et al. 2016; Pei et al. 2016). The brittle minerals represented 
by siliceous minerals are easy to break and produce frac-
tures under external force (Zhang et al. 2016). These frac-
tures provide the beneficial channels for gas migration and 
production. Furthermore, in the process of shale reservoir 
reconstruction, fracture initiation and propagation decided 
by formation brittleness are the core problems of hydraulic 
fracturing (Guo and Zhang 2014). Therefore, it is necessary 
to find quantitative methods to predict BI of shale reservoirs.

Considering strength, hardness and stress–strain charac-
teristics of shale, BI estimation methods based on mineral 
composition and Rickman formula are proposed (Jarvie et al. 
2007; Rickman et al. 2008; Wang and Gale 2009; Jin et al. 
2014a, b). The mineral composition method evaluates BI 
by the content of brittle minerals. Based on the statistical 
analysis of Barnett shale in North America, Grigg (2004) 
concluded that high yield shale has the characteristics of 
high Young’s modulus (YM) and low Poisson’s ratio (PR). 
YM indicates the ability of a shale to maintain fractures 
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after it is fractured, and PR reflects the ability of shale to 
rupture under a certain pressure. According to the analysis 
results of mechanical properties of Barnett shale, Rickman 
et al. (2008) proposed a formula based on YM and PR to 
calculate BI. Therefore, the three elastic parameters obtained 
by conventional AVO inversion can be used to calculate YM 
and PR, and then BI can be given according to the Rickman 
formula. Estimation method based on Rickman formula has 
been the most widely used method to predict shale BI.

Considering the cumulative errors caused by indirect 
calculation for YM and PR, Zong et al. (2013) derived 
the YPD approximation from Aki–Richards approximation 
(Aki and Richards 1980). The YPD approximation can be 
used to directly estimate YM, PR and density based on 
Bayesian Frame and AVO inversion method (Yin et al. 
2015). However, the AVO inversion based on Zoeppritz 
approximation assumes that incident angle is small and 
elastic parameters change slowly (Fang et al. 2016; Xie 
et  al. 2019). In this study, we propose a novel AVO 
inversion method to directly estimate VP, VS and BI. To 
avoid the limitation of approximations, we use an exact 
Zoeppritz equation for BI (BI_Zoeppritz equation) as the 
forward operator of the novel method. AVO inversion 
is a kind of nonlinear optimization problem with non-
unique solutions (Liu and Wang 2018; Yuan et al. 2019). 
Therefore, we measure the quality of the inversion results 
from two aspects: correlation coefficient and root mean 
square error, so as to establish a multi-objective function. 
To make the inversion results accord with the real situation 
as much as possible, we use NSGA II to simultaneously 
minimize the multi-objective function. To reduce the 
amount of calculations and improve the accuracy of 
inversion results, we design an initial model and an 
optimized search window to constrain the entire inversion 
process. Model data and actual data are used to test the 
validity and practicability of the novel method.

Methodology

BI_Zoeppritz equation

As the core of AVO analysis and prestack seismic inversion, 
the exact Zoeppritz equation (Zoeppritz 1919) can calculate 
the reflection and transmission coefficient of different inci-
dent angles when the three elastic parameters of upper and 
lower layers are given. To reduce the number of parameters, 
Fang et al. (2016) expressed the Zoeppritz equation as a 
function of P-wave reflectivity, S-wave reflectivity, density 
reflectivity and VP–VS ratio of upper layer. However, it is 

necessary to assume that the VP–VS ratio of upper layer is 
background value. To calculate the reflection coefficient 
directly from BI, Zoeppritz equation can be represented as 
a function of VP, VS and BI by using the conversion relation-
ship between these elastic parameters.

Rickman formula defines the BI as Eq. 1:

where BIYM and BIPR represent the YM and PR of rock in 
percentage after normalization, respectively, and the value 
range is from 0 to 100. This is mainly due to the large dimen-
sional difference between YM and PR, and the data process-
ing of YM and PR is made to reflect their role in the evalu-
ation of BI, as shown in Eqs. 2 and 3:

where YMmin and YMmax denote the minimum and maxi-
mum of YM; and PRmin and PRmax denote the minimum 
and maximum of PR, respectively. Based on VP, VS and 
density, the YM and PR can be expressed as Eqs. 4 and 5, 
respectively:

where � denotes density. The relationship between BI, VP , VS 
and � can be expressed as Eq. 6:

Since YMmin , YMmax , PRmin and PRmax are known 
parameters obtained from prior information of the actual 
work area, BI can be regarded as the nonlinear function of 
VP and VS , and the linear function of � . Similarly, � can also 
be seen as a function of the BI, VP and VS , as shown in Eq. 7, 
which is abbreviated as Eq. 8:

(1)BI =
BIYM + BIPR

2

(2)BIYM = 100 ×
YM − YMmin

YMmax − YMmin
,

(3)BIPR = 100 ×
PR − PRmax

PRmin − PRmax
,

(4)YM = 2V2
S
�

(
3V2

P
− 4V2

S

2V2
P
− 2V2

S

)
,

(5)PR =
V2
P
+ 2V2

S

2V2
P
− 2V2

S

.

(6)
BI =50 ×

2V2
S
�

(
3V2

P
−4V2

S

2V2
P
−2V2

S

)
− YMmin

YMmax − YMmin

+ 50 ×

V2
P
+2V2

S

2V2
P
−2V2

S

− PRmax

PRmin − PRmax

.
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By replacing all the density items in the exact Zoeppritz 
equation with Eq. 7, the Zoeppritz equation of VP , VS and BI 
(BI_Zoeppritz) can be expressed as shown in Eq. 9:

where VP1 , VP2 , VS1 , VS2 , �1 and �2 denote the VP, VS and den-
sity of the upper and lower layers, �1 , �1 , RPP and RPS represent 
reflection angles and reflection coefficients of the PP- and 
PS-waves, �2 , �2 , TPP and TPS represent transmission angles 
and transmission coefficients of the PP- and PS-waves, respec-
tively. The relationship between the reflection coefficient and 
BI can be directly established by using the BI_Zoeppritz equa-
tion. The RPP can be obtained by solving the Zoeppritz equa-
tion. Aki and Richards (1980) gave the analytic expression of 
RPP about VP , VS and � (Li et al. 2016). By replacing all the 
density items in the RPP, the analytic expression of RPP about 
VP, VS and BI can be expressed as shown in Eq. 10:

where

(7)

� =

⎛
⎜⎜⎝
BI

50
−

V2
P
+2V2

S

2V2
P
−2V2

S

−PRmax

PRmin−PRmax

⎞
⎟⎟⎠
�
YMmax − YMmin

�
+ YMmin

V2
S

�
3V2

P
−4V2

S

V2
P
−V2

S

� ,

(8)� = �
(
BI,VP,VS

)
.

(9)

⎡
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(10)

RPP =
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b
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cos �2

VP2

)
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(
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cos �1

VP1

cos �2

VS2

)
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]/
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(11)
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d = 2(V2

S2
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S1
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,

and p = sin �1∕VP1 is ray parameter.
We use the Ostrander (1984) shale model listed in Table 1 

to test the accuracy of BI_Zoeppritz equation. YM and PR 
of Ostrander shale model can be calculated by using Eqs. 4 
and 5. Assuming that YMmin = 1.0 × 1010 kg m−1 s−2 , 
YMmax = 1.5 × 1010 kg m−1 s−2  ,  PRmin = 0.05  a n d 
PRmax = 0.5 , we can obtain the BI of Ostrander shale 
model according to Eq. 6.

Figure 1 shows PP-wave reflection coefficients (RPP) 
calculated by the exact Zoeppritz equation, BI_Zoeppritz 
equation and Aki–Richards approximation. It is evident that 
the RPP of BI_Zoeppritz equation and Zoeppritz equation 
is coincided with each other, while the RPP of Aki–Rich-
ards approximation gradually deviates from the exact values 
of Zoeppritz equation with angle increasing. In addition, 
Aki–Richards approximation cannot reflect the total reflec-
tion phenomenon at 55° as shown in Fig. 1a. The BI_Zoep-
pritz equation does not introduce any hypothesis and avoids 
the loss of accuracy, so we can use it as the forward operator 
of the AVO inversion to estimate BI.

AVO inversion for BI

Prestack AVO inversion is a highly nonlinear optimiza-
tion problem, which can be generally solved by weighted 

(12)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

E = b
cos �1

VP1

+ c
cos �2

VP2

F = b
cos �1

VS1

+ c
cos �2

VS2

G = a − d
cos �1

VP1

cos �2

VS2

H = a − d
cos �2

VP2

cos �1

VS1

D = EF + GHp2

,

Table 1  Elastic parameter of 
Ostrander shale model

Lithology VP (m/s) VS (m/s) ρ (g/cc) YM (kg m−1 s−2) PR BI

Sandstone 2438 1625 2.14 1.0400 × 1010 0.4001 68.7656
Shale 3048 1244 2.40 1.2435 × 1010 0.1003 15.1031
Sandstone 2438 1625 2.14 1.0400 × 1010 0.4001 68.7656
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coefficient method for objective function. However, this 
method requires artificially setting a set of weight coeffi-
cients to form a single objective function. Therefore, the 
influence of weight coefficients on the inversion results is 
inevitable. Another effective method to solve the inversion 
problem is the multi-objective function optimization algo-
rithm, which can maximize or minimize the multi-objective 
function under some constraints in the decision space (Liu 
and Wang 2018). It avoids the subjective influence of choos-
ing weight coefficient by human. The main purpose of multi-
objective function optimization algorithm is to obtain a set 
of Pareto optimal solutions which satisfies the multi-objec-
tive function at the same time. The image of Pareto opti-
mal solution set in objective space is called Pareto optimal 
frontier. NSGA II is a global optimization algorithm with 
elite strategy, which can minimize multi-objective function 
without setting the weight coefficient artificially (Deb et al. 
2002), so as to extract the Pareto optimal solution according 
to the needs of the actual problem.

To obtain the VP, VS and BI from seismic records by 
NSGA II, the cross-correlation principle (Li and Mal-
lick 2015) and the least root mean square error principle 
are employed to construct the multi-objective function as 
follows:

where DPP is the actual observed PP-wave seismic record, 
SPP is the PP-wave synthetic record obtained from forward 
modeling of elastic parameters by using the BI_Zoeppritz 
equation, m is the sampling numbers, RMSE represents 

(13)

⎧⎪⎪⎨⎪⎪⎩

CCE = 1 −
SPP⋅DPP√

SPP⋅SPP⋅
√
DPP⋅DPP

RMSE =

�
1

m

m∑
i=1

�
SPP − DPP

�2
, i = 1, 2,… ,m

,

root mean square error reflecting the difference between 
the observed seismic record and synthetic record, and CCE 
represents cross-correlation error reflecting the correlation 
between them, respectively. We use CCE and RMSE as a 
multi-objective function to obtain more accurate inversion 
results.

In this study, we employ NSGA II to get the solution of 
the multi-objective function shown in Eq. 13 and perform 
the AVO inversion for BI. We consider the potential solution 
of the elastic parameters (VP, VS and BI) as an individual 
in the D-dimensional solution space. For the ith individ-
ual, NSGA II maps a set of solutions xi =

[
xi
1
, xi

2
,… , xi

D

]T 
in solution space to the multi-objective function values 
�
i =

[
yi
1
, yi

2

]T in objective space to find a set of Pareto opti-
mal solutions that can satisfy the multi-objective function at 
the same time. The overall process is as follows:

 (1) Generate a population of N individuals and obtain the 
multi-objective function value of each individual by 
using Eq. 13;

 (2) Use a linear transformation to get the corresponding 
transformed multi-objective function value of each 
individual;

 (3) Assign two attribute parameters of nondominated 
level and crowding distance to each individual;

 (4) Apply a series of operations, such as tournament 
selection, SBC and RPM, to get the offspring popula-
tion of size N;

 (5) Merge the parent and the offspring populations into a 
single population with 2N individuals;

 (6) Select N new individuals from the single population 
by nondominated sorting and crowding distance cal-
culation;

 (7) Arrange the new individuals as parent population to 
participate in the next genetic operation;

Fig. 1  A comparison of RPP between the exact Zoeppritz equation, BI_Zoeppritz equation and Aki–Richards approximation. a Interface between 
sandstone and shale; b interface between shale and sandstone
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 (8) Repeat (4) to (7) until the preset stopping criteria are 
met;

 (9) Obtain the Pareto optimal solution set of the last gen-
eration population;

 (10) Extract the optimal elastic parameters (VP, VS and BI) 
from the Pareto optimal solution set.

NSGA II algorithm mainly includes two mechanisms: 
fast nondominated sorting and population diversity protec-
tion. Assuming that there is a population with N individu-
als, the objective function value of each individual can be 
calculated by Eq. 13. Then, each individual is assigned a 
nondominated level according to the objective function 
value, which is called nondominated sorting. Nondominated 
sorting follows the rule: individuals of nondominated level 
1 dominate individuals of other nondominated levels, but 
the internal individuals of same nondominated level do not 
dominate each other; Individuals of nondominated level 2 
dominate individuals of nondominated level 3 and above. 
Similarly, there is no domination between the individuals 
of same nondominated level, and so on until all individu-
als of the population are assigned to a nondominated level. 
At the same time, in order to prevent the population from 
losing diversity in the process of genetic operation, NSGA 
II assigns the crowding distance parameter to the individu-
als of same nondominated level. To calculate the crowding 
distance, individuals of the same nondominated level are 
sorted in ascending order by objective function value, and 
then the individuals at both ends of the order are assigned an 
infinite number as their crowding distance, while other indi-
viduals can calculate different crowding distances accord-
ing to certain criteria. The individuals with larger crowding 
distance in the same nondominated level are more likely 
to be selected to participate in the next genetic operation. 
The main purpose of these two mechanisms is to search for 
the solution set that is close to the real Pareto optimal solu-
tion set, while maintaining population diversity. Deb et al. 
(2002) described the detailed steps of traditional NSGA II 
algorithm. To ensure the accuracy of AVO inversion, Liu 
and Wang (2018) improved the implement of NSGA II and 
obtained good inversion results.

The traditional NSGA II algorithm performs nondomi-
nated sorting and crowding distance calculation based on 
the original objective function value of each individual. 
However, since most individuals in the early population of 
genetic iterations are far away from the global optimal solu-
tion, the two mechanisms based on the original objective 
function value often cause the superior individuals to drive 
the traditional NSGA II algorithm to fall into the local mini-
mum (Goldberg 1989). To avoid this phenomenon, the origi-
nal objective function value is processed by linear transfor-
mation to reduce the fitness value of the superior individual 
and increase the fitness value of the inferior individual, so 

that the inversion process of multi-objective function stably 
converges to the global optimal direction.

The linear transformation is given in Eqs. 14 and 15:

and

where f  and f ′ represent the value of original objective func-
tion and corresponding transformed objective function, favg 
and fmax represent the average and maximum values of 
original objective function, t and tmax represent the current 
and maximum value of genetic iterations, respectively. Cm 
is a parameter changing gradually with genetic iterations, 
and f ′max represent the maximum value of the transformed 
objective function.

In order to find the global optimal solution of multi-
objective function, simulated binary crossover (SBC) and 
real parameter mutation (RPM) operators are used to con-
tinuously sample in decision space by real value coding.

In SBC, first, a parameter � is defined as (Deb and 
Agrawal 1995):

where x1,t
i

 and x2,t
i

 represent the i-th coding value of the par-
ent individual 1 and 2 in the tth generation, xL,t

i
 and xU,t

i
 

represent the minimum and maximum coding values for 
individuals in the tth parent population, respectively. Then, 
a parameter � is defined as:

where a nonnegative real number � denotes the cross-distri-
bution index. The larger � value is, the closer the offspring 
is to its parent. A parameter �qi is given as:

where ui represents a random number between 0 and 
1. Finally, we can use Eq.  19 to obtain two offspring 
individuals:
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where x1,t+1
i

 and x2,t+1
i

 represent the ith coding value of 
the offspring individuals 1 and 2 in any generation t, 
respectively.

In order to avoid the genetic operation falling into local 
minimum, we do real parameter mutation operation on the 
offspring individuals generated by SBC.

In RPM, first, a parameter � is defined as (Deb and 
Agrawal 1999):

where xchild
i

 represents the ith coding value of the offspring 
individual after SBC, xL

i
 and xU

i
 represent the ith minimum 

and maximum coding values of the offspring individuals 
after SBC, respectively. Parameter 𝛿i can be expressed as:

where ri represent a random number between 0 and 1, a non-
negative real number k denotes the mutation distribution 
index. The larger k value is, the closer the offspring is to its 
parent. Then, we can obtain the offspring individuals after 
mutation according to Eq. 22:

where xmutated
i

 is the ith coding value of the offspring indi-
vidual after mutation.

In order to stabilize the convergence process of AVO 
inversion, we set four key parameters of SBC and RPM to 
change with the genetic iterations as (Li and Mallick 2015; 
Liu and Wang 2018):

where n represents the total number of variables, Pc and � 
represent crossover probability and crossover distribution 
index, Pm and k represent mutation probability and mutation 
distribution index, respectively.
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Model data test

Model test I

To verify the validity of the inversion method, we select the 
actual logging data of a shale gas field in China, and build 
a one-dimensional theoretical model as shown in Fig. 2 by 
smooth filtering. The BI of theoretical model is obtained by 
Eq. 6, and the RPP is obtained by the BI_Zoeppritz equation. 
Based on the convolution of RPP and a 35-Hz Ricker wavelet, 
the synthetic angle gathers for an incident angle of 0°–30° 
are generated as shown in Fig. 3.

We apply the AVO inversion to the theoretical model and 
design an initial model (green line shown in Fig. 4) through 
low-pass filtering to improve the inversion accuracy. Two 
different search windows (black line shown in Figs. 5 and 
6) are also used to constrain the inversion process and test 
the impact of the search window on inversion accuracy. One 
is a linear window with constant maximum and minimum. 

Fig. 2  Elastic parameters of theoretical model

Fig. 3  PP-wave angle gathers of theoretical model without noise
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And another is a optimized window referred to the initial 
model. In addition, the population size and total number of 
genetic iterations of the NSGA II are set to 800 and 2000, 
respectively. Figure 5a and b shows the inverted elastic 
parameters using the optimized window and linear window, 
respectively. Figure 6 displays the corresponding inversion 
errors of two different search windows. From Figs. 5 and 
6, we can find that the inverted elastic parameters are in 
good agreement with the real values of theoretical model. 
However, some large errors occur above 540 ms, especially 
at the positions with violent variation of elastic parameters. 
Additionally, the quality of search window has a big impact 
on inversion accuracy. Compared with the linear search 
window, we can obtain better inversion results by using the 
optimized search window.

To test the noise immunity of the inversion method, we 
add random noise with a signal-to-noise ratio (SNR) of 3 on 

the angle gathers, as shown in Fig. 7. The linear search win-
dow and optimized search window are employed to constrain 
the inversion process. Figure 8a and b displays the inver-
sion results using the optimized window and linear window, 
respectively. Figure 9 shows the corresponding absolute 
errors of inversion results. The annotation in Figs. 8 and 9 
is the same as Figs. 5 and 6, respectively. From these figures, 
we can see that the random noise has a big impact on the 
inversion accuracy, especially for the BI using linear search 
window. When the noise is added, the inversion accuracy of 
linear search window reduces obviously, whereas the inver-
sion accuracy of optimized search window changes little.

Figure 10 shows the multi-objective function values (CCE 
and RMSE) of different generations in four cases. Figure 11 
gives the population distributions of the last generation in 
four cases, which reflect the Pareto optimal front. Note from 

Fig. 4  Initial model for theoretical model

Fig. 5  Inverted elastic parameters without noise using a the opti-
mized search window and b the linear search window. The green line 
and blue line denote the initial model and theoretical model, and the 

black line and red line represent the search windows and correspond-
ing inverted elastic parameters

Fig. 6  Error comparison of inverted elastic parameters without noise 
using the optimized search window (red line) and the linear search 
window (blue line)
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Figs. 10 and 11, random noise and search window have cer-
tain influence on the convergence of the AVO inversion. The 
convergence degree of CCE, RMSE and Pareto optimal front 
will be worse when the search window moves away from 
the trend of theoretical model. Similarly, when the angle 
gathers are added with random noise, the convergence 
degree of CCE, RMSE and Pareto optimal front also dete-
riorate, which is more obvious on RMSE. In the inversion 
process of one-dimensional theoretical model, the inversion 
method converges quickly in the first 200 genetic iterations, 
then slows down with the increase in genetic iterations and 
keeps stable at last. Therefore, the appropriate number of 
genetic iterations can significantly reduce the computation 
cost while ensuring the convergence degree and inversion 
accuracy.

Model test II

In order to make the test of theoretical model shown in 
Fig. 2 more close to the actual circumstances, we use a 
30-Hz Ricker wavelet to generate the synthetic angle gath-
ers for an incident angle of 0°–30°. Some random noise with 
SNR = 1 is added to the angle gathers. The optimized search 
window is also employed to constrain the inversion process. 
Figure 12a and b displays the inversion results without noise 
and with SNR = 1, respectively. Figure 13 shows the cor-
responding absolute errors of inversion results. From these 
figures, we can see that the inversion results without noise 
are in good agreement with the real values of theoretical 
model. Compared with the inversion results using a 35-Hz 
Ricker wavelet, the absolute errors of the inversion result 
using a 30-Hz Ricker wavelet are not very big. When the 

Fig. 7  PP-wave angle gathers of theoretical model with SNR = 3

Fig. 8  Inversion results with SNR = 3 using a the optimized search window and b the linear search window. The green line and blue line denote 
the initial model and theoretical model, and the black line and red line denote the search windows and corresponding inverted elastic parameters

Fig. 9  Error comparison of inverted elastic parameters with SNR = 3 
using the optimized search window (red line) and the linear search 
window (blue line)
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noise with SNR = 1 is added, the inversion accuracy reduces 
obviously and the absolute errors of three elastic parameters 
show a random distribution. From Figs. 9 and 13, we can 
see that the random noise has a big impact on the inversion 
accuracy. Nevertheless, the inverted elastic parameters still 
accord with the theoretical model, especially under the con-
dition of low SNR. Overall, the proposed inversion method 
using the optimized search window has high precision and 
high noise immunity.

Actual data application

One‑dimensional data application

To further verify the applicability and effectiveness of the 
inversion method, we select actual logging data from a shale 
gas field in southern China to test it. Figure 14 shows the 
depth-domain logging curves of actual data. By using the 

kelly bushing, seismic datum and replacement velocity, 
the depth-domain logging curves are converted to the time 
domain. Figure 15 gives the time domain logging curves 
(blue line) with a sampling interval of 1 ms, and there are 
369 sampling points in total. Based on a 35-Hz Ricker wave-
let and BI_Zoeppritz equation, the PP-wave synthetic angle 
gathers with an incident angle of 0°–30° are generated as 
shown in Fig. 16a. Random noise with SNR of 3 is added 
on the angle gathers, as shown in Fig. 16b. The goal of the 
inversion method is to obtain VP, VS and BI, so the corre-
sponding model parameter vector has 1107 unknowns. To 
improve the inversion accuracy, an initial model, an opti-
mized search window and an optimized initial population 
are introduced into the inversion process. The green line 
in Fig. 15 denotes the initial model, which is the result of 
smoothing the actual logging data. The optimized search 
window is the search range obtained by expanding the initial 
model to both sides and including all possible values of the 
elastic parameters. The optimized initial population is the 

Fig. 10  Comparison of convergence speed in four cases: a optimized search window and b linear search window for angle gathers without noise, 
and c optimized search window and d linear search window for angle gathers with SNR = 3
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Fig. 11  Population distributions at the last generation in four cases: a optimized search window and b linear search window for angle gathers 
without noise, and c optimized search window and d linear search window for angle gathers with SNR = 3

Fig. 12  Inversion results of model data a without noise and b with SNR = 1. The green line and blue line denote the initial model and theoretical 
data, and the black line and red line denote the search windows and corresponding inverted elastic parameters
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population of N mutant individuals in the initial model. In 
the inversion process, we set the population size as 800 and 
the maximum number of genetic iterations as 2000.

Figure 17a gives the inverted elastic parameters with-
out noise. It can be noted from Fig. 17a that the inversion 
method can get more reasonable VP and VS. However, the 
inversion error of BI is small only in the regions where the 
BI changes slowly. This is because the far-angle gathers 
are not used in the process of AVO inversion. Compared 
with low-angle gathers, wide-angle gathers can be used to 
obtain more accurate elastic parameters (Virieux and Operto 
2009). Accordingly, it is not surprising that the inversion 
results of BI around 1680 ms and 1835 ms are poor. Fig-
ure 17b gives the inverted elastic parameters with SNR = 3. 
Figure 18 gives the corresponding absolute error. The lines 
in red denote the error between the inverted elastic param-
eters without noise and the actual data, and the lines in blue 
indicate the error between the inverted elastic parameters 
with SNR = 3 and the actual data. From Fig. 18, we can see 
that the inversion accuracy decreases when the angle gath-
ers contain random noise (SNR = 3). This is more evidence 
for the fact that the noise has a great influence on inversion 
accuracy. Nevertheless, the inverted elastic parameters still 
accord with the actual data.

Figures 19a and 20a show the synthetic angle gathers 
computed by using the inversion results of Fig. 17a and b, 
respectively. Figure 19b gives the difference section between 
the synthetic angle gathers of Fig. 19a and the raw angle 
gathers without noise of Fig. 16a. Figure 20b gives the 
difference section between the synthetic angle gathers of 
Fig. 20a and the raw angle gathers with SNR = 3 of Fig. 16b. 
From Figs. 19 and 20, we can find that the synthetic angle 
gathers calculated by the inversion results are close to the 
raw angle gathers without noise as shown in Fig. 16a. Only 
a few weak events and random noises remain on the different 
sections, which proves that the inversion method has good 
feasibility and noise immunity.

Figure 21 displays the evolution of the initial popula-
tion with genetic iterations. The horizontal and vertical 
axes represent CCE and RMSE, respectively, which are the 
multi-objective function values after linear transformation. 
From this figure, we can see that all individuals of the ini-
tial population are arbitrarily and widely distributed in the 
objective space and then gradually converge to the global 
optimal solution, which denotes that NSGA II can effectively 
deal with the multi-objective function optimization prob-
lem. In addition, the inversion method converges quickly 
in the early stage of genetic iterations and then slows down 
with the increase in genetic iterations. Figure 22 gives the 

Fig. 13  Error comparison of inverted elastic parameters without noise 
(red line) and with SNR = 1 (blue line)

Fig. 14  Actual data in depth domain

Fig. 15  Actual data in time domain. The blue line and green line rep-
resent the logging data and corresponding initial model, respectively
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population distribution of the last generation in the objective 
space. It can be seen from Fig. 22 that Pareto optimal front 
also has poor convergence because of the random noise in 
angle gathers.

Two‑dimensional data application

We use actual seismic data obtained from a shale gas fields 
in southwest China to test the proposed method. To suppress 
noise and improve the SNR of seismic data, partial stack of 
incident angle gathers is usually needed before inversion. 
Figure 23 shows a two-dimensional (2D) section of the 
PP-wave seismic data based on partial angle stack ranges 
of 4°–16°, 15°–25° and 24°–36°. The main frequencies of 
three partial angle stack data are 31 Hz, 30 Hz and 29 Hz, 

Fig. 16  PP-wave angle gathers a without noise and b with SNR = 3

Fig. 17  Inversion results of actual data a without noise and b with SNR = 3. The green line and blue line denote the initial model and actual data, 
and the black line and red line denote the search windows and corresponding inverted elastic parameters

Fig. 18  Error comparison of inverted elastic parameters without noise 
(red line) and with SNR = 3 (blue line)
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respectively. Well C is located in CDP 1528. The YM and PR 
of Well C are calculated by using Eqs. 4 and 5. The statistical 
analysis indicates that YMmin = 1.2365 × 1010 kg m−1 s−2 , 
YMmax = 8.0345 × 1010 kg m−1 s−2 , PRmin = 0.1409 and 
PRmax = 0.3667 . Therefore, the corresponding BI can be 
calculated according to Eq. 6. To perform well-seismic cali-
bration, a 30-Hz Ricker wavelets is created and the RPP is 
calculated by using BI_Zoeppritz equation. To be consistent 
with the actual seismic data, the PP-wave synthetic angle 
gathers are generated and partially stacked according to 
angle ranges of 4°–16°, 15°–25° and 24°–36°. Based on the 
well-seismic calibration, the time domain well logs of Well 
C are shown as the blue line in Fig. 25.

In order to perform the AVO inversion for BI of the 2D 
actual seismic data, we establish a 2D initial model and a 

2D optimized search window based on horizons and log-
ging data of Well C. In Fig. 25, the green line and black 
line denote the initial model and the optimized search win-
dows for the seismic trace near the borehole (CDP 1528). 
In the inversion process, we set the population size as 800 
and the maximum number of genetic iterations as 2000 for 
each trace of the 2D seismic section. Figure 24 shows the 2D 
elastic parameters section inverted by the proposed method. 
To further observe the inversion accuracy of the proposed 
method, the red line in Fig. 25 gives the inverted results of 
the seismic trace near the borehole (CDP 1528). It can be 
seen that the inversion results of the proposed method are in 
good agreement with actual logging data, especially near the 
1680–1740 ms. In summary, it is feasible to obtain BI from 
actual seismic data by using the proposed method.

Fig. 19  a Synthetic angle gathers for inverted elastic parameters of Fig. 17a, b the difference section between the synthetic angle gathers and raw 
angle gathers without noise of Fig. 16a

Fig. 20  a Synthetic angle gathers for inverted elastic parameters of Fig. 17b, b the difference section between the synthetic angle gathers and raw 
angle gathers with SNR = 3 without noise of Fig. 16b
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Discussion

Because NSGA II is a global optimization algorithm for 
multi-objective function, the proposed inversion method in 
this paper can estimate the global optimal solution of VP, VS 
and BI. However, the computation cost of NSGA II is very 
large due to the iterative calculation of multi-objective func-
tion values by using the BI-Zoeppritz equation. Therefore, the 
maximum value of genetic iterations cannot be set too large.

For complex geological models with drastic changes 
in elastic parameters, the proposed inversion method can 
constrain the entire inversion process with an initial model 
and an optimized search window to reduce the calculation 
time and improve the inversion accuracy. In the inversion 
of actual seismic data, the initial model of VP and VS can 
also be constructed by velocity analysis in seismic data 
processing. The initial model of BI can also be defined by 

rock physics. An initial population consisting of N mutant 
individuals can be generated to approximate the real model 
through nondominated sorting, tournament selection, simu-
lated binary crossover, real parameter mutation and elitism 
(Liu and Wang 2018).

Although the BI with high accuracy can be obtained by 
the proposed inversion method, there are two factors that 
affect the inversion accuracy. One is the range of elas-
tic parameters. Figure 4 shows the VP (2.5–7.5 km/s), VS 
(1.2–4.2 km/s), and BI (0–100) of theoretical model, while 
Fig. 15 shows the VP (2.8–6.8 km/s), VS (2.0–3.6 km/s) 
and BI (30–54) of actual data. By comparing Fig. 6 with 
Fig. 18, we can find that the larger the variation range of 
elastic parameters, the larger the error of inversion results. 
The other is noise that increases the uncertainty of inversion 
results, so noise should be suppressed as much as possible 
in seismic data processing.

Fig. 21  Evolution of the initial population with genetic iterations using angle gathers a without noise and b with SNR = 3. The different colored 
dots represent individuals of different genetic iterations

Fig. 22  Cross-plot of CCE and RMSE at the last generation using angle gathers a without noise and b with SNR = 3
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In addition, due to the influence of the population size 
and the iteration number, the computation cost of NSGA II 
is very large. Therefore, we only use 1D model, 1D actual 
logging data and 2D actual seismic data to test the effective-
ness of the proposed method on a personal computer with 
Intel Core CPU i7-8700, NVidia GeForce GTX 1050TI and 
8 GB of RAM. However, this method can also be applied to 
perform the inversion of three-dimensional actual seismic 
data to estimate BI, which needs further research on high-
performance clusters.

Conclusion

We propose an AVO inversion method for BI based on 
BI_Zoeppritz equation and NSGA II. In order to directly 
estimate the BI, we derive the exact Zoeppritz equation by 
expressing the density as a function of VP, VS and BI and 
obtain the Zoeppritz equation for BI (BI_Zoeppritz equa-
tion). We also give the analytic expression of RPP about VP, 
VS and BI. This equation does not introduce any hypothesis, 
so the RPP can be calculated from VP, VS and BI without 

loss of accuracy in the inversion process. Because the AVO 
inversion is a nonlinear problem for three elastic parameters, 

Fig. 23  PP-wave seismic stack section of a 4°–16°, b 15°–25°, and c 
24°–36°

Fig. 24  Inversion results section of a VP, b VS and c BI

Fig. 25  Inversion results of a VP, b VS and c BI for the seismic trace 
near the borehole (CDP 1528). The green line and blue line denote 
the initial model and actual logging data, and the black line and red 
line denote the search windows and corresponding inverted elastic 
parameters
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we consider it as a global optimization problem of multi-
objective function and employ NSGA II to minimize multi-
objective function at the same time. To reduce the computa-
tion time and improve the inversion accuracy, the proposed 
method can construct an initial model and an optimized 
search window to constrain the entire inversion process.

The validity and practicability of the proposed method 
are verified by the test of theoretical model and actual data. 
According to the test results, it can be found that the search 
window has a big impact on inversion accuracy, and the 
optimized search window can get better inversion results 
than the linear search window. The appropriate number of 
genetic iterations can significantly reduce the computation 
cost while ensuring convergence and inversion accuracy. In 
addition, the inversion results of angle gathers with SNR = 3 
and SNR = 1 show that the proposed method has good noise 
immunity. The application of actual data indicates that it 
is feasible to obtain BI from actual seismic data using the 
proposed method.

Acknowledgements This work is founded by the SINOPEC’s Scientific 
and Technological Development Program of China (No. P18075-6).

Compliance with ethical standards 

Conflict of interest On behalf of all authors, the corresponding author 
states that there is no conflict of interest.

References

Aki K, Richards PG (1980) Quantitative seismology: theory and meth-
ods. W H Freeman and Co, Cambridge, pp 144–154

Deb K, Agrawal RB (1995) Simulated binary crossover for continuous 
search space. Complex Syst 9:115–148

Deb K, Agrawal S (1999) A niched-penalty approach for constraint 
handling in genetic algorithms. In: International conference on 
artificial neural networks and genetic algorithms, pp 235 − 243

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist 
multi-objective genetic algorithm: NSGA-II. IEEE Trans Evol 
Comput 6(2):182–197

Fang Y, Zhang FQ, Wang YC (2016) Generalized linear joint PP–PS 
inversion based on two constraints. Appl Geophys 13(1):103–115

Fu H, Wang X, Zhang L, Gao R, Li Z, Zhu X, Xu W, Li Q, Xu T (2015) 
Geological controls on artificial fracture networks in continental 
shale and its fracability evaluation: a case study in the Yanchang 
Formation, Ordos Basin, China. J Nat Gas Sci Eng 26:1285–1293

Gholami R, Rasouli V, Sarmadivaleh M, Minaeian V, Fakhari N (2016) 
Brittleness of gas shale reservoirs: a case study from the north 
Perth basin, Australia. J Nat Gas Sci Eng 33:1259–1277

Glorioso JC, Rattia A (2012) Unconventional reservoirs: basic petro-
physical concepts for shale gas. In: SPE/EAGE European uncon-
ventional resources conference & exhibition-from potential to 
production

Goldberg DE (1989) Genetic algorithms in search, optimization and 
machine learning. Addison-Wesley, Boston

Grigg M (2004) Emphasis on mineralogy and basin stress for gas shale 
exploration. In: SPE meeting on gas shale technology exchange

Guo TL, Zhang HR (2014) Formation and enrichment mode of 
Jiaoshiba shale gasfield, Sichuan Basin. Petrol Explor Dev 
41(1):28–37

Jarvie DM, Hill RJ, Ruble TE, Pollastro RM (2007) Unconventional 
shale-gas systems: the Mississippian Barnett Shale of north-cen-
tral Texas as one model for thermogenic shale-gas assessment. 
AAPG Bull 91(4):475–499

Jia CZ (2017) Breakthrough and significance of unconventional oil 
and gas to classical petroleum geological theory. Petrol Explor 
Dev 44(1):1–10

Jin X, Shah SN, Roegiers JC, Zhang B (2014a) Fracability evaluation 
in shale reservoirs—an integrated petrophysics and geomechanics 
approach. In: Proceedings of the SPE hydraulic fracturing technol-
ogy conference

Jin X, Shah SN, Truax JA, Roegiers JC (2014b) A practical petrophysi-
cal approach for brittleness prediction from porosity and sonic 
logging in shale reservoirs. In: SPE annual technical conference 
and exhibition

Li T, Mallick S (2015) Multicomponent, multi-azimuth prestack seis-
mic waveform inversion for azimuthally anisotropic media using 
a parallel and computationally efficient non-dominated sorting 
genetic algorithm. Geophys J Int 200(2):1134–1152

Li JN, Wang SX, Dong CH, Yuan SY, Wang JB (2016) Study on fre-
quency-dependent characteristics of spherical-wave PP reflection 
coefficient. Chin J Geophys 59(10):3810–3819

Liu W, Wang YC (2018) Multicomponent prestack joint AVO inversion 
based on exact Zoeppritz equation. J Appl Geophys 159:69–82. 
https ://doi.org/10.1016/j.jappg eo.2018.07.017

Mcglade C, Speirs J, Sorrell S (2013) Unconventional gas—a review 
of regional and global resource estimates. Energy 55(1):571–584

Ostrander WJ (1984) Plane wave reflection coefficients for gas sands at 
non-normal angles of incidence. Geophysics 49(10):1637–1648

Pei P, Ling K, Hou X, Nordeng S, Johnson S (2016) Brittleness inves-
tigation of producing units in Three Forks and Bakken formations, 
Williston basin. J Nat Gas Sci Eng 32:512–520

Rickman R, Mullen MJ, Petre JE, Grieser WV, Kundert D (2008) A 
practical use of shale petrophysics for stimulation design opti-
mization: all shale plays are not clones of the Barnett Shale. In: 
Proceedings of the SPE annual technical conference and exhibi-
tion. Society of Petroleum Engineers

Virieux J, Operto S (2009) An overview of full waveform inversion in 
exploration geophysics. Geophysics 74(6):WCC1–WCC26

Wang FP, Gale JF (2009) Screening criteria for shale-gas systems. Gulf 
Coast Assoc Geol Soc Trans 59:779–793

Xie W, Wang YC, Liu XQ, Bi CC, Zhang FQ, Fang Y, Tahir A (2019) 
Nonlinear joint PP–PS AVO inversion based on improved Bayes-
ian inference and LSSVM. Appl Geophys 16(1):64–76

Yin XY, Liu XJ, Zong ZY (2015) Pre-stack basis pursuit seismic inver-
sion for brittleness of shale. Petrol Sci 12(4):618–627

Yuan SY, Liu Y, Zhang Z, Luo CM, Wang SX (2019) Prestack sto-
chastic frequency-dependent velocity inversion with rock-physics 
constraints and statistical associated hydrocarbon attributes. IEEE 
Geosci Remote Sens Lett 16(1):140–144

Zhang D, Ranjith PG, Perera MSA (2016) The brittleness indices used 
in rock mechanics and their application in shale hydraulic fractur-
ing: a review. J Petrol Sci Eng 143:158–170

Zoeppritz K (1919) On the reflection and propagation of seismic waves. 
Gott Nachr I:66–84

Zong ZY, Yin XY, Wu GC (2013) Elastic impedance parameterization 
and inversion with Young’s modulus and Poisson’s ratio. Geo-
physics 78(6):N35–N42

Zou CN, Yang Z, Zhang GS, Hou LH, Zhu RK, Tao SZ, Yuan XJ, 
Dong DZ, Wang YM, Guo QL, Wang L, Bi HB, Li DH, Wu N 
(2014) Conventional and unconventional petroleum “orderly accu-
mulation”: concept and practical significance. Petrol Explor Dev 
41(1):14–30

https://doi.org/10.1016/j.jappgeo.2018.07.017


Vol.:(0123456789)1 3

Acta Geophysica (2020) 68:1083–1096 
https://doi.org/10.1007/s11600-020-00464-7

RESEARCH ARTICLE - APPLIED GEOPHYSICS

Interpretation of gravity anomaly over 2D vertical and horizontal thin 
sheet with finite length and width

Arkoprovo Biswas1 

Received: 6 May 2020 / Accepted: 7 July 2020 / Published online: 16 July 2020 
© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2020

Abstract
Gravity data are often used for delineation of the lateral and vertical extension of mineralized bodies buried at different 
depths. Various parameters associated with the buried bodies are the primary concern for mineral exploration purposes. 
Hence, a reliable and efficacious interpretation method is developed for the delineation of gravity anomaly data over the 2D 
vertical and horizontal sheet with finite length and width associated with mineralized bodies. The parameters viz. amplitude 
coefficient (k), location (x0), depth to the top of the body (h), length of the sheet (L), and shape factor (q) for 2D vertical sheet-
type structure and depth (h) and width (w) of the sheet for 2D horizontal sheet were resolved. Restricting x0 and q has given 
very reliable results for the 2D vertical sheet, and the w for 2D horizontal sheet shows the problem of equivalence. However, 
in all cases, the delineated parameters are within the expected uncertainty. The present interpretation method was applied 
to synthetic and noisy data and three field examples from the USA, Canada, and Sweden for mineral exploration purposes. 
It has also been seen that the present study is more reliable in delineating the actual structure associated with mineralized 
bodies for the 2D vertical and horizontal sheet-type structure. The delineated parameters are in outstanding agreement with 
the earlier works, borehole information and also updated the actual subsurface structure.

Keywords Gravity anomaly · 2D sheet · VFSA · Mineral exploration

Introduction

Gravity data have been used for many purposes from crustal 
studies to exploration of oil, gas, and mineralized bodies. 
Most of the structures associated with such structures were 
approximated by perfect geological bodies viz. a sphere, 
horizontal or vertical cylinder with semi-infinite length and 
width, dyke and also by a 2D finite sheet-like structures. For 
such types of structures, numerous interpretation methodolo-
gies were developed and the best interpretation for different 
parameters was delineated.

The gravity anomaly over 2D vertical and horizontal 
sheet with finite length and width has considerable atten-
tion for the interpretation of mineralized bodies (Abdelrah-
man et al. 2016; Kara and Hoskan 2016; Essa and Geraud 
2020) Tlas and Asfahani 2018). Approximation of the depth, 

and the exact length and width of any mineralized body is 
very essential for exploration purposes. Many interpretation 
approaches were developed for the interpretation of gravity 
data which can be categorized in three different ways. The 
first category is the continuous modeling where you need 
the density distribution along with other geophysical data 
knowledge to constrain the subsurface structures (Talwani 
et al. 1959; Holstein et al. 2010; Hinze et al. 2013). The 
second category was defined earlier by Nabighian (1972, 
1974) as either automatic or semi-automatic methods which 
were also applied by Blakely and Simpson (1986), Reid et al. 
(1990), Marson and Klingele (1993), Klingele et al. (1991) 
and Mackleod et al. (1993). The third category is the quan-
titative interpretation which the present work is based upon 
is the interpretation of various parameters of idealized sub-
surface structures (Essa and Munschy 2019; Anderson et al. 
2020; Geldart et al. 1966; Green 1976).

Many interpretations were developed in the past consider-
ing various approaches starting from curve matching, graphi-
cal methods, nomograms, least-square methods, etc. The 
detailed information can be seen from various literature pub-
lished earlier (Biswas 2015, 2016; Abdelrahman et al. 2016; 
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Tlas and Asfahani 2018, and references therein). Moreover, 
advanced techniques such as Fourier transform, Euler decon-
volution, Mellin transform, neural network, least-squares, 
minimization approaches, Werner deconvolution, etc., (Ode-
gard and Berg 1965; Sharma and Geldart 1968; Hartmann 
et al. 1971; Jain 1976; Thompson 1982; Gupta 1983; Lines 
and Treitel 1984; Mohan et al. 1986; Abdelrahman 1990; 
Abdelrahman et al. 1991; Abdelrahman and El-Araby 1993; 
Abdelrahman and Sharafeldin 1995; (Khalil et al. 2015; Khalil 
et al. 2014; Abdelrahman and Essa 2015; Essa 2014; Abdel-
rahman and Essa 2013; Abdelrahman et al. 2003 Elawadi et al. 
2001) were also developed for the understanding of gravity 
anomalies caused due to different subsurface structures.

Earlier many subsurface structures interpreted using dif-
ferent approaches considered different structures for the 
same field anomaly data. This is one of the major problems 
in delineating the actual subsurface structures associated 
with a mineralized body. Although the main objective is 
to find the accurate depth of the body, however, many fail 
to determine the near probable true structure of the bodies. 
Gravity data interpretation are always ill-posed, and it is 
very difficult to determine the actual solution, and some-
times it will give an equivalent solution that could be errone-
ous (Mehanee 2014; Mehanee and Essa 2015). To overcome 
these limitations, global optimization methods such as neu-
ral network modeling (Abedi et al. 2010), very fast simu-
lated annealing (Biswas 2015, 2016); differential evolution 
algorithm (Ekinci et al. 2016, 2019; Balkaya et al. 2017), 
particle swarm optimization (Singh and Biswas 2016; Essa 
and Munschy 2019; Anderson et al. 2020), ant colony opti-
mization (Srivastava et al. 2014) were applied to interpret 
gravity data. A review on Global optimization in potential 
field anomalies is described by Ekinci et al. (2020) and ref-
erences therein. Hence, in the present work, interpretation 
of all parameters associated with a 2D vertical and horizon-
tal sheet with finite length and width was carried out. Very 
fast simulated annealing after Biswas 2015) was applied for 
the effective interpretation of the gravity anomaly over 2D 
sheet-type structure besides the uncertainty related with the 
interpretation of model parameters which was not discussed 
in earlier literature. The method is confirmed and appraised 
on synthetic and noisy data and also from three field data 
from the USA, Canada, and Sweden.

Methodology

Formulation of the forward problem

The gravity anomaly over a 2D vertical and horizontal sheet 
of finite length and width on a plane is measured by the fol-
lowing equation.

2D vertical sheet with finite length

Following Nettleton (1942), and Kara and Hoskan (2016), 
the gravity anomaly produced by a vertical sheet/line of 
finite length is given by (Fig. 1a)

where k is the amplitude coefficient (k  = GP, where G is 
gravity constant, ρ is the linear density of anomalous mass 
in the line), h is the depth from the top of the sheet, L is the 
length of the sheet, and x0 is the origin of the sheet on the 
surface. The above Eq. 1 can also be written as

where other parameters remain the same except the power 
(1/2) in Eq. 1 is taken as another parameter (q), where q = 0.5 
and is a dimensionless quantity and can also be taken as a 
shape factor. All five parameters will be interpreted in the 
present work.
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Fig. 1  A 2D sheet type structure within the subsurface a vertical with 
finite length, and b horizontal with finite width
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2D horizontal sheet with finite width

Following Pick et al. (1973), and Abdelrahman et al. (2016), 
the general expression for gravity anomaly produced over 
a horizontal sheet/line of finite width is given by (Fig. 1b)

where k is the amplitude coefficient (k= 2Gσt, where G is 
the gravitational constant, and σt is the surface density con-
trast of the sheet where t is the thickness of the thin sheet), 
h is the depth from top to the middle point of the sheet, w 
is the width of the sheet, and x0 is the origin of the sheet on 
the surface. However, this Eq. 3 is only effective once the 
thickness of the sheet is very insignificant as compared to 
its width.

Inversion using global optimization

The global optimization method was developed to find out 
the best model (Global solution) in the presence of sev-
eral local optima. It is a controlled optimization approach 
that tries to find out the globally best solutions. It has been 
applied in many applications and since geophysical models 
are mostly nonlinear, and hence, it needs a global solution. In 
the present work, an advanced version of simulated anneal-
ing (SA) termed very fast simulated annealing (VFSA) will 
be used in the gravity data.

Very fast simulated annealing (VFSA)

SA or VFSA was resulting from the similarity of the heat 
bath algorithm (Sen and Stoffa 2013) and was used for 
the delineation of much geophysical data. An overview of 
VFSA is described in many published literature (Sen and 
Stoffa 2013; Sharma 2012; Biswas 2015) and henceforth not 
described here for brevity. VFSA was developed to negate 
the effect of linear inversion approach since all optimization 
problems are not linear. The method is very robust and has 
high stability and enhanced resolution (in the presence of 
multiple local optima) of the solution. It can also negate the 
problem of non-uniqueness and takes very less computing 
time in extremely large data, its resolution of the data and 
can find the global model (solution/s) (Sen and Stoffa 2013). 
Also, Ingber and Rosen (1992) mentioned that VFSA takes 
very little CPU time and memory and gives high-resolution 
results.

Here, the calculation of misfit error for delineations of 
gravity anomaly is taken as (after Sharma and Biswas 2013)

(3)

g
(

xi
)

= k

[

tan−1

(

w − 2(xi − x0)

2h

)

+ tan−1

(

w + 2(xi − x0)

2h

)]

i = 1, 2, 3,…N

where N refers to the number of data, D0

i
 and Dc

i
 is the ith 

observed data and model responses (data), D0
max

 and D0

min
 are 

the maximum (+) and minimum (−) value of the synthetic/
field data.

Global model and uncertainty analysis

Global model/solutions and uncertainty analysis were 
applied in various fields of study and also in the interpre-
tation of nonlinear geophysical data (Ekinci et al. 2019, 
2020; Fernández-Martínez et al. 2020). So, a globally best 
model and uncertainty analysis are a must for every nonlin-
ear geophysical inversion. Hence, the procedure developed 
by Mosegaard and Tarantola (1995) and Sen and Stoffa 
(1996) was applied in the present study. Moreover, uncer-
tainty analysis and the probability density function (PDF) 
for every model parameter were studied following Trivedi 
et al. (2020). The details of the global model and uncertainty 
analysis are described in various kinds of literature (Sharma 
2012; Sharma and Biswas 2013) and not conversed here for 
conciseness. The developed algorithm for interpretation of 
gravity anomaly data was performed in a Windows 10 plat-
form by MS FORTRAN Developer studio through the Intel 
Core i7 processor with a CPU time of 45 s.

Results and discussion

Synthetic example

Parameter search and tuning

In the interpretation of gravity or other potential field data 
caused by some idealized buried structures, it is known that 
the location of the body (x0) could be understood from the 
highest/lowest peak, depth of the body (h) from the surface 
can be predicted from the half-width, and the amplitude 
coefficient (k) from the highest or lowest value (Nabighian 
1972) for the qualitative delineation. This was shown in 
various literature published earlier; however, Srivastava and 
Agarwal (2010) observed that the horizontal location (x0) 
and the shape factor (q) are the most stable parameters. This 
was also shown in the interpretation of gravity anomaly data 
(Biswas 2015, 2016; Biswas et al. 2017; Trivedi et al. 2020). 
Hence, in the present work, a two-step process was executed. 
To delineate the best interpretation for all the parameters, 
the search space was kept in a large range. After a single 

(4)� =
1

N

N
∑

i=1

(

D0

i
− Dc

i

|D0

i
| +

(

D0
max

− D0

min

)

∕2

)2



1086 Acta Geophysica (2020) 68:1083–1096

1 3

run of the inversion, if the interpreted parameters are within 
the specified range, the search space was condensed and the 
inversion procedure was again repeated (10 runs). Next, it 
was observed as mentioned earlier that the interpretation of 
parameter (x0) is the same as the original value is chosen 
and (q) is very close to the same value taken. Hence, in 
the next step, both the parameters (x0 and q) were restricted 
to its original value and the inversion process was carried 
out. This procedure shows that all the other parameters (k, 
h, and L) were interpreted accurately with less error and 
uncertainty. This procedure was followed for every syn-
thetic model and also for field data associated with verti-
cal 2D sheet with finite length. In the case of a 2D sheet 
with finite width, all the parameters were interpreted and 
the results were discussed. Here, for 2D finite width sheet, 
x0 also showing the same as discussed for 2D finite length 
sheet. However, other parameters were interpreted without 
restricting x0 to its original value.

Model 1 (vertical sheet)

A 2D inclined sheet with a finite length model was taken, 
and the anomaly (Fig. 2) was generated using Eq. 1. The 
two-step inversion process was executed, and the parameters 
(k, x0, h, L, q) were delineated (Table 1). Histograms were 
also prepared for all parameters and are shown in Fig. 3a. It 
can be seen that the parameters x0 and q are very close to the 
true value. Hence, in the next step, the parameters x0 and q 
were restricted to its original value and the inversion process 
was again carried out. After restricting the parameters x0 and 
q, the histogram was again prepared and now it can be seen 
that the other parameters (k, h, and L) are near to its original 
value (Fig. 3b).

Moreover, to see the effect of noise, 10% Gaussian 
noise was added in Model 1 and the inversion process was 
repeated. Figure 3c, d shows the histograms from all param-
eters and after restricting x0 and q to its original value. From 
the histogram analysis, it can be concluded that the two-
step inversion process can exactly delineate all the model 

parameters. Responses from synthetic data without noise 
and noisy data and calculated models are seen from Fig. 2a, 
b. The final interpreted parameters with errors are shown in 
Table 1, and it can be seen that following this two-step pro-
cedure, the estimated errors can be reduced and the param-
eters are almost the true value.

A 3D cross-plot study was also accomplished to see 
the relationship between different parameters and their 

Fig. 2  Calculated model response for Model 1 (vertical sheet)

Table 1  Inversion results from 
Model 1

Parameters True model Search space Synthetic data Synthetic data 
(controlled x0 
and q)

Noisy data Noisy data 
(controlled x0 
and q)

k (mGal) 100 0–200 80.9 ± 7.5 100.2 ± 1.4 116.9 ± 17.8 98.4 ± 4.3
x0 (m) 250 0–300 250.0 ± 0.0 250.0 ± 0.0 250.0 ± 0.1 250.0 ± 0.0
h (m) 5 0–10 4.7 ± 0.2 5.0 ± 0.1 5.2 ± 0.3 4.9 ± 0.3
L (m) 30 0–50 25.6 ± 1.9 29.9 ± 0.7 34.3 ± 3.8 30.9 ± 1.7
q 0.5 0–2 0.42 ± 0.0 0.5 ± 0.0 0.55 ± 0.1 0.5 ± 0.0
Error 1.8 × 10–6 3.7 × 10–9 9.0 × 10–5 8.3 × 10–5
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uncertainty associated with the final interpretation. It has 
been seen from the histogram study that restricting x0 and q 
will give better results. Hence, initially, when all the param-
eters were interpreted, a cross-plot between k, h, and L was 
prepared. It can be seen from Fig. 4a that the model shows 
a high range. In the next step, the parameters x0 and q were 
restricted to its true value and again the cross-plots between 
k, h, and L were made (Fig. 4b). It can be seen that after 
restricting x0 and q to its true value, the parameters are very 
near to its original value and the uncertainty decreases. This 
can also be seen from the results as shown in Table 1. Fur-
thermore, to check whether the existence of noise impacts 
the parameters, noise corrupted data were also evaluated and 

the outcomes were very near to the true value. Figure 4c, 
d shows the cross-plots for noisy data. Cross-plots study 
advocates that the model parameters are very adjacent to the 
original value (Yellow) and the ultimate mean model param-
eters remained in the uncertainty limitations (one standard 
deviation) and also in the peak PDF (Red).

Model 2 (vertical sheet)

An alternate model (Table 2) was taken with a high ampli-
tude coefficient, more depth, and a larger length of the sheet, 
and the anomaly was generated using Eq. 2. The two-step 
inversion process was also executed for this model (Fig. 5a). 

Fig. 3  Histogram study for Model 1 (vertical sheet)
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Fig. 4:  3D cross-plot for Model 1 (vertical sheet)
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Moreover, to check the effect of higher degrees of noises, 
20% Gaussian noise was also added in the data and the inver-
sion procedure was also carried out (Fig. 5b). Histogram 
analysis was also carried out for this model, and results 
reveal the same (Fig. 6a, b) as discussed for Model 1. Fig-
ure 6c, d shows the histogram derived from noisy data and 
also concludes that all the parameters were delineated cor-
rectly. The final interpreted models are shown in Table 2, 
and the responses from synthetic and noisy data are shown 
in Fig. 5a, b.

Model 3 (horizontal sheet)

This model is taken for a 2D horizontal sheet with finite 
width, and the anomaly was generated using Eq. 3 (Fig. 7). 
The inversion procedure was carried out for this model, and 
all the parameters were delineated. Histogram for this model 
was also prepared, and it can be seen that the parameters 
x0 and h were resolved very efficiently. However, there is a 
bit large range for k and w (Fig. 8a). This suggests that the 
location and the depth of the body are well solved; however, 
there is some uncertainty in delineating the other two param-
eters. Moreover, the study of the histogram for noisy data 
also tells the same as discussed (Fig. 8b).

Moreover, to study the uncertainty and relationship 
amongst different parameters, a 3D cross-plot is also stud-
ied for synthetic data without noise (Fig. 9a). From the 
cross-plot, it can be seen that h is well resolved, but for the 
specific value of h, there is a large range of w and k. This 
also suggests that for a specific depth (h) of the body, the 
width (w) of the body can change, and it will fit the data 
exactly well. This confirms that there is an equivalence 
problem associated with such type of structure. Moreover, 
the cross-plot study was also studied for noisy data and it 
also shows the same as discussed above (Fig. 9b). Cross-
plots study demonstrates that parameters (k, h, and w) are 
close to the initial value (Yellow). Mean model parameters 
endured in the uncertainty bounds (one standard devia-
tion) and also in the highest PDF (Red). The concluding 
interpreted parameters for this model are shown in Table 3, 
and the calculated models from both the data are shown in 
Fig. 7a, b.

Field example

Louga anomaly, USA

The field example is taken from the Louga gravity anom-
aly, USA (after Nettleton 1976, Fig. 14.8 therein). This is 
a north–south gravity profile. The data were digitized from 

Table 2  Inversion results from Model 2

Parameters True model Search space Synthetic data Synthetic data (con-
trolled x0 and q)

Noisy data Noisy data 
(controlled x0 
and q)

k (mGal) 1000 0–1500 851.2 ± 142.99 1001.0 ± 11.4 996.3 ± 224.8 1053.6 ± 35.3
x0 (m) 250 0–300 250.0 ± 0.0 250.0 ± 0.0 250.0 ± 0.2 250.0 ± 0.0
h (m) 8 0–10 7.7 ± 0.3 8.0 ± 0.1 8.2 ± 0.5 8.3 ± 0.3
L (m) 50 0–100 45.5 ± 4.5 49.9 ± 0.9 41.2 ± 6.3 43.5 ± 2.5
q 0.5 0–2 0.45 ± 0.1 0.5 ± 0.0 0.47 ± 0.1 0.5 ± 0.0
Error 2.0 × 10–5 1.8 × 10–9 7.3 × 10–4 6.3 × 10–4

Fig. 5  Calculated model response for Model 2 (vertical sheet)
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Nettleton (1976) at the same interval. The data were inter-
preted using the present inversion method. It has been found 
that the anomaly is due to a vertical 2D sheet. The depth and 
length of the sheet interpreted to be 5 and 37.2 km, respec-
tively. The field data were earlier interpreted as a spherical 
structure by Mohan et al. (1986) using Mellin transforma-
tion and a finite line by Kara and Hoskan (2016). The depth 
obtained from different methods is shown in Table 4. The 
comparison between field data and calculated model as well 
as the subsurface structure is shown in Fig. 10 and compared 
with Kara and Hoskan (2016). 

Mobrun anomaly, Noranda, Quebec, Canada

The gravity anomaly example was taken over a massive 
sulfide ore body from Noranda Mining District, Quebec, 
Canada (Siegel et al. 1957; Grant and West 1965). The field 
data were taken from Grant and West (1965) and digitized 
at the same interval. The field data were earlier interpreted 
by several workers using diverse interpretation approaches 
(Skeels 1963; Roy 1966; Atchuta Rao et al. 1985; Sunda-
rarajan et al. 2000). However, the same field data were also 
interpreted lately by Biswas (2015) considering horizontal 

Fig. 6  Histogram study for Model 2 (vertical sheet)
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cylinder, Biswas (2016) considering an inclined infinite 
sheet using VFSA optimization, Singh and Biswas (2016) 
using particle swarm optimization, and Al-Garni (2018) 
considering inclined finite sheet using integral transform 
method. The data were again interpreted considering a 2D 
vertical finite sheet in the present case, and it was found 
that the depth obtained from the present study is 31.8 m 
and the length of the sheet is 161.4 m. The interpreted depth 
obtained in the present study is very close to the drilling 
data (30.48 m). The field data were also interpreted by 
Siegel et al. (1957) and Skeels (1963) considered a vertical 
prism. They have also estimated the depth to the bottom 
of the ore bodies. The interpreted depth and the length of 
the body are recalculated in the present work and shown in 
Table 5. It must be mentioned that the ore body present in 
that area is vertical (see Fig. 9; Roy 1966). It should also 
be mentioned that earlier the same anomaly was interpreted 
considering infinite horizontal cylinder, inclined infinite 
sheet. However, the results obtained in those works are 
conclusive, but the same anomaly also suggests that it has 
a depth extension and the length of the ore body can also 
be determined. The error estimated from the present study 
is less compared to other interpretation methods consider-
ing different subsurface structures. A comparison of dif-
ferent estimated parameters is shown in Table 5. Figure 11 
shows the comparison of field data and model responses 

Fig. 7  Calculated model response for Model 3 (horizontal sheet)

Fig. 8  Histogram study for Model 3 (horizontal sheet)
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from present and earlier works along with the interpreted 
subsurface structure. 

Karrbo gravity anomaly, Sweden

The last gravity anomaly data over the pyrrhotite ore body 
at Karrbo, Vastmanland, Sweden (Shaw and Agarwal 1990) 
were taken for interpretation (Fig. 12). The data were taken 
from Shaw and Agarwal (1990) and digitized for the same 
interval. The data were earlier interpreted as horizontal 
cylinder/infinite horizontal rod (Tlas and Asfahani 2018; 
Singh and Biswas 2016; Biswas 2015; Asfahani and Tlas 
2012; Tlas et al. 2005); however, the width of the body was 
never interpreted. Hence, the field data were tried to inter-
pret considering a horizontal sheet with a finite width. The 
interpretation of the data shows that the depth of the body is 
4.6 m and with is 1.8 m, respectively. It can be well under-
stood from Table 6 that the depth and the location of the ore 
body are well delineated considering different structures and 
interpretation methods. However, in earlier cases, the width 
of the body is not delineated. Moreover, the responses from 
this interpretation perfectly fit with the field data (Fig. 12) 
which is also the case with earlier interpretation. Hence, it 
can be said that although the depth is well resolved in all the 
earlier interpretations, considering the width of the body it 
can also be delineated approximately although the width has 
some uncertainty the information can be used drilling and 
exploration purposes.

Fig. 9  3D cross-plot for Model 3 (horizontal sheet)

Table 3  Inversion results from Model 3

Parameters True model Search space Synthetic data Noisy data

k (mGal) 4 0–10 4.4 ± 0.8 3.9 ± 1.2
x0 (m) 250 0–300 250.0 ± 0.0 250.0 ± 0.3
h (m) 10 0–20 10.0 ± 0.1 9.9 ± 0.3
w (m) 6 0–10 5.7 ± 1.0 6.3 ± 1.2
Error 1.5 × 10–6 1.5 × 10–3
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Conclusion

Interpretation of gravity anomaly was carried out for 2D ver-
tical and horizontal sheet type structures with a finite length 
and width of the body. The present inversion method can 
delineate the amplitude coefficient (k), location (x0), depth 
to the top of the body (h), length of the sheet (L), and shape 
factor (q) for 2D vertical sheet type structure and depth 
(h) and width (w) of the sheet for 2D horizontal sheet. The 
inversion results from 2D vertical sheet shows that restrict-
ing the x0 and q to its original value taken would give the 
most reliable results. In case of 2D horizontal sheet, all the 
parameters are well delineated; however, the width (w) of the 
sheet shows some uncertainty, i.e., the parameters show an 
equivalent solution. However, in both the cases for 2D sheet, 
all the delineated parameters are within the uncertainty lim-
its. Histograms and cross-plots were also studied for both the 
cases, and it also shows the same. The present interpreta-
tion method has been verified with synthetic data with no 
noise and different degrees of Gaussian noise added in the 
data. Moreover, three field examples from different locations 
were interpreted in terms of mineral bodies delineation. The 
delineated parameters achieved by the current technique can 
be applied to know the subsurface structure associated with 
mineral deposits.

Table 4  Inversion results from Louga anomaly, USA

Parameters Search space Present study—(vertical 
finite sheet)

Kara and Hoskan (2016)—
(vertical finite line)

Mohan et al. (1986)—
(sphere)

Nettleton (1976)

k (mGal) 0–1000 454.7 ± 10.9 602 – –
x0 (km) − 1 to 1 − 0.53 ± 0.0 – – –
h (km) 0–10 5.0 ± 0.1 5.75 9.31 9.30
L (km) 0–50 37.2 ± 1.9 16.3 – –
q 0–2 0.5 ± 0.0 0.5 – –
Error 3.3 × 10–4 – – –

Fig. 10  Calculated model response and subsurface structure for 
Louga anomaly, USA
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Abstract
Koyna region in western India experienced more than 1,00,000 earthquakes of different magnitudes (M ~ 1.0–6.3) in the 
past five decades. Earthquakes in this region are believed to be triggered by a change in fluid pressure due to the percolation 
of the reservoir (Koyna and Warna reservoir) water into the subsurface. A drilling program was set up by the Ministry of 
Earth Sciences, India and International Continental Scientific Drilling Program (ICDP) to study the deep subsurface lithol-
ogy, structure, thermal attributes, etc. as the area is covered by ~ 950 m of thick Deccan basalts. This paper reviews all the 
hypotheses proposed by earlier workers to explain the mechanism of reservoir trigger causing earthquakes and summarizes 
such theories to a simple generic model. Slip tendency analysis was further carried out based on the proposed model to 
explain the dependence of fault slip on fault geometry, rock mechanical properties, stress and fluid gradients. Finally, faults 
at various depths were characterized (favourably oriented, unfavourably oriented and severely misoriented) based on their 
potential to go into failure.

Keywords Koyna seismicity · Warna seismicity · Reservoir-triggered seismicity · Koyna dam · Slip tendency · Depletion 
constant

Introduction

Earthquake is one of the most catastrophic natural calamities 
that pose serious threats to human life, wealth and economy. 
It is the result of the sudden release of accumulated stresses 
in the earth’s crust. Stress accumulation can occur due to 
tectonic plate movement or by human activities such as the 
construction of dams (Koyna, India), increase in pore pres-
sure by fluid injection like the December 8th, 2006 earth-
quake in Basel, Switzerland (Bachmann et al. 2012; Mig-
nan et al. 2015) and depletion in reservoir pressure during 
hydrocarbon production as in case of Groningen gas field, 
Netherlands (van Thienen-Visser and Breunese 2015; Bom-
mer et al. 2017). Stress relaxation occurs either by creating 
newer faults in the earth’s crust or by reactivating the pre-
existing fracture surfaces. When frictional strength between 
pre-existing fracture surfaces is exceeded by the accumu-
lated stress, faulting occurs (Goswami et al. 2017a), which 

may lead to an earthquake. Further, the effect of frictional 
strength and effective normal stresses can be reduced by the 
incorporation of fluids into the relatively weaker slip planes 
(Terzaghi 1943; Skempton 1961; Chen and Nur 1992) which 
is believed to be the primary reason behind the recurrent 
earthquakes in the Koyna region, of Maharashtra, Western 
India.

Koyna, situated on the Deccan Volcanic Province (DVP) 
in the western part of the Indian peninsula, was classified 
under a “seismically stable zone” till the early sixties (Rao 
et al. 1969). Recurrent earthquakes in that region began after 
the impoundment of the Koyna reservoir (Shivajisagar lake) 
in 1962 (Gupta and Rastogi 1976; Gupta 1992, 2002; Ras-
togi et al. 1997; Talwani 1997a, b; Chander and Kalpana 
1997; Chadha et al. 1997). This type of seismicity is known 
as “reservoir-triggered seismicity (RTS)” (Gupta et al. 1969, 
1997; Guha et al. 1971; Shashidhar et al. 2011; Dixit et al. 
2014). Since then, more than 100,000 earthquakes of magni-
tude greater than 1.0 (Rastogi et al. 1997; Singh and Chadha 
2010), about 200 earthquakes of magnitude around 4 (Dixit 
et al. 2014) and 22 earthquakes of magnitude greater than 
5 (Rao and Shashidhar 2016) were recorded and continue 
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being recorded. The largest of them was the M ~ 6.3 earth-
quake on 10th December 1967.

At any particular depth, the overburden stress is sup-
ported by the fluid pressure and the horizontal stresses (Rao 
et al. 1969). Earthquakes can be triggered by increasing the 
fluid pressure along the pre-existing fracture planes like it 
happened in Lake Mead, USA (Carder 1945); Hsinfengkiang 
dam (1962), China; Kariba dam (1963), Zambia-Zimbabwe; 
Kremasta dam (1966), Greece (Meade 1991; Gupta 2002). 
The presence of sedimentary strata in the subsurface can fur-
ther enhance the occurrence of such seismicity. Sedimentary 
rocks are capable of retaining water in their pore spaces and 
that can reduce the effective normal stress and enhance the 
potential of a fault plane to fail. Rao et al. (1969) attributed 
the negative Bouguer anomaly over the Koyna region to the 
presence of sedimentary layers under the Deccan volcanic 
cover but it lacks direct evidence. Since the region is covered 
by thick Deccan trap, the subsurface lithology, pore pressure 
variations and geological structures (faults and flexures), etc. 
are not well understood and documented. Thus, the existing 
models explaining RTS in the region are mostly based on 
scientific speculations with little direct “evidence”.

To close such knowledge gaps about the seismotectonics 
of the region, heat flow structure, geometry and dynamics 
of the pre-existing weak planes, a scientific deep drilling 
program was planned in the Koyna area by the Ministry of 
Earth Sciences, India and Intra Continental Drilling Program 

(Gupta et al. 2011, 2015). The drilling revealed the presence 
of 933 m thick Deccan basalt cover at Koyna underlain by 
the granitic metamorphic basement with no infra-trappean 
sedimentary layer (Roy et al. 2013). The cores composed 
of Deccan volcanics obtained from boreholes show typi-
cal signatures of flood basalts and individual pulses that 
vary in thickness from few metres to tens of metres of flows 
are identified by the presence of vesicles and amygdules. 
Well-developed joint sets dissect the massive flood basalt 
and evidence of fluid movement through them is observed 
(Roy et al. 2013). Goswami et al. (2017a, b) documented the 
mechanical properties of undelying granitoids, their porosi-
ties and the nature of pre-existing fractures in them. Some 
of the results from their study are used in the present paper. 
Below the basalt cover, metamorphosed intermediate/basic 
rocks are found that correspond to the mid-crustal lithology. 
The complete absence of granitic crust indicates an erosion 
of at least ~ 15–20 km of the upper crust before Deccan erup-
tion (Pandey 2016).

Fault geometry

Rastogi and Talwani (1980) and Langston (1981) suggested 
the presence of NNE–SSW and NW–SE striking lineaments 
and Chadha et al. (1997) proposed two NNE–SSW striking 
faults based on the linear distribution of earthquake epicent-
ers (Fig. 1). The presence of a possible N–S trending shear 

Fig. 1  Distribution of seismic-
ity in the Koyna-Warna seismic 
zone and associated inferred 
faults and lineaments. The ellip-
ses represent the spatial cluster-
ing of seismic activity along 
the region. Koyna River Fault 
Zone (KRFZ) and Patan fault 
mark the Western and Eastern 
boundary of the seismic zone, 
respectively. Several NW–SE 
trending lineation intersects the 
KRFZ and Patan fault. Modified 
after Gupta et al. (2015) and 
Yadav et al. (2016)
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zone along the Koyna river, buried under Deccan basalt, 
was also proposed by Kailasam and Murthy (1971). Sev-
eral NW–SE trending fracture planes are present in the 
region and these fractures should cut across the proposed 
NNE–SSW trending faults/lineaments (Talwani 1997b). 
From fault plane solutions, Tandon and Chaudhury (1968) 
estimated the orientation of the fault planes to be NNE and 
dipping ~ 66° towards the west.

Seismicity in the Koyna region

The cluster of earthquake epicenters in the region shifted 
towards 35 km southward since 1993–1994 after the Warna 
reservoir dam was built (Rastogi et al. 1997). Depending on 
the distribution of earthquake epicenters, four well-defined 
clusters of epicenters were proposed and in recent times fur-
ther enhancement in seismicity is observed near clusters B, 
C and D (Fig. 1) (Gupta et al. 2011). In cluster-A, the maxi-
mum focal depth of earthquakes are up to about 10 km (Rai 
et al. 1999; Gupta et al. 2015) and in clusters B, C and D it 
is up to 8 km (Rai et al. 1999; Dixit et al. 2014 and Gupta 
et al. 2015). Guha et al. (1968) estimated the foreshock and 
aftershock pattern of Koyna mainshock (Fig. 2). This type 
of pattern is similar to Mogi’s Type-II model (Gupta et al. 
1969) that explains the occurrence of the smaller number 
of earthquakes before and after the mainshock due to the 
heterogeneous structure and stress distribution in differ-
ent lithological units (Mogi 1963). Tandon and Chaudhury 
(1968) hypothesized a sinistral strike-slip fault responsible 
for the Koyna mainshock. Langston (1976), on the contrary, 
envisaged the presence of a sinistral oblique-slip fault dip-
ping towards east.

Rastogi and Talwani (1980) suggested a sinistral strike-
slip fault along NNE, near the Koyna reservoir and normal 
faulting along NW direction about 20 km southward from 
Koyna reservoir. Mandal et al. (1998) studied the stress drop 
related to the Koyna earthquakes and suggested two depth 

zones, (1) 0–1 km and (2) 5–13 km which show the release 
of high seismic energy and large stress drops. They argued 
that the larger stress drop at shallower depth is due to incre-
mental stress in sub-hydrostatic conditions caused by the 
development of Koyna and Warna reservoirs. At the deeper 
horizons, this large stress drop is caused by the incremental 
stress of super-hydrostatic pore fluid pressure diffusion from 
the reservoirs. Sarma et al. (2004) conducted magnetotellu-
ric surveys on the Koyna region and proposed a 1D model 
with a moderately conductive vertical layer extended up to a 
depth of 8 km (seismogenic depth). This low resistive layer 
could be attributed to the Koyna fault, responsible for the 
majority of the earthquakes.

Water‑level fluctuations in the Koyna and Warna 
reservoir and related seismicity

The Koyna region experiences 5000 mm annual rainfall 
(Yadav et al. 2016). Guha et al. (1966, 1968) correlated the 
increase in seismic activities to the increase in water level 
in the reservoir with a time lag. Gupta et al. (1972) further 
strengthened the argument of relating the occurrence of an 
earthquake with the increase in water level in the dams, 
duration of loading, maximum water level and the dura-
tion of maximum water level. Gupta (1983) suggested that 
loading is not the only reason for the earthquakes M ≥ 5. 
Talwani et al. (1996) found enhanced seismic activity in the 
region when the highest water level in the reservoir exceeds 
the previous year maxima. Gupta (2001) studied the cor-
relation between the change in water level in the reservoir 
and seismicity. He found two seismologically active phases 
during a year, one is during the pre-monsoon (September) 
and another is during post-monsoon (February). Pandey and 
Chadha (2003) studied the relation between the monthly 
water-level fluctuations and mean monthly strain factors 
(Lee and Wolf 1998) in Koyna and Warna reservoirs for 
earthquakes M ≥ 3. This study reveals periodicity in seismic 
energy release correlated to the annual filling and draining 
of the reservoirs with a delay of 1 month, until 1996. This 
delay is related to the diffusion of reservoir water through 
the pre-existing faults and fractures which increases the pore 
fluid pressure of the critically stressed medium, facilitating 
earthquakes. Yadav et al. (2015) also performed a similar 
study where they compared the periodicity of seismic events 
with water-level changes in the region. They showed that 
the number of seismic events increases with the water-level 
rising in both Koyna and Warna reservoir (Fig. 3). One 
important thing is to be noticed is that when the water level 
is at the lowest level, the number of seismic events compara-
tively increases (Fig. 3, Telesca 2010; Yadav et al. 2015). 
The majority of earthquake originates from 1 to 7 km depth 
(Goswami et al. 2017a) and a good correlation was found 
between the well-level fluctuations and earthquake (Chadha 

Fig. 2  Distribution of foreshock and aftershock in December for 
Koyna main earthquake (December 10, 1967). Modified after Guha 
et al. (1968) and Yadav et al. (2016)



1100 Acta Geophysica (2020) 68:1097–1112

1 3

et al. 1997; Grecksch et al. 1999; Gupta et al. 1999). Rao 
and Shashidhar (2016) have prepared a catalog of 50 focal 
mechanism solutions for earthquakes M ≥ 3.6.

In this review, we have summarized and compared the 
existing models used to explain the earthquakes in Koyna 
region and tried to find out whether these earthquakes have 
natural tectonic origin or reservoir-triggered mechanism. 
We have then summarised the possible models to a generic 
hypothesis that is based on simple Mohr–Coulomb failure 
criteria. Using existing data available in the literature on 
fault attributes, fluid gradient, stress gradient, material prop-
erties, we then tried to delineate the “favourably oriented” 
faults, “unfavourably oriented” faults and “severely misori-
ented” faults (Sibson 1985) for each fault category. We also 
discussed “reactivation-tendency factors” or “slip tendency” 
(Morris et al. 1996; Lisle and Srivastava 2004; Tong and Yin 
2011) to quantify the potential of a particular type of fault to 
acquire slip. We finally tried to shed light on some aspects of 
periodic seismicity with the loading and unloading cycle of 
the reservoirs and discussed the limitations of the proposed 
generic model. We believe this model can also give some 
theoretical explanations about the future seismic activities.

The next section summarises the existing models pro-
posed by earlier researchers to explain the reservoir-trig-
gered seismicity in the Koyna region.

Existing models of reservoir‑induced 
seismicity in Koyna region

Talwani (1995) proposed an “intersection model” that sug-
gests the intersection between two or more NW–SE trending 
faults and major NNE–SSW/N–S features. Such intersec-
tions could be responsible for the stress build-up. Stress 
perturbation could have occurred due to the pore pressure 
changes caused by the annual loading in the Koyna and 
Warna reservoirs. He also suggested that the changes in 
pore fluid pressure could take place due to diffusion with a 
time lag of 6–8 weeks. This time delay is consistent with the 
measured rock permeability. Rajendran and Harish (2000) 
suggested that the Koyna fault is mature and gets weakened 
by the annual loading cycle of the Koyna reservoir. The fail-
ure occurs in this fault due to small changes in stress under 
high fluid pressure. Talwani (2000) proposed that the rocks 
in the region are critically stressed and a small change in 
strength can cause a large earthquake. Pandey and Chadha 
(2003) simulated the 2D diffusion of pore fluid pressure 
to study the “fluid pressure diffusion and its relationship 
with Koyna seismicity”. They assumed a vertical fault and 
found that it facilitates diffusion. The excess pore pressure 
can reach up to a depth of 6–8 km. The depth distribution 
of Koyna earthquakes is consistent with this model. Durá-
Gómez and Talwani (2010) validated this model and sug-
gested that fluid pressure above a threshold value causes 
slippage along the fault and fracture planes. They also sug-
gested that the excess fluid pressure at hypocentral depth 
along the saturated NE–SW and NW–SE striking faults and 
fractures is due to the water-level changes in the reservoir. 
Some researchers, although, (Gahalaut et al. 2004; Srinagesh 
and Rajagopala Sarma 2005) related the seismicity in Koyna 
with tectonism and not with the reservoir trigger mechanism.

Significant research was carried out to understand the pri-
mary causes responsible for the earthquakes in the region, 
and robust attempts were made to provide a comprehensive 
earthquake model for Koyna. Despite that, a proper model 
that explains all the parameters associated with the earth-
quakes is lacking. The reason could be the absence of proper 
crustal velocity model (Yadav et al. 2016), contradictory 
proposals on fault geometry, lack of understanding about the 
in situ pore pressure values up to the hypocentral depth, etc.

In summary, scientists believe that the Earthquakes in 
the Koyna region are mostly due to tectonic stresses but are 
triggered or aided by the additional stresses provided by the 
reservoir-triggered pore pressure changes (Gahalaut et al. 
2004; Srinagesh and Rajagopala Sarma 2005; Sarkar and 

Fig. 3  Water-level fluctuation in Koyna and Warna reservoir from 
January 2005 to June 2012 and associated earthquake frequency. The 
dotted boxes mark the lowest levels of water and associated earth-
quake frequency for the same period. Modified after Yadav et  al. 
(2015)
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Sain 2017). However, the exact mechanism of such a trig-
ger is not properly understood or documented. The common 
belief of enhanced pore pressure decreasing the effective 
stresses leading to differential stress envelope intersecting 
the failure criteria and causing major brittle failure does not 
hold good here due to the lack of porous sedimentary forma-
tions as proved by deep drilling (Roy et al. 2013; Gupta et al. 
2015). Therefore, we propose a simple hypothesis that can 
explain the mechanism of such a trigger.

Generic model of Koyna reservoir‑triggered 
seismicity

We propose that the normal stresses which hold fault blocks 
together (other than friction and asperities between the fault 
blocks) decrease due to the fluid pressure increase in the 
fault zone leading to an increase in “slip tendency” which 
eventually reactivates an already critically stressed fault. 
The increase in pore pressure happens due to the percola-
tion of surface/rainwater through the fracture system asso-
ciated with the faults. The overlying Koyna reservoir pro-
vides excess fluid pressure, thus facilitating the occurrence 
of earthquakes.

Now, let us consider an inclined, possibly highly dipping, 
as mentioned earlier (Tandon and Chaudhury 1968), fault 
zone (Fig. 4a) where the secondary permeability of the fault 
rock was enhanced by intense fracturing. Let us also assume 
that the faults already have a higher (> 80–90%) “slip ten-
dency” than a completely inactive or dead fault in a passive 

tectonic region (< 30%). The argument in favour of such 
assumptions is as follows:

In the dilatational step over zone between strike-slip 
faults, the normal stress decreases and the shear stress 
increases (Gahalaut and Gahalaut 2008). This favours in 
normal fault movement. Moreover, Gahalaut et al. (2004) 
showed that the NNE–SSW left-lateral strike-slip faults 
are reactivated by N–S compression of the Indian plate 
and NNW–SSE normal faults are further reactivated by 
the motion of such strike-slip faults through stress transfer. 
Thus, the major fault orientations remain “sub-critically” or 
“critically” stressed either due to the regional stress or the 
influence of neighbouring faults.

Thus, we think that both the assumptions are quite valid 
for Koyna based on the findings of previous workers (Tandon 
and Chaudhury 1968; Gahalaut et al. 2004; Srinagesh and 
Rajagopala Sarma 2005; Gahalaut and Gahalaut 2008; 
Sarkar and Sain 2017) as discussed above.

Let us also assume that the fault zone is exposed under 
principal stresses where Sv denotes vertical, SH and Sh 
denote the maximum and minimum horizontal stresses, 
respectively. Sharma and Mall (1998) have calculated the 
lithostatic gradient, hydrostatic gradient as well as the fluid 
pressure gradient for the Koyna region. They proposed a 
strike-slip stress regime where SH > Sv > Sh and this is also 
a valid assumption as predicted from the focal plane solu-
tions of the seismic faults (Rao and Shashidhar 2016). The 
maximum horizontal compressive stress (SH) direction in 
that region is N13°W (Gowd et al. 1992; Mandal and Singh 
1996; Heidbach et al. 2016). For simplicity, Andersonian 
homogeneous fault model is considered and according to 

Fig. 4  a Hypothetical East–West section of the study area showing 
the stress directions as well as the effect of the reservoir and sub-
sequent fluid percolation through the left-lateral fault zone. Here in 
this study, Sv corresponds to σ2, SH corresponds to σ1 and Sh corre-
sponds to σ3. Pf is the fluid pressure inside a hypothetical, steeply 
west-dipping fault and σn is the normal stress on the fault plane. τ is 
shear stress on the fault plane and the dot (.) and cross (x) sign indi-
cates the sense of shear along the fault block. The dot (.) indicates 
that the movement of the block is towards the South (i.e. towards the 

observer) and the cross (x) indicates the movement of the block is 
towards North (i.e. away from the observer). b Shows the effect of 
fluid pressure increase on 3D Mohr’s circle. With increasing fluid 
pressure, the Mohr’s circle will shift towards left and the subsequent 
slip tendency will increase (follow the text for more details). The dot-
ted circle represents the Mohr’s circle before increasing fluid pres-
sure and the solid circle represents the condition after increasing fluid 
pressure
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this model the minimum compressive stress (Sh) direction 
would be N257°W. Of course, a resultant of these stresses 
will act on the fault planes and it will depend on the angle 
between the fault plane and regional stress tensor ellipsoid.

Let us plot the resolved normal and shear stresses (σn, 
τs) in the Mohr–coulomb space (denoted by point X) where 
the horizontal axis represents normal stress (compressive 
stresses in the positive side) and the vertical axis represents 
shear stress (Fig. 4b). OA line represents the Mohr–cou-
lomb failure criteria (τ = s0 + µσn) where µ is the coefficient 
of internal friction represented by the slope of line OA. It is 
to be noted that the basic assumption of this study is that the 
fault planes are already existing in nature and the cohesion 
(s0) is zero in an already fractured plane.

Now, let us assume that after heavy rainfall the reser-
voirs (Koyna and Warna) above are full of water and creates 
enough water head so that water can easily percolate through 
the soil to the fracture and ultimately to the fault zone. This 
will increase the fluid pressure or pore pressure of the fault 
rock where porosity and permeability are mostly attributed 
by the connected fracture system. Due to an increase in pore 
pressure, which will act opposite to the normal stresses, 
effective normal stresses will decrease. Please note that 
the total shear stress on the fault plane is not changed. As 
a result of decreased effective normal stress, point X will 
move to a new position towards its left along the horizontal 
axis, say to point Y. Now as the failure envelope has a posi-
tive slope, the slip tendency will increase. With the further 
addition of pore pressure point, Y may move to point Z and 
eventually lead to failure.

Based on the above model, this study enables us to find 
out the faults that are prone to slip by the increase in stress or 
by reduction of effective normal stress on the fault plane due 
to fluid pressure (Figs. 7, 8). In this study, we have excluded 
the depths which are beyond the observed hypocentral depth, 
i.e. 10 km (Rai et al. 1999; Gupta et al. 2015).

The vertical stress (Sv) gradient i.e. the lithostatic stress 
gradient for the region is 0.025 MPa/m (Sharma and Mall 
1998). Gowd et al. (1996) calculated the gradient of maxi-
mum (SH) and minimum (Sh) horizontal stresses from world 
hydrofrac data and they suggested values like 0.029 MPa/m 
and 0.0135 MPa/m, respectively.

The fluid pressure gradient is considered to be a normal 
hydrostatic gradient of freshwater which is 0.00979 MPa/m 
for the Koyna region (Sharma and Mall 1998). The basic 
assumption for slip tendency calculation is that the pre-exist-
ing fault plane has a zero cohesion and the failure envelope 
is dependent only upon the coefficient of internal friction 
(µ). Byerlee (1978), based on experimental data, has pro-
posed that µ is independent of rock type and a value of 0.85 
can be used for normal stress up to 200 MPa. The value of 
the coefficient of internal friction is highly variable in earth’s 
crust and to understand the effect of µ on slip tendency, a 

total four different values of µ has been chosen for this 
study. Apart from the value proposed by Byerlee (1978), 
three other values of µ are taken from experimental data by 
Goswami et al. (2017a) (failure envelopes constrained by 
the rock strength data obtained from different core samples 
of KBH-3, KBH-4A, KBH-5 and KBH-7 boreholes). Three 
hypothetical failure envelopes (Fig. 5) were then constructed 
[as strong case (φ = 58.08°, µ = 1.6), base case (φ = 44.46°, 
µ = 0.98) and weak case (φ = 35.53°, µ = 0.71)] representing 
all the aforementioned strength tests.

The orientations of fault planes (Fig. 6) are taken from 
the focal mechanism solution data published by Rao and 
Shashidhar (2016). The values of stresses obtained from 
the above gradients along with the poles of the fault plane 
attitudes are plotted for different depths on open-source 
software MohrPlotter (v.3.0) (Allmendinger et al. 2011; 
Williams et al. 2019; Taghipour et al. 2019). The software 
returns a Mohr’s circle and its corresponding stereonets 
where the planes are plotted based on its normalized slip 
tendency values. The warmer colour such as red represents 
the higher slip tendency, whereas the cooler colour such as 
blue represents the lesser slip tendency. It is to be noted that 
a plane can slip when the resolved shear stress on the plane 
exceeds the frictional resistance of the plane and this fric-
tional resistance is proportional to the normal stress acting 

Fig. 5  This figure shows the failure envelopes measured from core 
samples collected from the different depth and lithological units 
of the study area. The samples were obtained from four boreholes 
named KBH-3, KBH-4A, KBH-5 and KBH-7. The dashed lined 
represents the three cases chosen for the current analysis; the upper 
bound envelope as strong case and the lower bound envelope as weak 
case, respectively. Another in-between case is chosen as the base 
case. The upper bound and the lower bound lines cover the maximum 
and minimum extents of the failure envelopes in coordinate space 
(modified after Goswami et al. 2017a). GG: Granite-gneiss, My_GG: 
Mylonitised granite-gneiss; MG: Migmatitic Gneiss, G: Granite, *: 
data taken from Burman et al. (2010); #: data are taken from Malik 
et al. (2017)
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along the plane (Jaeger and Cook 1979). Morris et al. (1996) 
first described the Slip Tendency (Ts) to quantify how close 
a plane is on the verge of failure. It is defined by the ratio of 
shear stress to normal stress acting on the plane of interest. 
Slip on a plane is controlled by the cohesive strength (S0) 
and the coefficient of internal friction (μ) (Morris et al. 1996; 
Moeck et al. 2009). In this study, we have assumed that the 
fault planes are already present and they can reactivate by 
the influence of pore water. Thus, in this case, the cohesion 
is zero and the slip tendency at failure can be written as:

Equation 1 can be rewritten as normalized slip tendency 
index (Lisle and Srivastava 2004) which varies between 0 
and 1:

where φ is the angle of internal friction and tanφ = μ.

(1)T
s
= �∕

� ≥ �

(2)T
�
s
= T

s
∕max

(

T
s

)

= �∕� tan� = �∕��

Fig. 6  a, b The orientations of the inferred faults from focal mechanism studies. c, d The histogram of dip of the inferred faults. Data from Rao 
and Shashidhar (2016)
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Fig. 7  a–d 3D Mohr’s circles 
for the different coefficient of 
internal frictions at stress condi-
tions similar to 10000 m depth. 
e–h represents the stereonet 
corresponding to each case. The 
planes on the Mohr’s circle and 
the poles to the planes on the 
stereonet are colour indexed 
according to its normalized 
slip tendency ( T ′

s
 ). The Mohr’s 

circles and stereonets are plotted 
in MohrPlotter v 3.0 (Allmend-
inger et al. 2011)
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Inferences and discussion

Strike‑slip reactivation

Figure 7 represents the Mohr’s circles and its corresponding 
stereonets for each case for a depth of 10,000 m. If µ is less 
(0.71–0.85) the N135°E and N150°E trending vertical faults 
(Fig. 7a, b, e, f) are highly susceptible to reactivation even 
in normal hydrostatic gradient. The slip along these faults 
can be attributed to tectonic causes as no overpressure is 
required for reactivation. Sharma and Mall (1998) have sug-
gested an overpressure at ~ 3 km depth and this overpressure 
is high enough to cause reactivation of almost all the pre-
existing faults. This would limit the earthquakes with hypo-
centers at that depth. Since this is not the case for Koyna 
as evident from Gupta et al. (2016), we have only used the 
normal hydrostatic gradient to see the effect of reservoir 
triggering. For “base case” (µ = 0.98), the aforementioned 
faults show a T ′

s
 of 0.8 and for “strong case” (µ = 1.6) it is 

0.5 (Fig. 7c, d, g, h). It is to be noted that this scenario is for 
10,000 m depth with a normal hydrostatic gradient. Thus, 
the faults which are reactivating by strike-slip movement 
(NNW to NS trending vertical to sub-vertical faults) or are 
on the verge of reactivation by little overpressure can be 
attributed to natural tectonic causes. These faults can be said 
to be “favourably” oriented for reactivation. It is obvious that 
fluids have a role to play in these reactivations (King et al. 
1994; Roeloffs 1996) as the presence of fluid and fluid pres-
sure changes at depths have been reported by many authors 
(Sharma and Mall 1998; Talwani et al. 1999; Gupta et al. 
2000; Kalpana and Chander 2000). As a result, the actual 
earthquake will happen at a much lesser depth. These faults 
are already critically stressed. The strike-slip stress regime, 
the high dip of the reactivating fault planes (Fig. 7) and the 
above-mentioned point are in agreement with the finding of 
the previous authors, i.e. these faults are indeed tectonically 
reactivated (Gahalaut et al. 2004; Srinagesh and Rajagopala 
Sarma 2005).

In the study area, sinistral strike-slip movement has been 
reported from NS to NNE trending faults and this is favoured 
by the plate tectonics. But in this study, the NW–SE trending 
faults are also showing high potential for strike-slip reactiva-
tion. Arora et al. (2018) have proposed a possible connec-
tion between Chitradurga Shear Zone (CSZ) and two major 
NW–SE faults in the study area. They believe that the major 
NW–SE trending faults are an extension of the CSZ. This 
can explain our result on the strike-slip movement along 
the NW–SE trending faults. Since we have chosen hypo-
thetical fault planes and these planes are representative of 
a particular set, we do not know the exact location of each 
fault plane. If the bounding faults of the extended CSZ are 
defined by these NW–SE-oriented faults, the absence of 

strike-slip earthquake on these faults can be attributed to 
that fact that in shear zones, seismicity is mainly restricted 
between the bounding faults and a scattering of epicenters 
is observed in-between those two faults (Arora et al. 2018). 
The faults with lower dip are not critically stressed and less 
likely to be reactivated by tectonic causes rather these would 
be reactivated if a higher fluid pressure is supplied such as 
by construction of a reservoir on the surface. The effect of 
the reservoir impoundment on seismicity is discussed in the 
latter section of this text.

Normal reactivation

Aftershock due to normal reactivation of faults is reported 
by many authors (Gupta 1992; Mandal et al. 2000; Gahalaut 
and Gahalaut 2008 and references therein). Gahalaut and 
Gahalaut (2008) have discussed an interesting phenomenon 
of normal earthquake in compressive settings. They showed 
that at step over zone related to strike-slip faulting, the faults 
in the dilatational zone are more likely to be reactivated 
than the faults in the compressional zone. This is due to the 
fact that in the dilatational zone the shear stress increases 
and the normal stress decreases whereas in compressional 
zone normal and shear stress both increases thus favouring 
normal reactivation of faults in the dilatational zones. They 
also showed that static stress increases with the increasing 
effective coefficient of friction (µ′) in the dilatational zone 
whereas it decreases with increasing µ′ in the compressional 
zone. Thus the lower dip faults in “favourable orientation” 
are passively stressed by the activity in the strike-slip faults 
and are likely to be reactivated as normal faults.

Relationship between fault geometry 
and reactivation potential

In Fig. 8, the lineation within the upper basaltic unit (Fig. 8a, 
d, g, j), basement granitoid (Fig. 8b, e, h, k) and on the 
surface (Fig. 8c, f, i, l) are marked with respect to their T ′

s
 . 

Since individual dips for these planes are not known, we 
have chosen to mark the maximum slip tendency possible for 
each case. The readers are advised to keep in mind that not 
all of the faults for a particular scenario and in a particular 
medium will be reactivated simultaneously. The faults which 
are showing favourable dip will only be reactivated. Fig-
ure 8 only displays all possible faults that can be reactivated 
and how likely they are to be reactivated. It is evident from 
Figs. 7 and 8 that the N120°E trending faults are showing 
moderate T ′

s
 and these planes can be said “unfavourably” ori-

ented for reactivation. Whereas, the EW-oriented faults are 
showing very low T ′

s
 and these planes can be said “severely 

misoriented” for reactivation and seismicity in these faults 
is less likely to occur. In order to validate our model, we 
calculated the slip tendency of existing seismogenic faults 
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(faults which already slipped and resulted earthquake). The 
analysis shows that such faults are either “critically” or 
“sub-critically” stressed depending on the value of frictional 
coefficient used (Fig. 9). The results corroborates well with 
the seismogenic faults that slipped during pre- and post-
monsoon season due to water-level fluctuations in the Koyna 
and Warna reservoirs (see the stereonet in Fig. 9). Figure 10a 
shows the orientation of the “favourable”, “unfavourable” 
and “severely misoriented” faults with respect to the regional 
stress field of the area and Fig. 10b the mechanism of failure 
along the “favourably” oriented faults.

Effect of reservoir trigger on seismicity

The impoundment of the Koyna reservoir would exert 
excess pressure on the ground and the percolating fluid 
will supply excess fluid pressure, favouring the earthquake 
occurrence. The fracture networks within the lithological 
units would enhance the permeability (Arora et al. 2017) 
and facilitate the diffusion of water up to the seismogenic 
depth. One interesting fact about it is that each earthquake 
would lead to the creation of fractures within the lithologi-
cal units which will eventually increase the permeability of 
the rocks (Gavrilenko et al. 2010). So, the tectonic stress 
along the probable normal faults are high enough due to 
strike-slip activity in other faults and a small increase in 
fluid pressure which corresponds to a lesser depth can trig-
ger an earthquake. Whereas the strike-slip faults are also 
critically stressed but there is no enhancement of tectonic 
stresses, thus it will fail at a greater depth compared to the 
normal faults. This phenomenon can explain the observa-
tion by Mandal et al. (1998), i.e. the strike-slip movements 
are responsible for deeper events (focal depth ≥ 5 km) and 
the normal movements are responsible for shallower (focal 
depth ≤ 5 km) events.

The increase in seismicity during the highest water level 
in the reservoir can be attributed to the enhanced fluid pres-
sure at depths due to diffusion of water through fracture 
networks (Chadha et al. 1997; Grecksch et al. 1999; Gupta 
et al. 1999; Gupta 2001; Pandey and Chadha 2003; Yadav 
et al. 2015) leading to an increasing T ′

s
 . However, the little 

comparative increase in seismic events at the lowest water 
level can be explained by depletion constant (γ) (Hillis 2001; 
Zoback and Zinke 2002; Liu and Harpalani 2014; Atapour 
and Mortazavi 2018). γ is defined by:

where ΔS
h
 is change in minimum horizontal stress and ΔP 

is change in pore pressure. From Eq. 3, it is evident that 
change in minimum horizontal stress is linearly related to 
change in pore pressure. So, at the lowest water level, the 
pore pressure will decrease and it will lead to a decrease 
in effective minimum horizontal stress. This characteristic 
of Sh will increase the radius of Mohr’s circle and the slip 
tendency of the fault plane will increase. Thus, it will lead 
to seismic events related to depletion. This depletion-related 
seismicity is pretty common for the mature oil and gas field 
(Groningen gas field, The Netherlands), and this is the first 
time where this phenomenon is used to describe the seismic-
ity related to reservoir triggering.

This model can only predict which faults (based on its 
strike) are likely to be reactivated but fails to exactly identify 
the faults geographically until the complete attitude of each 
fault is available. The specific T ′

s
 value of an individual fault 

is overestimated to some extent as representative T ′
s
 value is 

assigned to it which could be slightly higher. In this model, 
westerly dipping faults are chosen (Tandon and Chaudhury 
1968; Lee and Raleigh 1969; Sykes 1970; Singh et al. 1975), 
but this method is insensitive to the dip direction as stress is 
bi-directional. This model limits itself to identify the exact 
mechanisms behind the continuous earthquake as well as the 
exact fluid pressure conditions in the region and the source 
parameters for earthquakes which originate below 10 km 
depth. The primary parameters used in this model are fault 
geometry, stress orientation and magnitude, fluid pressure 
and rock mechanical properties like cohesion and frictional 
coefficient. Amongst these parameters, fault geometry is 
rather well constrained from earthquake focal point solu-
tions. For stress orientation regional SH azimuth is used and 
that is also well constrained from many earthquake focal 
point solution data. To calculate stress magnitude, we have 
used standard stress gradient from literature which of course 
can locally vary depending on depth, fluid pressure and tec-
tonic conditions. We have not considered any overpressure 
in our model and addition of proper overpressure informa-
tion can significantly constrain the model and improve out-
come. Although, we have used a range in rock mechanical 
properties from the literature, assignment of specific rock 
mechanical properties to individual faults is virtually impos-
sible for such a large-scale generic model. Overall, all the 
modelling parameters are validated from different sources 
and hence the modelling result should be a close representa-
tion of the reality.

(3)ΔS
h∕ΔP = �

Fig. 8  Lineament maps of the study area for different coefficient of 
internal frictions (a–c for µ = 0.85; d–f for µ = 0.71; g–i for µ = 0.98 
and j–l for µ = 1.6). a, d, g and j represents lineation in upper Deccan 
basaltic unit, b, e, h and k represents lineation in the basement grani-
toids and c, f, i and l represents the surface lineation. The lineaments 
are coloured based on their maximum T ′

s
 possible (Fig. 7). Modified 

after Arora et al. (2017, 2018)

◂
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Fig. 9  The slip tendency ( T ′
s
 ) 

for the known seismogenic 
faults in the Koyna region for a 
µ = 0.85, b µ = 0.71, c µ = 0.98 
and d µ = 1.6. The inset repre-
sents stereographic projections 
(poles) of seismogenic faults 
and corresponding slip-tenden-
cies (designated by its colour) 
for corresponding µ values. 
The triangles represent pre-
monsoon seismogenic faults and 
squares represent post-monsoon 
seismogenic faults (2005–2012, 
Rao and Shashidhar 2017 and 
references there in). Solid 
symbols represent the primary 
fault planes and the hollow 
symbols represent the auxiliary 
fault planes. Modified after Rao 
et al. (2017)
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Conclusions

Our generic model suggests that the faults are already criti-
cally stressed due to tectonic forces and the impoundment 
of the Koyna reservoir further increases the vertical load as 
well as the fluid pressure. The enhanced fluid pressure at 
seismogenic depths due to a well-developed fracture net-
work in basement rocks and resulting high diffusivity of the 
fluids decreases the normal stress on the already critically 
stressed faults. The NS to NNE trending vertical faults are 
favourably oriented for reactivation (i.e. showing higher slip 
tendency) and strike-slip movement can be triggered by little 
increase in fluid pressure. The strike-slip motion along these 
faults favours normal faulting along the dilatational step over 
zones. These normal faulting can be further enhanced by the 
incorporation of fluids into the fracture system. Henceforth, 
the earthquakes in this region can be attributed to mainly 
tectonic causes with the additional effect of the Koyna res-
ervoir. Thus, Koyna stands out to be a perfect example of 
reservoir-triggered seismicity.
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Abstract
This study investigates the potential of two evolutionary neuro-fuzzy inference systems, adaptive neuro-fuzzy inference 
system (ANFIS) with particle swarm optimization (ANFIS–PSO) and genetic algorithm (ANFIS–GA), in modelling refer-
ence evapotranspiration  (ET0). The hybrid models were tested using Nash–Sutcliffe efficiency, root mean square errors and 
determination coefficient (R2) statistics and compared with classical ANFIS, artificial neural networks (ANNs) and clas-
sification and regression tree (CART). Various combinations of monthly weather data of solar radiation, relative humidity, 
average air temperature and wind speed gotten from two stations, Antalya and Isparta, Turkey, were used as input parameters 
to the developed models to estimate  ET0. The recommended evolutionary neuro-fuzzy models produced better estimates com-
pared to ANFIS, ANN and CART in modelling monthly  ET0. The ANFIS–PSO and/or ANFIS–GA improved the accuracy 
of ANFIS, ANN and CART by 40%, 32% and 66% for the Antalya and by 14%, 44% and 67% for the Isparta, respectively.

Keywords Reference evapotranspiration modelling · Evolutionary neuro-fuzzy inference systems · Particle swarm 
optimization · Genetic algorithm

Introduction

Scarcity of water, increment in pumping costs, complica-
tions in water storage and delivery system are the main 
issues that emphasize on enhancement of the water applica-
tion efficiency for the operation of large irrigation systems. 
Irrigation engineers and agricultural managers need to cal-
culate crop water requirement accurately for utilizing the 
scarce water timely and efficiently. For the efficient water 
application, evapotranspiration (ET) has a crucial role due to 
help in the calculation of crop water requirements precisely. 
Therefore, an accurate estimation of ET is fundamental to 

improve water application efficiency (Guven et al. 2008). 
The Food and Agriculture Organization (FAO) introduced 
the Penman–Monteith equation for modelling ET. This 
approach has become a commonly used method for calcu-
lating ET throughout the world (Allen et al. 2006). Several 
climatic inputs such as minimum, maximum and average 
temperature, wind speed, mean relative humidity and sun-
shine duration are required for ET estimation by the Pen-
man–Monteith equation. These large numbers of climatic 
data are not always available or reliable. The influence of 
the mentioned climatic variables on ET makes it a complex 
nature (Hernandez et al. 2011), and therefore, forecasting ET 
is one of the most difficult tasks in water resource problems. 
In such a situation, soft computing (SC) methods that can 
accurately model complex behaviour between input and out-
put emerge as a better alternative. In recent years, SC meth-
ods like ANNs, ANFIS and machine learning (ML) methods 
have applied for modelling different complex systems in the 
field of hydrology (Adnan et al. 2018, Adnan et al. 2019a, b; 
Nair et al. 2018; Muhammad Adnan et al. 2019; Majhi et al. 
2019; Wu et al. 2020).

In the literature, ANNs and ANFIS models were applied 
successfully to predict evapotranspiration (Ladlani et al. 
2012, 2014; Kisi et al. 2015; Wen et al. 2015; Luo et al. 

 * Meysam Alizamir 
 meysamalizamir@gmail.com

1 Department of Civil Engineering, Hamedan Branch, Islamic 
Azad University, Hamedan, Iran

2 Faculty of Natural Sciences and Engineering, Ilia State 
University, Tbilisi, Georgia

3 State Key Laboratory of Hydrology-Water Resources 
and Hydraulic Engineering, Hohai University, 
Nanjing 210098, China

4 CERIS, Instituto Superior Técnico, Universidade de Lisboa, 
Lisbon, Portugal

http://crossmark.crossref.org/dialog/?doi=10.1007/s11600-020-00446-9&domain=pdf


1114 Acta Geophysica (2020) 68:1113–1126

1 3

2015; Keshtegar et al. 2018; Abrishami et al. 2019; Walls 
et al. 2020). Ladlani et al. (2012) compared two ANN 
models, namely generalized regression artificial neural 
network (GR-ANN) method and radial basis artificial neu-
ral network (RB-ANN), for modelling ET using climatic 
parameters from Dar El Beida, Algeria. As climatic data, 
the authors used the data of sunshine duration, average 
relative humidity, average wind speed, maximum, mini-
mum and average air temperature. They found that the GR-
ANN performed better than the RB-ANN in predicting ET. 
Ladlani et al. (2014) checked the potential of ANFIS and 
multiple linear regression (MLR) models for forecasting 
daily  ET0 in the Mediterranean region of Algiers, Algeria. 
Results obtained from the investigation demonstrated that 
the ANFIS had better performance compared to the MLR 
models.

Kisi et al. (2015) compared four soft computing mod-
els: (1) MLP-ANN, (2) ANFIS-GP, (3) ANFIS-SC and (4) 
gene expression programming (GEP) models for predicting 
monthly ET using the data of 50 climatic stations in Iran. 
From the obtained results, the authors found the ANFIS-
GP as an optimal model. Wen et al. (2015) investigated the 
prediction accuracy of ANN and empirical methods in com-
parison with a machine learning method, namely support 
vector machine (SVM). The selected models were used to 
predict ET of the arid region of Ejina basin, China, using the 
minimum temperature and maximum temperature as inputs. 
Luo et al. (2015) compared four ANN models: (i) multilayer 
perceptron artificial neural network (MLP-ANN), (2) gen-
eralized feed-forward artificial neural network (GFF-ANN), 
(3) probabilistic neural network (P-ANN) and (4) linear 
regression artificial neural network (LR-ANN) models for 
predicting evapotranspiration of Gaoyou climatic station of 
Jiangsu province in China. The results of this study proved 
that ANNs can be effectively employed as a reliable ET 
modelling tool. Keshtegar et al. (2018) applied the ANFIS 
(ANFIS-FCM) with ANN and M5 model tree models to pre-
dict the evapotranspiration of three stations of the Central 
Anatolian Region of Turkey. They divided data into different 
training–testing subsets to check ANFIS accuracy for each. 
They found that the ANFIS model with different subsets 
performed better than the M5 and ANN models. Abrishami 
et al. (2019) used the ANN models to predict the ET of Nis-
souri Creek in Oxford County, Canada. They used two types 
of activation functions including rectified linear unit (ReLU) 
and sigmoid. Results showed that ReLU performed better 
than sigmoid activation function .Walls et al. (2020) applied 
different ANN structures for modelling the ET of wheat and 
maize crops and found ANN models suitable for predicting 
ET of both crops. ANN, ANFIS and ML models have also 
been successfully used in modelling different hydrological 
time series due to their ability to capture nonlinear behaviour 
(Adnan et al. 2017; Kisi et al. 2018; Yuan et al. 2018).

In the recent past years, the literature study has exposed 
that the hybrid soft computing models provide better ET 
prediction accuracy in comparison with stand-alone soft 
computing methods. The primary consideration of the 
researchers is towards combining several novel heuristic 
search algorithms with soft computing methods for opti-
mizing their control parameters and enhancement of their 
forecasting accuracy. Patil and Deka (2017) applied the 
hybrid of wavelet transform with ANN and ANFIS meth-
ods for the modelling of evapotranspiration in the arid 
regions of India. The results confirmed that the hybrid 
models had better performance than the stand-alone soft 
computing models in predicting ET. Araghi et al. (2018) 
also demonstrated the benefits of WT (wavelet trans-
form) combined with the ANFIS (WT–ANFIS), ANN 
(WT–ANN) and MLR (WT–MLR) models for ET forecast-
ing of three climatic stations chosen from three different 
climates of Iran. Using daily weather data of selected sta-
tions, the authors found that the WT–ANN outperformed 
the other wavelet-based hybrid models (i.e. WT–ANFIS 
and WT–MLR). Gocić et al. (2015) combined the firefly 
algorithm with SVM (SVM–FFA) for predicting ET in 
Serbia. The authors compared the proposed SVM–FFA 
model with WT–SVM, SVM and ANN. They found that 
the SVM–FFA and WT–SVM models provided better pre-
diction results in comparison with stand-alone ANN and 
SVM computational methods. Shamshirband et al. (2016) 
applied a novel heuristic method called cuckoo search 
algorithm (CSA) for optimizing the ANN and ANFIS 
methods in estimation of ET at 12 climatic stations in 
Serbia. The prediction results of designed hybrid meth-
ods (ANN–CSA and ANFIS–CSA) are compared with 
stand-alone ANN and ANFIS models. Also, the authors 
compared the proposed methods with the Hargreaves and 
Priestley–Taylor empirical models.

Available literature indicates that hybrid heuristic soft 
computing methods generally provided better prediction 
accuracy compared to stand-alone soft computing models. 
The literature surveys point out that the application of new 
hybrid soft computing methods is vital to improve predic-
tion accuracy and minimize the method’s error. For this 
reason, evolutionary neuro-fuzzy systems are proposed in 
this research for an effective evapotranspiration model-
ling. Genetic algorithm (GA) and particle swarm optimi-
zation (PSO) heuristic algorithms are used to optimize 
the parameters of ANFIS models and to develop hybrid 
soft computing methods, ANFIS–PSO and ANFIS–GA. 
Also, ET modelling using classification and regression 
tree (CART) model is very scarce, and this study looks 
to be the first that compares the accuracy of CART with 
the ANFIS–PSO, ANFIS–GA, ANFIS and ANN models 
in ET prediction.
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Materials and methods

Used data

The study uses monthly weather data, solar radiation, rela-
tive humidity, air temperature and wind speed, from two 
automated climatic stations, Antalya (long. of 30°44′00″E, 
lat. of 36°42′00″N and altitude of 64) and Isparta (long. of 
30°34′00″E, lat. of 37°47′00″N and altitude of 997) operated 
by the TMO (Turkish Meteorological Organization). The 
study area and stations’ location are illustrated in Fig. 1. The 
stations are situated in the Mediterranean region having a 
Mediterranean climate (dry summers and mellow to cold, 
wet winters). The temperature in winter has its highest value 
as 24 °C, and in summer season, it can increase to 40 °C.

In the study, data (25-year monthly values for the period 
of 1982–2006) were divided into two parts as training (80% 
of the aggregate data) and testing (20% remaining part). 
The brief statistical properties of the used data are summed 
up in Table 1. It is evident from the average statistics that 
the Antalya has a higher temperature, solar radiation, wind 
speed and reference evapotranspiration compared to Isparta.

Used methods

Adaptive neuro‑fuzzy inference system (ANFIS)

The ANFIS interface represents a multilayer model initially 
proposed by Jang (1993) that trains input and output vari-
ables and affords estimations agreement between input and 
output in the most efficient way. There are several fuzzy 
interfaces system (FIS) reported in the literature, which has 
different performance and as results in significant differences 

in the results among them. The FIS is categorized into three 
main groups: Mamdani’s interface system (Mamdani and 
Assilian 1975), which consists of a system that considered 
inputs and outputs as a fuzzy set. This system is the most 
often applied; Tsukamoto’s system (Tsukamoto 1979), 
which is not very commonly used; finally, Sugeno’s FIS, 
which considers the input data as a fuzzy set, while the out-
puts as a constant coefficient of a linear function (Takagi and 
Sugeno 1985). The fact of being compact and very efficient 
in terms of computational time makes the Sugeno’s system 
very commonly used also (Nourani et al. 2014; Zhu et al. 
2019; Adnan et al. 2019c; Alizamir et al. 2020a). ANFIS 
applied in this study consists of a network structure which 
uses Sugeno inference system (S-FIS) and supported from 
the artificial neural network (ANN) in the training phase of 
the input data (Fig. 2).

The ANFIS interface is composed of several nodes con-
nected through directional links. Indeed, the combination 
of the fuzzy-based rules systems with the high performance 
regarding the learning capability of the ANN has made the 
ANFIS interface more robust and popular in modelling dif-
ferent problems (Tabari et al. 2012). ANFIS is more com-
monly used in solving complicated problems characterized 
by significantly high nonlinearity (Rezakazemi et al. 2017). 
Training of the data sets is done based on the fundamental 
learning rule backpropagation approach, which tends to min-
imize the error computation of the input data set (Cobaner 
2011). In addition to the binary variables, a set of linguistic 
variables were used to design the fuzzy system. Afterwards, 
several IF/THEN rules were used to characterize the rela-
tionship between fuzzy variables (Nourani et al. 2014). In 
the case of the Sugeno’s system, which is the system used in 
this study, the conditional rules IF/THEN can be expressed 
as follows (Sayed et al. 2003):

Fig. 1  The study area and sta-
tions’ location (adapted from 
d-maps.com)
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where A1 and B1 represent the fuzzy sets in the originator, 
and pi , qi and ri are the design parameters defined during 
the training process of the data set. As shown in Fig. 2, the 
architecture of the ANFIS was designed considering five lay-
ers, and detailed explanation for each layer and the equations 
used can be found in the literature (Tabari et al. 2012). The 
hybrid learning algorithm used in the ANFIS architecture 

(1)Rule1 ∶ if x is A1 and y is B1, then z1 = p1x + q1y + r1

(2)Rule2: if x is A2 and y is B2, then z2 = p2x + q2y + r2

applies a combination of gradient descent, in order to iden-
tify the proposition parameters, while the least-squares 
method is applied to allocate the linear consequent param-
eters. The training algorithm makes the ANFIS outputs with 
the lowest error (Jang 1993; Nourani et al. 2014).

ANFIS–PSO In this ANFIS model, a particle swarm opti-
mization (PSO) was used. This optimization algorithm is 
very efficient in case of discrete data type (Nourani et  al. 
2014). This combination may be considered as a surrogate 
approach. So, after determining the design variables, the 
objective function and constraints, ANFIS was mainly used 

Table 1  Brief statistics for the 
climatic data of Antalya and 
Isparta stations

Station Data set Unit Avr. Min. Max. SD Skewness

Antalya Training data T °C 19.52 7.3 32.25 7.33 0.03
SR cal/cm2 412 120 679.2 154 − 0.09
RH % 57.0 47.5 68.5 3.81 0.25
WS m/s 2.64 0.9 4.9 0.69 0.008
ET0 mm day−1 5.64 1.16 10.4 2.1 0.16

Testing data T °C 20.1 9.7 31.85 7.27 0.1
SR cal/cm2 361 1268 595.6 145 − 0.08
RH % 52.9 45.5 67 4.16 0.93
WS m/s 2.63 1.8 4.9 0.49 1.87
ET0 mm day−1 5.54 2.67 9.28 1.82 0.15

Isparta Training data T °C 12.3 − 2.3 25 7.71 − 0.12
SR cal/cm2 318 112 657 117 0.02
RH % 60.0 46 72 5.08 − 0.31
WS m/s 1.84 0.6 3.6 0.5 0.42
ET0 mm day−1 3.53 0.69 6.79 1.51 − 0.02

Testing data T °C 12.6 − 0.9 25.2 8.04 − 0.05
SR cal/cm2 355 148 638 141 0.21
RH % 63.4 52.5 72.5 2.57 0.006
WS m/s 1.43 0.8 2.5 0.42 0.68
ET0 mm day−1 3.43 1.03 6.43 1.54 0.11

Fig. 2  The fundamental struc-
ture of the ANFIS interface
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to search the space, while PSO approach as an optimization 
algorithm can be employed to establish the efficient way to 
find the best salutation (Kennedy and Eberhart 1995). PSO 
is a stochastic optimization method which consists of select-
ing a specific population or particles in given space com-
pletely in a random way while subsequently looking for the 
optimal solution (Rezakazemi et  al. 2017). There are sev-
eral applications of ANFIS–PSO. Basser et al. (2015) used 
ANFIS–PSO to predict the optimal parameters to mitigate 
scouring depth in existing spur dykes, while Djavareshkian 
and Esmaeili (2014) applied ANFIS–PSO to optimize the 
operation of the submerged hydrofoil. ANFIS–PSO inter-
face is also used to solve nonlinear problems related to the 
nanomaterial’s components (Rezakazemi et al. 2017).

ANFIS–GA In ANFIS–GA model, genetic optimization 
algorithm (GA) is incorporated. The GA consists of the 
inset of chromosome combinations, which evaluates the 
results obtained in each computational step by seeking the 
optimal solution possible (Termeh et al. 2018). Differently, 
from PSO, GA can provide relatively large solution spaces 
since it utilizes a probabilistic transition and not determin-
istic rules (Rezakazemi et al. 2017). The GA interface uses 
variables that represent real values or binary coding. The GA 
optimization procedure is associated with several processes 
as follows: population initialization, selection, crossover 
and mutation (Rezakazemi et al. 2017). GA has become a 
prevalent optimization method in different areas. Termeh 
et  al. (2018) applied GA in flood susceptibility mapping; 
they found that this algorithm among the other advantages 
reveals high accuracy. Rezakazemi et al. (2017) used GA to 
assess the hydrogen mixed matrix membrane considering 
several operating conditions. While Khosravi et al. (2018) 

applied GA to predict potential solar radiation to support 
solar-based energy systems, all the studies above found that 
the GA interface poses the ability to provide efficient com-
putation time and high accuracy.

Artificial neural network (ANN)

Artificial neural network (ANN) consists of imitating the 
biological nervous system, although much of the biologi-
cal details are neglected. ANNs are composed of several 
massively processing elements organized in parallel systems 
connected by using variable weights. Each layer is con-
nected to the other layers through interconnection weights, 
W  . The methodology applied for tuning the weights based 
on backpropagation process (Rumelhart et al. 1986). The 
backpropagation network is by far the most commonly used 
paradigms in ANNs (Nourani et al. 2014; Kisi et al. 2017; 
Alizamir et al. 2018; Kisi and Alizamir 2018). The process-
ing elements that composed the ANNs are called neurons. 
The basic structure of the ANN interface is shown in Fig. 3. 
The neural network layers i , j and k are interconnected 
with weights Wij and Wjk between layers of neurons. Fur-
ther details and explanation about the training process of the 
input data may be found at Kisi and Öztürk (2007).

Classification and regression tree (CART)

Classification and regression tree (CART) is based on a set 
of decision trees on the predictor variables which grew by 
repeatedly stratifying the data set into consecutively smaller 
subgroups (Breiman 1984). CART is a predictive tree model 
based on the recursive approach in data mining models that 
constructs the structure of the given data set which generates 

Fig. 3  The ANN interface used 
for the  ET0 estimation
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decision rules for predicting a categorical variable (Choubin 
et al. 2018; Kisi et al. 2020; Alizamir et al. 2020a, b). Con-
sidering the principle of homogenization or less variability 
among the nods, the splitting procedure of the variables is 
made until the best split is reached (Breiman 1984).

CART algorithm has also become commonly applied in 
different fields. Choubin et al. (2018) have applied CART to 
predict sediment transport in alpine rivers; they found that 
CART has relatively high accuracy. Ebrahimy and Azad-
bakht (2019) have applied CART to predict land surface 
temperature over several different areas. Also, Juntakut et al. 
(2019) have used CART to predict the long-term contamina-
tion of the groundwater in Nebraska State. They concluded 
that CART was capable of differentiating the weight of sev-
eral physical factors in the water contamination.

Application and results

The ability of two evolutionary neuro-fuzzy systems: 
ANFIS–PSO and ANFIS–GA, are investigated in model-
ling reference evapotranspiration  (ET0) using various input 
combinations of climatic data and compared with the classic 
ANFIS, ANN and CART methods. For the control param-
eters, different values were tried for each method. For the 
ANFIS–PSO, 500 iterations were used, and population, iner-
tia weight, personal learning coefficient and global learn-
ing coefficient were set to 45, 1, 1 and 2, respectively. For 
the ANFIS–GA, number of iterations, population, mutation 
and crossover percentages were set to 400, 55, 0.7 and 0.4, 
respectively. For the ANFIS, subtractive clustering with 150 
iterations and 0.35 radii was used. For the ANN, Bayesian 
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Fig. 4  The observed and estimated  ET0 values by the best models in the test period of Antalya Station: a input combination (i), b input combina-
tion (ii), c input combination (iii) and d input combination (iv)
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regulation was used, and the optimal number of neurons in 
the hidden layer (HL) was found to be 10. The following 
evaluation metrics are used to select the best models:

where N = number of data, ETm = mean FAO 56 PM  ET0, 
ETip = predicted  ET0, and ETim = FAO 56 PM  ET0.

Table 2 compares the test statistics of the ANFIS–PSO, 
ANFIS–GA, ANFIS, ANN and CART models for different 

(3)

Root mean square error (RMSE) =

�

∑N

i=1

�

ETim − ETip

�2

N

(4)

Nash − Sutcliffe efficiency (NSE) = 1 −

∑N

i=1

�

ETim − ETip

�2

∑N

i=1

�

ETim − ETm

�2

input combinations of Antalya Station. Among the one 
input combinations, T variable provided the best statistics 
for all methods. Out of two-input models, the model with 
SR and RH inputs had the lowest RMSE and the highest 
NSE and R2 for the ANFIS–PSO, ANFIS–GA, ANN and 
CART methods. Three-input ANFIS–PSO, ANFIS, ANN 
and CART models with T, SR and WS variables performed 
better than the corresponding models with T, SR and RH 
variables. It is apparent from Table 2 that the models with 
whole input variables (T, SR, RH and WS) outperformed 
the other models for all methods. The ANFIS–PSO and 
ANFIS–GA with full climatic inputs have almost the 
same accuracy, and they have better statistics than the 
other models. The relative RMSE differences between the 
ANFIS–PSO and ANFIS, ANN, CART are 40%, 32% and 
66%, respectively.

Observed
2 3 4 5 6

A
N

FI
S-

PS
O

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Regression: R=0.96502

Data
Fit
Y = T

Observed
2 3 4 5 6

A
N

FI
S-

G
A

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Regression: R=0.96499

Data
Fit
Y = T

Observed
2 3 4 5 6

A
N

FI
S

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Regression: R=0.96512

Data
Fit
Y = T

Observed
2 3 4 5 6

A
N

N

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Regression: R=0.89545

Data
Fit
Y = T

Observed
2 3 4 5 6

C
A

R
T

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Regression: R=0.94857

Data
Fit
Y = T

Observed
2 3 4 5 6

A
N

FI
S-

PS
O

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Regression: R=0.96259

Data
Fit
Y = T

Observed
2 3 4 5 6

A
N

FI
S-

G
A

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Regression: R=0.96997

Data
Fit
Y = T

Observed
2 3 4 5 6

A
N

FI
S

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Regression: R=0.96159

Data
Fit
Y = T

Observed
2 3 4 5 6

A
N

N

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Regression: R=0.97302

Data
Fit
Y = T

Observed
2 3 4 5 6

C
A

R
T

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Regression: R=0.92495

Data
Fit
Y = T

Observed
1 2 3 4 5 6

A
N

FI
S-

PS
O

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Regression: R=0.9907

Data
Fit
Y = T

Observed
2 3 4 5 6

A
N

FI
S-

G
A

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
Regression: R=0.99282

Data
Fit
Y = T

Observed
1 2 3 4 5 6

A
N

FI
S

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Regression: R=0.99028

Data
Fit
Y = T

Observed
2 3 4 5 6

A
N

N

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Regression: R=0.98156

Data
Fit
Y = T

Observed
1 2 3 4 5 6

C
A

R
T

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Regression: R=0.97157

Data
Fit
Y = T

(a)

(b)

(c)

Observed
1 2 3 4 5 6

A
N

FI
S-

PS
O

1

2

3

4

5

6

Regression: R=0.99213

Data
Fit
Y = T

Observed
1 2 3 4 5 6

A
N

FI
S-

G
A

1

2

3

4

5

6

Regression: R=0.99224

Data
Fit
Y = T

Observed
2 3 4 5 6

A
N

FI
S

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Regression: R=0.9899

Data
Fit
Y = T

Observed
2 3 4 5 6

A
N

N

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Regression: R=0.98023

Data
Fit
Y = T

Observed
1 2 3 4 5 6

C
A

R
T

1

2

3

4

5

6

Regression: R=0.92884

Data
Fit
Y = T

(d)

Fig. 5  The observed and estimated  ET0 values by the best models in the test period of Isparta Station: a input combination (i), b input combina-
tion (ii), c input combination (iii) and d input combination (iv)
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Figure 4 illustrates the observed and estimated  ET0 val-
ues by the best models in the test period for the Antalya 
Station. It is clearly observed that the ANFIS–PSO and/or 
ANFIS–GA models generally have less scattered estimates 
compared to other models. It is also apparent from the scat-
ter graphs that all the methods produce less scattered esti-
mates by increasing the number of input variables.

Test results of the employed methods are summed up 
in Table 3 for estimating  ET0 of Isparta Station utilizing 
various climatic input variables. In this station, the models 
with SR variable have the best statistics among the one input 
combinations. Similar to the Antalya Station, here also the 
SR, RH and T, SR, WS combinations generally provided 
the most accurate estimates for two- and three-input models, 
respectively. Among all input combinations, the models with 
full climatic input variables performed the best. The best 
ANFIS–GA model outperformed the ANFIS–PSO, ANFIS, 
ANN and CART with respect to RMSE, NSE and R2. The 

relative RMSE differences between the ANFIS–GA and 
ANFIS–PSO, ANFIS, ANN, CART are 5%, 14%, 44% and 
67%, respectively. It is clear from Tables 2 and 3 that the 
evolutionary algorithms, PSO and GA, improve the classical 
ANFIS model in both stations, improvement in RMSE by 
about 40% and 14% for the Antalya and Isparta stations. In 
Isparta Station, SR seems to be more effective on  ET0 com-
pared to Antalya. The RH and WS variables produce worse 
results compared to Isparta. One reason for this may be the 
fact that these variables have higher skewed distribution in 
Antalya than the Isparta (see skewness values of the SR and 
RH data in Table 1).

The test results of the employed models are graphically 
compared in Fig. 5 for the Isparta Station. Here also, the 
better estimates are obtained by increasing input numbers, 
and the models with full inputs (T, SR, RH and WS) have 
the best estimates among the input combinations tried. 
Both ANFIS–PSO and ANFIS–GA have less scattered 

(a)

(b)

Fig. 6  R2 values of the best models for different input combinations: a Antalya Station, b Isparta Station
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estimates than the ANFIS, ANN and CART models. 
CART model has the worst estimates among the models 
applied. Figures 6, 7 and 8 compare the R2, RMSE and 
NSE values of the five optimal models with different input 
combinations for the Antalya and Isparta stations, respec-
tively. It is clearly observed that the ANFIS–PSO and/or 
ANFIS–GA generally have the highest R2 and NSE and the 
lowest RMSE compared to other three methods.

Overall, the ANFIS–PSO and ANFIS–GA models per-
form superior to the other models in estimating monthly 
 ET0. PSO and GA are heuristic methods and have some 
advantages compared to classical training algorithms such 
as gradient descent and least square. These belong to a 
class of search methods so that they have a notable bal-
ance between exploitation of the optimal solutions and 
reconnaissance of the search space. Stochastic search and 
directed search are combined in such methods. Therefore, 
they are more robust compared to directed search tech-
niques and capable of finding global optimum without 
local optima problem (Mantoglou et al. 2004; Karterakis 
et al. 2007).

Conclusion

The accuracy of two evolutionary neuro-fuzzy methods 
was investigated in the presented study in modelling refer-
ence evapotranspiration. Their results were compared with 
the classic ANFIS, ANN and CART models. Various input 
combinations of climatic data obtained from two stations; 
Turkey were utilized for the employed models. Evolution-
ary ANFIS–PSO and/or ANFIS–GA produced better  ET0 
estimates than the ANFIS, ANN and CART models with 
the relative RMSE differences of 40%, 32% and 66% for one 
station (Antalya) and 14%, 44% and 67% for the other station 
(Isparta), respectively.

Comparison of various climatic inputs revealed that the 
estimation accuracy of the applied models increases by 
including more input variables and four inputs (average tem-
perature, solar radiation, relative humidity and wind speed) 
produced the best estimates for each method. The compari-
son also indicated that solar radiation has more influence on 
 ET0 in Isparta, while including relative humidity and wind 
speed in inputs makes models less accurate in Antalya.

(a)

(b)

Fig. 7  RMSE values of the best models for different input combinations: a Antalya Station, b Isparta Station
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Abstract
The continuous shift of shoreline boundaries due to natural or anthropogenic events has created the necessity to monitor the 
shoreline boundaries regularly. This study investigates the perspective of implementing artificial intelligence techniques to 
model and predict the realignment in shoreline along the eastern Indian coast of Orissa (now called Odisha). The modeling 
consists of analyzing the satellite images and corresponding reanalysis data of the coastline. The satellite images (Landsat 
imagery) of the Orissa coastline were analyzed using edge detection filters, mainly Sobel and Canny. Sobel and canny filters 
use edge detection techniques to extract essential information from satellite images. Edge detection reduces the volume of data 
and filters out worthless information while securing significant structural features of satellite images. The image differencing 
technique is used to determine the shoreline shift from GIS images (Landsat imagery). The shoreline shift dataset obtained 
from the GIS image is used together with the metrological dataset extracted from Modern-Era Retrospective analysis for 
Research and Applications, Version 2, and tide and wave parameter obtained from the European Centre for Medium-Range 
Weather Forecast for the period 1985–2015, as input parameter in machine learning (ML) algorithms to predict the shoreline 
shift. Artificial neural network (ANN), k-nearest neighbors (KNN), and support vector machine (SVM) algorithm are used 
as a ML model in the present study. The ML model contains weights that are multiplied with relevant inputs/features to 
obtain a better prediction. The analysis shows wind speed and wave height are the most prominent features in shoreline shift 
prediction. The model’s performance was compared, and the observed result suggests that the ANN model outperforms the 
KNN and SVM model with an accuracy of 86.2%.

Keywords Shoreline change · Image processing · Artificial neural network · Edge detection · Machine learning

Introduction

The shoreline change is a complex phenomenon that occurs 
due to the dynamic interaction of the ocean with the ground 
surface. The shoreline shifts are subjected to hydrodynamic 
forces observed in the sea that moves the sand, namely cur-
rents, winds, and waves. The interaction between landform 
and ocean causes erosion and accretion environment that 
exhibit in variable patterns (Morton 1996). The shoreline 
erosion is subjected to sea level rise (Bruun 1962). It relies 

on the rate at which sediment is deposited and eroded from 
the seashore (Esteves et al. 2006). Shoreline also changes 
due to seasonal variation. The accretion of shoreline is grad-
ual due to low waves of energy during the summer season. 
In contrast, rapid shoreline erosion is observed due to high 
storm waves during the winter season. However, seawalls 
and other stable structures limit the natural coastal cycle 
shifts up to a small extent, subjecting comparable losses to 
floating coastal areas. Also, the beaches, dunes, salt marshes, 
and estuaries can be in danger without sediment transport 
due to the introduction of artificial coastal structures.

Sediment transport is an important feature of nature 
which is affected by climate, magnitude, and direction of 
wave, wind energy, and many other factors. The sediment 
size is an essential factor for the movement of sediments 
through the river stream (Gazi et al. 2019; Gazi and Afzal 
2020; Afzal et al. 2020). Therefore, sediments are classified 
based on their mode of transportation in the coastal region. 
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The sediments are also deposited to the shore of the ocean 
by the river. Further, the transportation of sediment exists 
in the direction of onshore, offshore, and longshore. Sedi-
ment transport influences the rate of deposition and erosion, 
which results in the shoreline shift. The shift in shoreline 
directly affects non-living as well as the living matter and 
poses social, economic, and environmental threats (Small 
and Nicholls 2003; Dada et al. 2019). In one of the studies, 
Kumar et al. (2010) illustrated Coastal Vulnerability Index 
(CVI) for Orissa (now called Odisha) by using eight parame-
ters. They demonstrated the utility of remote sensing data for 
coastal risk analyses, in situ measurements, computational 
simulation, and GIS research software. Thus, continuous 
monitoring and mapping of shoreline shifts are required to 
avoid the above consequences.

The shift in shoreline and its future prediction is essential 
in coastal and marine transportation, coastal zone manage-
ment (CZM), and sediment transport. Initially, ground sur-
veying techniques were used to study the coastline shift from 
1807 to 1927. Later, the aerial photography was being intro-
duced and used till 1980. The aerial photographic technique 
has some limitations, like transferring the information from 
images to maps and more time-consuming. Also, the black 
and white images (non-digital) of aerial photography were 
difficult to understand and interpret (De Jong and Van der 
Meer 2007). Hence, the photographic image data were 
replaced by the Landsat imagery and other remote sensing 
digital data since 1972. The digital data and new image pro-
cessing techniques have eased the task of the researchers to 
map the shoreline shift (Alesheikh et al. 2007). However, 
historical time-scale datasets along with Geographical infor-
mation system (GIS) imagery were also used in the predic-
tion of shoreline erosion (Bagheri et al. 2019).

The remote sensing and GIS data have played a sig-
nificant role in analyzing the shoreline shift (Howarth and 
Wickware 1981; White and El Asmar 1999; Chalabi et al. 
2006; Zhang and Wang 2010). The basic methodology was 
to incorporate the physics between satellite images (multi-
ple years) and observation sites data like temperature and 
pressure. The combination of satellite data and measure-
ment data from the observation center was used in different 
models like linear regression (LR), end point rate (EPR), 
and minimum description length (MDL) to detect change in 
shoreline (Dolan et al. 1991; Li et al. 2001; Mukhopadhyay 
et al. 2012; Nandi et al. 2016). The EPR model is based on 
finding the ratio of change in shoreline distance with time 
elapsed. In contrast, the LR method is based on establish-
ing the linear relation between the variables to predict the 
trends. These models predicted the shift by developing the 
mathematical model that specifies the interaction among 
the parameters assuming a specific distribution. The rela-
tionship between the parameters may have linear or nonlin-
ear depending on the physics-based data generated at the 

recording observation station (Gunawardena et al. 2009; 
Larson et al. 2000). Therefore, the parameters contributing 
to the coastal retreat require further exploration (Ramesh 
et al. 2017).

Previous studies showed that remote sensing data could 
be used in environmental monitoring programs to observe 
surface change phenomena over time. Further, the remotely 
sensed (aerial photography) images and field survey data 
were incorporated to observe beach width change in Gon-
ghyunjin and Songjiho Beaches, South Korea (Kim et al. 
2013). They also demonstrated the impact of artificial 
structures on shoreline shift. Further, the airborne Lidar 
and Unmanned aerial vehicles (UAVs) tool were used to 
observe remote sensing data and predict topographical 
changes in Uljingun, Korea (Lee et al. 2019). The shoreline 
change extracted was statistically quantified using net shore-
line movement (NSM) and linear regression rate (LRR) in 
the digital shoreline analysis system (DSAS).The Lidar and 
UAVs, generated digital surface maps (DSM), were com-
pared to quantify morphological change. They reveal Lidar- 
and UAVs-based digital surface maps can be used for coastal 
zone management.

Remote sensing is a geographic analysis tool capable of 
producing large quantities of data in the spatial, temporal, 
and spectral domains (Dellepiane et al. 2004; Alexakis et al. 
2012; Nowakowski 2015). Hence, artificial intelligence (AI) 
techniques were used with remote sensing to interpret the 
large quantities of data for the image analysis process. The 
AI techniques are capable of modeling the mathematical 
models that have inherited non-linearity. The researchers 
have used different AI algorithms to analyze the shoreline 
shift (Ahmadian and Simons 2018; Hashemi et al. 2010). 
Ahangarha et al. (2019) proposed a procedure to determine 
land surface changes within the semiarid wetland and sur-
rounding upland areas. They used a combination of hyper-
spectral images and machine learning (ML) algorithms to 
detect the shift in the land surface. Similarly, Kesikoğlu 
et al. (2020) observed the seasonal coastline shifts from 
Satellite images (Landsat 8) data using machine learning 
(ANN and KNN) model. They introduced a spatial pixel-
based and object-based image classification technique to 
recognize changing areas at the coastline. Further, Harley 
et al. (2019) proposed a low-cost method to monitor shore-
line change using smartphone images collected from social 
media platforms. They used an edge detection technique to 
find shoreline change on geo-rectified images. Their pro-
posed approach provides almost similar prediction results 
of shoreline change as compared to GIS satellite images.

Ryan et al. (1991) used neural networks tool to delineate 
the shorelines. They used neural network with back propaga-
tion algorithm to categorize small blocks of image data. The 
image processing techniques were used in order to delineate 
the shoreline down to the pixel level. Further, Tsekouras 
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et al. (2018) investigated the shoreline realignment along an 
urban beach using a novel Hermite polynomial neural net-
work model. They used reef morphology and wave forcing 
parameters for the modeling and obtained shoreline posi-
tion with high spatiotemporal resolution. Similarly, Peponi 
et al. (2019) used a combination of ANN and GIS images 
to predict the coastal erosion in Costa da Caparica, Lisbon, 
Portugal. The impact of coastal erosion and shoreline change 
was obtained using the GIS-ANN model with better accu-
racy. Further, an advanced ML algorithm, DeepUNet (deep 
learning algorithm), was modeled to detect the shoreline 
change (Dickens and Armstrong 2019). The prediction of 
seafloor depth was observed using recurrent neural network 
(RNN) model at Mariana Islands, Marshall Islands, Guam, 
and Wake Island (USA). Their results did not match with the 
International Hydrographic Organization (IHO) standards as 
compared to the interpolated nautical chart data.

The machine learning (ML) tool had widely been used to 
predict various aspects of coastal and civil engineering in 
recent decades. Pierini et al. (2013) compared the machine 
learning (ANN) model prediction performance of hourly 
tidal level variations with a numerical model (MOHID 
model) at Puerto Belgrano (Argentina). The ML model 
outperforms the numerical model performance with better 
accuracy. Recently, Khaledian et al. (2020) used the machine 
learning (ANN and SVM) model to estimate the water level 
of the Caspian Sea. Montaño et al. (2020) compared the 
performance of 19 different numerical models with the ML 
model at Tairua Beach, New Zealand. The ML model shows 
accurate forecasting of shoreline change.

The conventional methods used for the study of shore-
line were more complex, time-consuming, and require 

more human resources through ground survey methods. 
The advancements in the GIS have made it feasible to over-
come the shortcomings of the traditional survey methods. 
The use of ML techniques in a variety of coastal problems 
has rapidly increased over the past few years since ML 
algorithms can be highly effective predictors, can be used 
as part of larger models, and can provide physical insight. 
The present study focuses on both short-term and long-term 
shoreline changes using ML techniques to predict the shore-
line shift of the Orissa coastline by utilizing satellite and 
physics-based data. This study sheds further insights into 
implementation of ML techniques to predict the realignment 
of coastline in general and extends present state of the art 
of coastline change prediction which had been previously 
been done using conventional methods. To the best of the 
authors knowledge, the present study is the first of its kind 
that uses ML models to predict the shoreline shifts in the 
entire Orissa coastline.

Study region

The Orissa coastline is used as the study region to analyze 
the shoreline change. The Orissa is located in eastern India 
as shown in Fig. 1. The Orissa has 485 kilometers (301 
miles) long coastline along the Bay of Bengal on its east, 
from Balasore to Ganjam. The coastline was divided into 
six zones similarly as Ramesh et al. (2017) as presented in 
Fig. 2. The region experiences four seasons: winter, pre-
monsoon, southwest monsoon, and northeast monsoon. The 
Orissa coast is disaster-prone mainly due to flooding, surges, 
coastal inundation tropical cyclone, and tsunamis.

Fig. 1  Study region: Orissa coastline
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The growing appeal for trade and overseas invest-
ments has accelerated environmental changes in the state 
which has worsened in recent times due to the fluctuating 
weather conditions (heatwaves, cyclones, droughts, and 
floods). As a result, Orissa coast experiences severe ero-
sion and deposition at different locations, which indicates 
the need for coastal management. Monalisha and Panda 
(2018) analyzed the eastern Indian coast Ganjam from 
1972 to 2016 and revealed the shoreline had experienced 
a shift and accretion of approximately 5 km2 and 1.6 km2 , 
respectively. Similarly, Ramesh et al. (2017) reported that 
many villages of the Mahanadi deltaic coast were evacu-
ated due to high erosion rates. Hence, it is necessary to 
understand the accretion and erosion rates over the com-
ing years in this region.

Research data

The Orissa coastline satellite images are obtained from 
United States Geological Survey (USGS) (USGS 2017) data 
for the duration between January 1985 and December 2015 
on a monthly basis. The physics-based dataset is collected 
from the Modern-Era Retrospective analysis for Research 
and Applications, Version 2 (MERRA-2) (MERRA-2 2017; 
Kennedy et al. 2011; Gelaro et al. 2014; Bosilovich et al. 
2017; Valipour and Tian 2018; Shen et al. 2019, 2020), and 
the European Centre for Medium-Range Weather Forecast 
(ECMWF) (ECMWF 2018; Hsu and Hoskins 1989; Bazile 
et al. 2017; Wang et al. 2019; de Rosnay et al. 2020). The 
comparison of the specifications of MERRA-2 and ERA-
Interim (ECMWF) reanalysis data is presented in Table 1

MERRA-2 (Gelaro et al. 2017) is the 2nd version of 
the Modern-Era Retrospective analysis for Research and 

Fig. 2  Zone-wise division of 
Orissa coastline

Table 1  A comparison of the reanalysis data

Name ERA Interim MERRA-2

Source ECMWF NASA GMAO
Time range 1979–present 1980–present
Assimilation 4D-VAR 3D-VAR with incremental update
Model resolution TL255L60 and N128 reduced Gaussian Native cube sphere grid output is interpolated to 5/8 lon., 1/2 lat.- deg.; 

72 sigma levels
Dataset resolution User defined, down to 0.75◦ × 0.75◦ 5/8 lon., 1/2 lat. degree, 42 pressure levels down to 0.67◦ × 0.5◦

Dataset observed Wave height, wave period, wave direction, 
swell height, swell direction, and tide

Temperature, relative humidity, pressure, wind speed, and wind direction
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Applications, Version 2 (MERRA) developed by NASA’s 
GMAO. MERRA-2 is generated to supplement the previous 
MERRA reanalysis data and addresses the later shortcom-
ings in the assimilation of the newest satellite data sources 
(Rienecker et al. 2011). The MERRA-2 (Reichle et al. 2011) 
reanalysis data have been developed with a spatial resolution 
of 0.67◦ × 0.5◦ (Bosilovich et al. 2008) at NASA’s Goddard 
Space Flight Centre. The latest version maintains some of its 
predecessor’s core features, such as the spatial and temporal 
resolutions and the 3D Var 6-h update cycle. The parameters 
selected from the MERRA-2 are temperature (K), relative 
humidity (percent), pressure (bar), wind speed (m/s), and 
wind direction.

ERA-Interim is the 4th-generation reanalysis dataset of 
ECMWF, which follows the ERA 15 and ERA 40 dataset. 
ERA-Interim uses a 12-h, 4-dimensional variance analysis 
(4D Var) focused on the ECMWF with an efficient esti-
mate of differences in satellite radiance results (Var BC). 
It enhances the correction of satellite observations (Dee 
et al. 2011). The parameters selected from ERA-Interim 
(ECMWF) are tides and wave parameters such as wave 
height, wave period, wave direction, swell height, and 
swell direction. The dataset contains a spatial resolution of 
0.75◦ × 0.75◦.

The tidal range in the study region varies from 0.7 m 
during neaps to 2.8 m during springs (The Indian Tide 
Tables-Part 1,1995: Indian and Selected Foreign Ports 
1994). In Odisha coast, the mean significant wave height 
ranges between 1.25 and 1.40 m for the wave period of 6–9 
s, mostly plunging from June to December and surging from 
January to May. The mean significant swell height is 1.33 
m in the eastern Indian coast. The Orissa coastline poses 
the maximum temperature ranges between 35 and 40◦ C in 
summer and the low temperatures 3–4◦ C in winter. The 
relative humidity varies between 33 and 85%, whereas the 
pressure varies between the ranges of 998 and 1016 bar. The 
wind speed in the Orissa coastline varies in between 3 and 
35 km/h throughout the year (with an average speed of 18 
km/h). The wind is most often generated from the south with 
a peak percentage of 87%.

The sediment transport also plays a vital role in the detec-
tion of shoreline change of Orissa as the Mahanadi River 
at the delta bears an annual gross sediment load of 29.77 
million tons per year (Ramesh et al. 2017). A considerable 
amount of sediment transport occurs in the coastline of 
Orissa. But due to the unavailability of sediment transport 
data, the sediment transport parameter is not considered in 
the present study. The choice of the reference line (shore-
line) is the most critical part of shoreline change detection. 
The dune baseline is preferred over high water line due to 
its direct relationship with the tide and wave in the present 
study region (Elko et al. 2002; Houser et al. 2008; Stockdon 
et al. 2009; Suanez et al. 2012).

Methods and numerical models

The significant local change of the intensity occurs at the 
boundary of two different regions in an image called the 
edges. First, the images were smoothed, and the noises 
were suppressed without destroying the true edges. In the 
second step, the sharpening filter was used to improve the 
quality of edges in the image. The third step was to detect 
the edge pixel, which should be either retained or dis-
carded as noise depending on the threshold criterion for 
detection. Finally, localization determines the exact loca-
tion of an edge. The coastline can be observed precisely by 
considering the first nonzero pixel from the right side as 
it represents the edge of the coastline. Moving down from 
one column to another, the first nonzero pixels from the 
right side represent the coastline. Figure 3 represents the 
Satellite image of Orissa coastline after edge detection in 
April 1985. However, Fig. 4 represents the Satellite image 
of Orissa coastline after edge detection in April 2015.

After superimposing the two satellite images (Landsat 
imagery), the coastline shift can be calculated by finding 
the number of black pixels between two consecutive white 
pixels in a row. Figure 5 represents the zone-wise shore-
line shift (1985–2015) after superimposing the satellite 
images.

The satellite images of Orissa were analyzed using 
Sobel and Canny edge detection technique to observe 
shoreline shift. The Canny edge detection technique has 
previously been shown to give higher accuracy in detec-
tion of shoreline shift and less execution time compared 
with Sobel edge detection technique (Acharjya et al. 2012; 
Vijayarani and Vinupriya 2013). Similarly, the canny edge 
detection outperforms Sobel edge detection technique and 
gives better edge detection results with higher accuracy in 

Fig. 3  Satellite image of Orissa coastline after edge detections in 
April 1985
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the present study. Therefore, the coastline shift obtained 
using the Canny edge detection techniques was used as an 
input in ML models.

The data provided by MERRA-2 and ERA-Interim 
(ECMWF) are reanalysis data. The reanalysis data are 
preprocessed data that do not require any cleansing or fea-
ture engineering. The dataset obtained from MERRA-2 
and ECMWF is in NetCDF format. Further, the dataset is 
extracted from the NetCDF format for the Orissa coastline 
in excel file format using MATLAB 2019a. Thereafter, the 
data were normalized using a standard scale before being 
used as a model input parameters in order to avoid the prob-
lem of scaling. The normalization process transforms the 
data having a distribution that exhibits the mean value of 
zero and a standard deviation of one. The feature matrix was 
normalized using Eq. 1.

where � = mean (X) and � = standard deviation (X)
Further, the ML models were trained from tides, shore-

line shifts, and the wave parameters from ERA-Interim 
(ECMWF). Subsequently, the trained ML models, viz. artifi-
cial neural network (ANN), K-nearest neighbor (KNN), and 
the support vector machine (SVM), are used to model and 
predict the future coastline shift. The k-fold cross-validation 
technique is used to estimate how the models are expected to 
perform when used to predict the test dataset. Figure 6 shows 
a schematic flowchart that illustrates the methodology used 
in the present study.

Sobel edge detection

The Sobel filter was introduced by Sobel–Feldman (Sobel 
and Feldman 1968). It is a discrete differential operator, 
which computes an estimate of the feature intensity function 
gradient. The corresponding gradient vector at each point in 
the image is the product of the Sobel–Feldman operator. The 
Sobel–Feldman operator is generally used for converting 
the image in horizontal and vertical directions with a small, 
separable, and integer-valued filter and is therefore relatively 
inexpensive computationally. On the other hand, the gradient 
approximation generates relatively coarse images, especially 
with respect to high-frequency image variations.

Sobel edge detection technique detects the edges by 
seeking the maximum and minimum in the first deriva-
tive of the image (Vincent et al. 2009; Saluja et al. 2013). 
The Sobel filter performs two-dimensional (2D) gradient 
measurement on images returning the maximum gradient 
edge. For edge detection operations, pairs of horizontal 

(1)Xnormalized =
X − �

�

Fig. 4  Satellite image of Orissa coastline after edge detections in 
April 2015

Fig. 5  Satellite image of Orissa 
coastline after superimposing 
the image of 2015 over 1985
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and vertical gradient matrices of dimensions 3 × 3 are used 
and presented in Fig. 7.

The gradient is a vector, and their components deter-
mine the change of rapid pixel values with respect to dis-
tance in the x and y directions. The components of the 
gradient can be calculated using Eqs. 2 and  3:

where dx and dy show the distance measured along x and 
y directions, respectively. dx and dy can be considered in 
terms of numbers of the pixel between two points in discrete 
images. The pixel coordinate at a point (i, j) is presented in 
Eqs. 4 and  5, where dx = dy = 1 (pixel spacing).

To find the presence of discontinuity in gradient , the change 
in gradient at (i, j) is calculated by finding out the magnitude 
using Eq. 6.

(2)
�f (x, y)

v�x
=Δx =

f (x + dx, y) − f (x, y)

dx

(3)
v�f (x, y)

v�y
=Δy =

f (x, y + dy) − f (x, y)

dy

(4)Δx = f (i + 1, j) − f (i, j)

(5)Δy = f (i, j + 1) − f (i, j)

(6)M = ((Δx2) + (Δy2))
1

2

Fig. 6  Flowchart of the methodology

Fig. 7  Horizontal and vertical gradient matrices of Sobel filter
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Direction � is calculated using Eq. 7.

Canny edge detection

John F. Canny introduced the Canny edge filter in 1986 
(Canny 1986). It is an operator for edge detection which 
uses a multistage algorithm to detect a broad range of edges 
in images. This technique is developed to extract structural 
information from different objects of vision and significantly 
minimize the volume of data to be processed. It has been 
spread across various machine vision platforms commonly. 
Canny has also identified fairly close criteria for the imple-
mentation of edge detection on different vision systems. 
Thus, Canny edge detection can be implemented in a wide 
range of situations to address image processing require-
ments. The Canny edge detection technique locates the edge 
at the edge center with a low error rate, and no false edges 
are created during its execution.

Canny edge detection techniques detects the edges with 
suppression of noise (Green 2002; Shrivakshan and Chan-
drasekar 2012). It smoothens the image using a Gaussian 
filter that reduces noise using Eqs. 8 and  9 (Murthy et al. 
2009).

where � stands for the parameter of Gauss filter, and it con-
trols the extend of smoothing image.

Using gradient operations, Eqs. 10 and  11 were obtained.

where the threshold value of M is obtained by Eq. 12, if 
M(m, n) > T0 ; otherwise, it is 0.

where T is selected in such a way that all edge elements were 
considered and noise is also suppressed up to the maximum 
extent.

K‑nearest neighbors (KNN)

KNN is an AI algorithm which accumulates all available 
cases and classifies new cases based on the equivalent 

(7)� = arctan(Δx∕Δy)

(8)g(m, n) =G�(m, n) ∗ f (m, n)

(9)G� =
1√
2��2

exp

�
−
m2

+ n2

2�2

�

(10)M(m, n) =

√
g2
m
(m, n) + g2

n
(m, n)

(11)�(m, n) = tan−1[gn(m, n)∕gm(m, n)]

(12)MT (m, n) = M(m, n)

measure (distance function) (Satapathy et al. 2012). KNN 
algorithm is an easy-to-implement supervised AI algorithm 
which is used to solve classification as well as regression 
problem (Altman 1992). KNN algorithm is developed to 
perform statistical estimation and pattern recognition (Garg 
et al. 2019). A case is classified by a majority vote of its 
neighbors, with the case being assigned to the class most 
common amongst its K-nearest neighbors measured by a 
distance function as given in Eqs. 13,  14, and  15.

Distance functions

Minkowski distance function is the generalized form of 
Euclidean and Manhattan distance function. Therefore, 
Minkowski distance function results were used in the present 
study. In this technique, positive integer k and a new sample 
are specified. The positive integer k in the dataset which is 
closest to the new sample is selected to find out the most 
common class, and their classification is then given to the 
new sample. KNN algorithm predicts output by calculating 
the similarities between an input sample and each training 
instance.

Support vector machines (SVM)

SVM is an AI algorithm developed in Russia in the 1960s 
(Vapnik 1963; Vapnik and AY 1965). SVM was developed 
on large scale at AT & T Bell Laboratories by Vapnik and 
co-workers (Cortes and Vapnik 1995). SVMs are structured 
learning models that are used for classification and regres-
sion analysis problems. The SVM training algorithm builds 
a model for a specified set of training examples, allocating 
a new example to one or another subclass, rendering it a 
binary non-probabilistic linear classifier (Cortes and Vapnik 
1995; Hsu et al. 2003; Dutta et al. 2020). Also, the regres-
sion problem can be solved using the SVM model.

SVM algorithms employ a number of mathematical func-
tions which are defined as the kernel. The kernel’s func-
tion uses the input data and transforms it into the required 
form.. Basically, it returns the internal product between two 

(13)Euclidean ⇒

√√√√ n∑
i=1

(
xi − yi)

2

(14)Manhattan ⇒

n∑
i=1

|xi − yi|

(15)Minkowski ⇒

(
n∑
i=1

|xi − yi|q
) 1

q
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points in an appropriate feature space. Different SVM algo-
rithms use different types of kernels functions such as lin-
ear, nonlinear, polynomial, radial basis function, etc. (Gunn 
et al. 1998). In recent years, kernel methods have gained 
considerable attention due to the support vector machine’s 
popularity. In many applications, kernel functions provide 
a simple connection between linearity and non-linearity for 
algorithms, which can be expressed as dot products (Fadel 
et al. 2016). A nonlinear classifier is created by applying the 
kernel functions to create maximum-margin hyperplanes. 
The appropriate choice of kernel function is an important 
choice selection that affects the overall accuracy. Hence, the 
choice of kernel is one of the important aspects while imple-
menting SVM. The polynomial, radial basis, and sigmoid 
kernal functions are used in the present study.

In SVM algorithm, the radial basis function kernel (RBF) 
is often used for classification analysis. For two samples 
x(i) and x(j), the RBF kernel function can be represented as 
feature vectors in an input space (Chudzian 2011), as pre-
sented in Eq. 16:

where � = 1

2�2
 and �(x) is infinite dimensional for this kernel.

The polynomial kernel (on degree-n polynomials x and y) 
is represented as feature vectors in an input space over poly-
nomial of the original variable. For polynomials of degree-n, 
the polynomial kernel is defined as in Eq. 17 (Gunn et al. 
1998).

where c is greater or equal to zero ( c = 0 means 
homogeneous).

The sigmoid kernel originates from the neural networks, 
where artificial neurons often use the bipolar sigmoid func-
tion as an activation function. For two samples x(i) and x(j), 
the RBF kernel function can be written as Eq. 18.

where a and c represent the slope and intercept, respectively.
Radial basis function kernel, polynomial kernel, and sig-

moid kernel have been used for the prediction of shoreline 
shift in the present study (comparison is shown in results 
section).

Artificial neural network (ANN)

ANN is an AI algorithm that consists of simple elements 
called artificial neurons (Puskarczyk 2019; Bouguerra et al. 
2019). The neural network model uses the same approach as 
our brain does (Gatys et al. 2015). It is a highly generalized 

(16)K
(
xi, xj) = �(xi)T�(xj)T = e−�||xi−xj||2

(17)K(x, y) = (x�y + c)nK(x, y) = (x�y + c)n

(18)K(x, y) = tanh(ax�y + c)

form of linear regression, resulting in extremely complex 
and nonlinear interactions between the input data and the 
output (Piasecki et al. 2018). The neuron receives input data 
from the source, changes their activation, and produces out-
put as shown in Fig. 8.

The obtained output is completely dependent on the input 
data and their activation (Schalkoff 1997). Each neuron in 
the hidden layer gets weighted inputs (output of the previous 
layer) plus bias from each neuron in the previous layer, as 
presented in Eq. 19.

where Z = output, X = input parameter , W = weight, and 
b = bias

In this study, the activation function tan(h) in exponential 
form is represented as in Eq. 20:

The summation is passed along the activation function 
to generate the output of the node, which is calculated as 
Yi = f (Zi)

ANN involves three important steps: training, validation, 
and testing. In the training step, the network is trained by 
adjusting the weights. The second step validation is neces-
sary to avoid over-fitting of the model. The validation set is 
directly not used for weights adjustment, but it is used to find 
out the optimum number of hidden layers and also decide the 
termination point. The third step is testing, which is used to 
check the prediction ability of the network.

The order or arrangements of node in a layer of neural 
network is defined by neural network architecture (Arce-
Medina and Paz-Paredes 2009). The feed-forward neural 
network is used in the present study, which consists of an 
input layer, a series of hidden layers, and an output layer, 
each having various numbers of nodes (Valipour et  al. 
2012, 2013). The total number of nodes in layers is deter-
mined by the nature of a problem or its complication under 

(19)Zi =

⎛
⎜⎜⎝

Nj−1�
n=1

X
j−1

k
∗ Wk, i − bk

⎞
⎟⎟⎠

(20)f (Zi) =
e(Zi) − e(−Zi)

e(Zi) + e(−Zi)

Fig. 8  A generalized schematic of a neural network



1136 Acta Geophysica (2020) 68:1127–1143

1 3

consideration. The weights are calculated when the dataset is 
trained in the neural network. Finally, the output is predicted 
from the input node, which acts as a distribution node.

One of the accepted ways to validate the ML model is 
using the train–test split method. In this method, the accu-
racy of the model is evaluated in terms of coefficient of 
determination ( r2 ). The coefficient of determination ( r2 ) is 
a statistical measure of how well the predictions approximate 
the real data points. The value of ( r2 ) varies in between 0 and 
1. A higher ( r2 ) value indicates better prediction accuracy. 
In the present study, the dataset obtained from MERRA-2, 
ERA-Interim (ECMWF), and shoreline shift is divided into 
two parts based on the train–test split method. The first part 
contains 70% of the dataset, which is used for model training 
purposes, and the remaining 30% of the dataset is used as 
testing purposes. The training dataset is used to develop the 
ML model. However, the trained ML model is then tested 
with inputs from remaining 30% dataset to predict the shore-
line shift of the testing dataset.

Results and discussions

The coastline retreat was calculated by superimposing the 
two satellite images of the Orissa (India) coastline using 
edge detection filters. Image differencing technique was used 
to determine the coastline shift of Orissa (India). The shift 
is estimated by finding the number of black pixels between 
two consecutive white pixels in a row where a unit pixel 
corresponds to 200 meters. A significant shift of the Orissa 
coastline was observed in April 2015 (Landsat imagery) 
with respect to April 1986 (Landsat imagery). Subsequently, 
KNN, ANN, and SVM techniques are used to model the shift 
of Orissa (India) coastline in conjunction with other input 
parameters from MERRA-2 and ERA-Interim (ECMWF).

The weight parameters for the KNN model are set 
to be uniform such that every point in the neighborhood 
is weighted equally. The power parameter (p) for the 
Minkowski metric was selected as 2 (two). Therefore, 
Minkowski metric is equivalent to the standard Euclidean 
metric (Hu et al. 2016). The accuracies of KNN models 
having a different number of neighbor parameters are pre-
sented in Table  2. The training and testing accuracy was 

found to be 0.879 and 0.830 for K = 5 and 0.852 and 0.835 
for K = 10 . The training and testing accuracy for K = 100 
was 0.845 and 0.845. Table  2 shows that better result was 
obtained with k = 100 in the present study.

In SVM model, the penalty parameter (C) was set to one, 
and the degree of polynomial kernel was three. The gamma 
was set in the algorithm automatically, which uses 1 / num-
ber of features, and if gamma is set to a scale, then it uses 1 
/ ( number of features ∗ X.var) as the value of gamma. The 
polynomial kernel with gamma function provides the train-
ing and testing accuracy of 0.855 and 0.845, respectively. 
The accuracy achieved by the SVM models with different 
kernels is presented in Table 3. The corresponding train-
ing and testing accuracy with RBF function was 0.835 and 
0.845, respectively, and the sigmoid kernel function has the 
training and testing accuracy of 0.83 and 0.83, respectively. 
Table 3 shows the best result was obtained with polynomial 
kernal function in the present study.

An ANN model of (100,100) neurons having two hid-
den layers using tan hyperbolic as the activation function 
showcased the highest test accuracy. The ANN model 
predicts the shoreline shift with r2 of 0.862 and an accu-
racy of 86.2% as presented in Table   4. However, the 
stochastic gradient descent (SGD) and limited memory 
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) optimization 
algorithms (Jan et al. 2002) showed a test accuracy of 73 and 
75%, respectively. The highest test accuracy was manifested 
by Adam optimizing algorithm as represented in Table  4. It 
can be concluded that an ANN model of (100,100,2) neuron 

Table 2  KNN model

Networks Train accuracy Test accuracy No. of 
neighbors(k 
)

KNN 0.879 0.830 5
KNN 0.852 0.835 10
KNN 0.845 0.845 100

Table 3  SVM model

Kernel Gamma function Train accuracy Test accuracy

POLY Scale 0.855 0.845
RBF Auto 0.835 0.845
Sigmoid Auto 0.830 0.830

Table 4  ANN model with Adam optimizer

Train accuracy Test accuracy Neurons Function

0.845 0.845 12,12,2 Identity
0.846 0.847 12,12,2 Tanh
0.847 0.847 12,12,2 Relu
0.847 0.847 12,12,2 Logistic
0.846 0.847 12,2,5 Relu
0.847 0.847 50,50,5 Relu
0.845 0.845 50,50,2 Relu
0.857 0.857 50,50,2 Tanh
0.859 0.858 100,100,30 Tanh
0.863 0.862 100,100,2 Tanh
0.858 0.856 100,100,30 Relu
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is sufficient and accurate, while further increasing the num-
ber of neurons and layers, no significant change is observed 
in the test accuracy.

The comparison of results from the KNN, SVM, and 
ANN model is presented in Table 5. The result suggests 
that ANN model using Adam optimizing algorithm has 

better accuracy compared to other models used in the pre-
sent study. The ANN model outperforms the KNN and SVM 
model. It is evident that the monthly forecasting is improved 
significantly at every point location using the ANN model. 
The model can be further used in different research areas.

After applying the ANN model, the shifts of the shoreline 
for respective years were calculated for various points along 
the coastline. Subsequently, a mean shift was calculated as 
the total shift of the coastline from a reference time period 
of 1985, as presented in Table 6. It contains the average 
yearly shift and average shift in meter from 1985 to 1998. 
The mean shift in pixels is plotted against the time period, as 
presented in Fig.  9. The single unit pixel shift of the image 
is equivalent to a shift of 200 meters of shoreline.

The mean shift in future years (2018–2100) is calculated 
using a best fitting curve (yearly mean shift vs. time period) 
using Curve Pro-Expert Professional software as presented 
in Table  7 and shown in Fig. 10. A significant increase in 
the average shift in meter is observed in the prediction of 
shoreline shift in future years, as shown in Table  7 and 
Fig. 10. It is evident from the observations that the coastline 
would continue to erode at an increasing rate in future years.

The statistics of the curve are presented in Table 8. The 
coefficient of determination ( r2 ) of the curve and correla-
tion coefficient (r) are 0.560 and 0.748, respectively. The 
correlation coefficient (r) of the best fitting curve is closer 
to 1. This means it will give a better prediction of shoreline 
shift in future years.

The result of the ANN model to predict the zone-wise 
shift is presented in Table 9. The coastline was divided 
into six zones similar to Ramesh et al. (2017) as presented 
in Fig.  2. The ANN model result suggests that Zone 1 
and Zone 2 will continue to accrete over the coming years 
at an increasing rate. However, Zone 3 would accrete at 
a decreasing rate. Zone 4 will continue to erode at an 

Table 5  Comparison of accuracy scores of ANN, KNN, and SVM 
models

Model Train accuracy Test accuracy

KNN 0.845 0.845
SVM 0.855 0.845
ANN 0.863 0.862

Table 6  Results obtained from 
ANN model

Year Average 
yearly shift

Average 
shift in 
meter

1985 0 0
1986 0 0
1987 0 0
1988 0.008 1.661
1989 − 0.009 − 1.898
1990 − 0.032 − 6.487
1991 0.355 71.044
1992 − 0.214 − 42.827
1993 0.268 53.691
1994 − 0.295 − 59.098
1995 − 0.378 − 75.685
1996 − 0.204 − 40.772
1997 0.355 71.044
1998 − 0.254 − 50.448

Fig. 9  Mean shift versus time period
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increasing rate. However, Zone 5 and Zone 6 would erode 
at an increasing rate. The weights associated with the fea-
tures of all the three ML models ( KNN, SVM, and ANN) 

indicate that the wind speed and the wave height are the 
most prominent features in shoreline shifts.

Comparison with the published literature 
and validation

There is no such literature that covers the entire coastline of 
Orissa from 1975 to 2015 using the ML approach as used in 
the present study. In one of the published reports, Ramesh 
et al. (2017) analyzed the shoreline shifts of the Orissa coast-

line from 1972 to 2010, where they used remote sensing 
techniques for their analysis. They have also not provided the 
quantitative results of the shoreline shift. However, Mishra 
et al. (2019) qualitatively validated their shoreline status 
at the Puri District of Orissa (1990–2015) against Ramesh 
et al. (2017). In a similar manner, the zone-wise erosion 

and accretion results of present study are validated with the 
National assessment report of Ramesh et al. (2017) as shown 
in Table  10. The results show that the results obtained in 

Table 7  Mean shift in meters Year Average 
shift in 
meter

2018 − 43.24
2025 − 107.52
2050 − 179.06
2075 − 250.67
2100 − 322.14

Fig. 10  Best fitting curve for 
mean shift versus time period

Table 8  Best fitting curve statistics

Standard error Correlation coeffi-
cient (r)

Coefficient of deter-
mination ( r2)

Score

56.812 0.748 0.560 567

Table 9  Zone-wise shift in 
meters

Year Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 Zone 6

2016 34 39.62 113.46 − 798 18.86 3.60
2025 36.58 44 122 − 846 14 1.92
2050 41 80 94 − 894 − 3.8 − 2.8
2075 44 116 66 − 944 − 21.8 − 7.6
2100 49.96 152 38 − 994 − 40 − 12.6



1139Acta Geophysica (2020) 68:1127–1143 

1 3

the present study using ML technique match with that of 
Ramesh et al. (2017) qualitatively who used remote sensing 
techniques for their analysis.

The shoreline change assessment based on the ML tech-
nique reveals considerable temporal variability in the posi-
tions of shorelines along the eastern Indian coast of Orissa 
over the past 30 years (1985–2015). The shoreline shift 
observation documented in the present study is consistent 
mainly with recent shoreline change assessments in the east-
ern Indian coast, Odisha (Ramesh et al. 2017; Barman et al. 
2014; Rajawat et al. 2015; Jangir et al. 2016). For instance, 
Ramesh et al. (2017) reported that out of total 480.4 km 
coastal length of Orissa, 46.8% is accretion, 36.8% is eroded, 
14.38% is stable, and 2.04% is artificial coast during 1972 
(Survey of India toposheet) and 2010 (Landsat-5 TM) that 
means accretion is dominant throughout these years similar 
to the present study. Further, Barman et al. (2014) reported 
that the shoreline of the Balasore District of Orissa varied 
from 1.4 to 3.75 m while in NDVI, the shift varied from 
2.0 to 9.31 m due to accretion (1975–2013). They have also 
predicted the shoreline shift till 2030 with the linear regres-
sion technique and reported the accretion would take place 
at a higher rate in future years. Similarly, Zone 1 indicating 
Balasore poses similar future results and suggests that the 
accretion will take place in future years with an increas-
ing rate. In one of the studies, Mukhopadhyay et al. (2012) 
used Landsat MSS and TM data in Puri (Odisha) during 
1972–2010. They recorded high erosion rates in the northern 
part of Puri, near the Kushabhadra estuary and Chandrab-
haga beach. In contrast, the southern portion of the shore-
line between Chilika and Puri is substantially stable during 
1972–2010. Similar results of shoreline shift were obtained 
by Jangir et al. (2016) as they documented that the high 
erosional trends (500–800 m) were observed in the northern 
part of Puri (Odisha) in comparison with the southern part 
(50–200 m) during 1972–2009 using the Survey of India 
toposheet (1972) and Landsat TM data (2009). Overall, the 
same shoreline shift trend has been observed in Zone 4 of 
this study, which poses high erosional trends. The significant 

shoreline erosion results in Zone 4 are expected due to com-
plex interactions between river flow, waves, and tides. How-
ever, Zone 5 undergoes erosion with a low erosion rate as 
compared to Zone 4. Similarly, Markose et al. (2016) ana-
lyzed the coastline of Ganjam (Orissa) during 1990–2014 
using satellite imagery and reported that the 71.65% of the 
Ganjam coast undergoes accretion, whereas 28.35% coast 
falls under erosion. A similar trend is observed in Zone 6 
of this study. There are no studies till date analyzed in Zone 
2, Zone 3, and Zone 4 indicating Bhadrak, Kendrapara, and 
Jagatsinghpur districts, respectively. These zones can be 
considered separately and analyzed in future research works.

Machine learning (ML) algorithms are data-driven 
approaches which extract the interpretable information and 
knowledge from the available data resources. Thus, ML 
derives models that learn much more from the big data than 
the traditional data assimilation approaches can, while still 
respecting the evolving understanding of nature’s law. The 
ML system’s goal is to prepare a function that best maps 
inputs to outputs given the resources available. Therefore, it 
can be a valid assumption for using a certain number of input 
parameters as per the availability of the required dataset to 
ML models (Govindaraju 2000a, b). The human activities 
and coastal ecosystems relationships are difficult to under-
stand since these activities generate multiple pressures act-
ing simultaneously and often producing unexpected ecosys-
tem responses (Halpern et al. 2008). In more recent times, 
human activities such as those related to land-use practices, 
the spread of urbanized areas (Valiela 2004) and the building 
of dams and offshore structure, have significantly reduced 
the delivery of fluvial sediments to the coastal systems and 
therefore altered the natural coastal processes of sedimen-
tation (Coltori 1997; Gregory 2004; Simeoni and Corbau 
2009; Ronco et al. 2010; Di Silvio and Nones 2014; Guer-
rero et al. 2015; Pescaroli et al. 2018; Varrani et al. 2019). 
The natural- and human-induced pressure is unexpected in 
the coastal region and presently not included in the current 
study, and therefore, the predicted value from ML approach 
may change from the actual results.

Conclusion

The shoreline shift has been an important issue for the 
researcher in recent years due to continuous occurrence 
of both natural and anthropogenic events in the coastal 
region. The prediction of shoreline change is important 
with regard to coastal hazard assessment. The problem of 
coastal erosion in eastern Indian coast, Orissa (India), has 
increased due to high frequency and intensity of cyclones 
such as Helen (2013), Hudhud (2014), and Fani (2019), and 
repeated floods in recent years. The eastern Indian coast-
line, Orissa, is facing a high degree of erosion due to the 

Table 10  Comparison of the present study of observed shoreline sta-
tus against National assessment report by Ramesh et al. (2011) along 
the eastern Indian coast, Odisha

Zone Length (km) Present study 
(1985–2015)

National assessment report 
by Ramesh et al.(2011) 
(1972–2010)

Zone 1 87.96 Accretion Accretion
Zone 2 52.61 Accretion Accretion
Zone 3 83.55 Accretion Accretion
Zone 4 58.95 Erosion Erosion
Zone 5 136.48 Erosion Erosion
Zone 6 60.85 Accretion Accretion
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effect of natural phenomenon as well as human activities in 
that area. In the present study, ML algorithms (KNN, SVM, 
and ANN) were implemented to predict the realignment in 
shoreline along the eastern Indian coast of Orissa, India. A 
significant shoreline shift was observed using Canny filter 
(image differencing technique) in multiresolution satellite 
images (Landsat imagery) of 1985 and 2015. The reanalysis 
data from MERRA-2, ERA-Interim (ECMWF), and shore-
line shift data were used to model ML algorithms. The ML 
algorithms were applied to calculate and forecast shoreline 
changes along the Orissa coastline. The ANN model outper-
forms KNN and SVM algorithm in shoreline prediction with 
an accuracy of 86.2%. The shoreline observed in the present 
study was dynamic and had uncertainties all along the coast. 
The study reveals the change in the shoreline of Orissa in 
future decades. The weights associated with the features of 
all the three ML models (KNN, SVM, and ANN) indicate 
that the wind speed and the wave height are the most promi-
nent features in shoreline shifts.

Hence, it can be concluded that the precise and accurate 
prediction of the shoreline change can be observed using ML 
techniques. The above results state that the shoreline of the 
eastern coast, Orissa (India), will experience a reduction in 
the shoreline at a rate of 2.61 m/year while considering of 
the shoreline of 2018 as a reference along the coast.

The results of the study can be used as management tools 
for shorelines protection to avoid economic losses in the 
future. Vegetation, marshes, and stone groin can be provided 
to safeguard seashore in the coastline area. Sea level rise 
along the coast, cyclones, and repeated flood must be con-
tinuously investigated to manage or reduce the loss in future.
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Abstract
Settling of solid particles in a stratified ambient fluid is a process widely encountered in geophysical flows. A set of experi-
ments demonstrating the settling behaviour (the pattern of trajectory, variation of particle orientation, and settling velocity 
with depth) of thin disks descending through a nonlinear density transition was performed. The results showed complex 
hydrodynamic interactions between a particle and a liquid causing settling orientation instabilities and unsteady particle 
descent in low to moderate Reynolds number regime. Five phases of settling were observed: two phases with stable horizontal, 
one with stable vertical disk position, and two reorientation phases; moreover, two local minima of settling velocity were 
identified. It was demonstrated that thresholds for local minima and the first reorientation depend on the settling dynamics 
in an upper layer, stratification conditions, and disk geometry. The comparison of settling behaviour of thin disks varying in 
diameter revealed that settling dynamics is sensitive to particle geometry mainly in the upper part of density transition with 
a non-obvious result that the first minimum velocity is smaller for a disk with a larger diameter than for a disk with a smaller 
diameter. The analysis of settling trajectory showed that two reorientations are accompanied with a horizontal drift, which 
may be important in the context of interactions between particles settling in a group.

Keywords Stratification · Particle settling · Disk · Density transition

Introduction

Density stratification occurs in various fluid components 
of natural environment (ocean, atmosphere, and the Earth’s 
interior) and affects to a large extent the vertical transport 
of particles. Modification of settling or rising behaviour of 
rigid particles, drops, and bubbles due to the presence of 
sharp or continuous stratification may considerably influence 
geophysical processes.

Density gradients form in aquatic systems (ocean, seas, 
and lakes) as a consequence of temperature and/or salinity 
variation with depth. The settling dynamics of particles in 
a density-stratified ambient is much different from that in 
homogeneous conditions. Sharp density gradients known 
as pycnoclines (haloclines or thermoclines, with salinity 
or temperature acting as a stratifying agent, respectively) 
form in favourable conditions (Capet et al. 2016; Noufal 

et al. 2017) induced the deceleration and prolonged resi-
dence times of particles in the stratified region (Peperzak 
et al. 2003). Field observations have provided evidence that 
organic particles such as marine, lake snow, and faecal pel-
lets may stagnate at pycnoclines for a few days, forming the 
so-called thin layers (Diercks et al. 2019; Macintyre et al. 
1995; Prairie et al. 2015), which modify particulate organic 
carbon flux in the ocean (Arnosti 2011; Lutz et al. 2002; 
Prairie et al. 2017).

Atmosphere stratification affects the transport dynamics 
of various particles including dust, aerosol, pollens, volcanic 
ashes, and pollutants. Temperature inversion layer that may 
form in the troposphere prevents airborne particles from set-
tling, which has been observed for dust (Zhai et al. 2019). 
Moreover, the stratification of atmosphere affects the fate 
of eruption columns and the transport of volcanic particles 
including settling of ashes (Woods 1995). In the context 
of Earth’s interior, it has been demonstrated that the pres-
ence of sinking crystals may considerably accelerate mix-
ing between rhyolitic and basaltic magmas, suggesting that 
particle settling should be considered in the magma mixing 
process (Renggli et al. 2016).
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The effects of fluid stratification on the movement of an 
object are also important in oceanographic techniques allow-
ing to measure physical, e.g. temperature and salinity, as 
well as biological parameters across the ocean depth. The 
design and operation of oceanographic float take advantage 
of natural density stratification, since the device actively 
changes its depth by manipulating its density with refer-
ence to ambient conditions to achieve the equilibrium depth. 
Although the dimensions of floats considerably exceed the 
above-mentioned natural particles, the same physical pro-
cesses govern the settling and rising of objects in stratified 
fluid (D’Asaro 2018).

Research on the dynamics of particle settling in stratified 
conditions is still at the level of fundamental mechanics of 
particle motion, since density gradient effects considerably 
increase the complexity of the problem compared to the 
homogeneous conditions. While settling in a homogene-
ous fluid is conveniently characterised by Reynolds num-
ber, Re = U a/ν, where U is the settling velocity [m s−1], 
a—particle characteristic length [m], ν—kinematic viscos-
ity  [m2 s−1], when stratified fluid is considered, stratifica-
tion effects are usually accounted by stratification strength 
expressed as the Brunt–Vaisala buoyancy frequency N, and 
Froude number, Fr = U/N a, which is the ratio of inertial to 
buoyancy forces (Yick et al. 2009). Another parameter is 
the ratio between momentum diffusivity and mass diffusiv-
ity of stratifying agent, i.e. Schmidt number, Sc = ν/κ where 
κ is the diffusivity of stratifying agent  [m2 s−1] (or Prandtl 
number for temperature).

Since detailed research on individual particle dynamics 
is challenging in natural conditions, small-scale laboratory 
experiments and numerical studies have become the major 
means to extend our knowledge on the fundamental aspects 
of sedimentation process (Prairie and White 2017). Earlier 
studies considered linear ambient stratification (Doostmo-
hammadi et al. 2014; Mercier et al. 2020; Yick et al. 2009), 
a two-layered configuration with a sharp density transition 
(Abaid et al. 2004; Camassa et al. 2010; Srdic-Mitrovic 
et al. 1999; Verso et al. 2019), and a two-layered configu-
ration with a continuous nonlinear transition (Mrokowska 
2018). Previous experimental studies have referred to the 
sedimentation in stratified conditions in a general sense, 
however, with a strong focus on natural waters where strati-
fication is generated by the vertical variation of salinity and 
temperature.

Density of particles present in aquatic systems (detrital 
material, mineral particles, plankton, microplastics, and 
marine snow) is close to that of water, which in combination 
with small dimensions of particles makes them settle in a 
low and moderate Reynolds number regime. Viscous forces 
dominate for Re  ≪ 1, while inertial forces affect the set-
tling dynamics for Re higher than unity. A group of studies 
motivated by settling processes in marine systems focused 

on settling in the viscous regime (Camassa et al. 2010; Yick 
et al. 2009), while others considered low to moderate Re 
number inertia-controlled regimes (Kindler et al. 2010; 
Mrokowska 2018; Prairie et al. 2015).

It has been well acknowledged in research performed so 
far that pronounced deceleration of particles at pycnoclines 
observed in nature is due to stratification-induced drag, 
which appears in the presence of density gradient beside the 
drag characteristic for homogeneous conditions (Magnaudet 
and Mercier 2020; Srdic-Mitrovic et al. 1999). The origin 
of stratification-induced drag is attributed to a caudal fluid 
entrained in the wake of particle from the above layers of 
lighter fluid (Srdic-Mitrovic et al. 1999) and to the compres-
sion and distortion of isopycnals (Doostmohammadi et al. 
2012; Yick et al. 2009). These two basic mechanisms have 
been demonstrated for spheres using both laboratory experi-
ments and numerical simulations. Inertial waves generated 
by descending particle may be the source of additional drag 
(Srdic-Mitrovic et al. 1999; Yick et al. 2009); however, this 
applies only for moderate and high Re number regimes in 
which case the particle has large inertia (Okino et al. 2017; 
Scase and Dalziel 2004).

Although the knowledge on the mechanisms of particle 
deceleration in the presence of stratification is growing, it 
is still not sufficient to propose robust methods that could 
be applied in sedimentation studies by a wide community 
of earth and environmental sciences researchers. Existing 
sedimentation and biogeochemical models oversimplify 
ambient conditions due to insufficient existing knowledge on 
how to tackle complex physical properties of natural waters 
in combination with settling processes, which may cause 
misestimating of sedimentation fluxes (Lutz et al. 2002). 
Effects of stratification are either discarded or limited to the 
effect of density change with the assumption that formulas 
for homogeneous conditions hold in stratified ambient, while 
settling velocity is much lower in a stratified background 
configuration than predicted by the standard Stokes law for-
mula (Dey et al. 2019) for the corresponding homogeneous 
conditions due to stratification-induced drag (Camassa et al. 
2009), which has serious implications on the estimation of 
particulate flux. Despite some successful attempts to para-
metrize the sedimentation through a pycnocline (Prairie and 
White 2017), research on sedimentation in stratified condi-
tions has not yet provided robust methods to be applied eas-
ily in large-scale or local-scale models.

Another troublesome factor affecting settling process is 
the shape of a particle. The vast majority of particles present 
in natural fluid systems are non-spherical; some examples 
are irregular volcanic ashes (Saxby et al. 2018), aeolian sedi-
ments (Raffaele et al. 2020), microplastics (Cole et al. 2011), 
faecal pellets, microorganisms, and marine snow (Turner 
2015). Basic research within fluid mechanics and sedimen-
tology provides some theoretical bases for the estimation 
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of settling velocities (Dietrich 1982; Loth 2008); however, 
existing theoretical background for the assessment of settling 
dynamics of solid particles of various shapes and densities 
is not sufficient to effectively study geophysical and environ-
mental problems such as settling speeds and fluxes of marine 
snow (Laurenceau-Cornec et al. 2019), microplastics in the 
ocean (Khatmullina and Isachenko 2017), and particulate 
organic matter flux (Lutz et al. 2002). The major problem 
is the fact that settling dynamics of variously shaped parti-
cles cannot be described by a universal law, as in the case 
of a sphere, and attempts to apply formulae dedicated for 
a sphere results in unreliable settling velocity estimations 
(Saxby et al. 2018). Consequently, an excessive number of 
semi-empirical relations to calculate drag coefficient and set-
tling velocity have been derived. However, these relations 
have serious limitations on their applicability due to shape-
dependent and orientation-dependent drag (Bagheri and 
Bonadonna 2016; Loth 2008). These practical problems have 
been already faced in research on settling fluxes of micro-
plastics (Khatmullina and Isachenko 2017; Waldschlager 
and Schuttrumpf 2019) and biogenic particles (Maggi 2013).

Since our state of knowledge is not sufficient to properly 
account for stratification effects in sedimentation models, 
fundamental studies on settling dynamics of non-spherical 
particles in stratified ambient are necessary to formulate in 
the future effective methods that will be applied in mod-
els. A few basic studies performed so far demonstrated that 
shape effects have pronounced impact on particle settling 
dynamics in stratified systems (Doostmohammadi and Arde-
kani 2014; Mercier et al. 2020; Mrokowska 2018). Spheroid 
particles reorient at a density interface as the effect of buoy-
ancy-induced torque appearing due to pressure difference 
at the edges of particle which overcomes inertial torque, 
which leads to complex pattern of settling behaviour (Arde-
kani et al. 2017; Doostmohammadi and Ardekani 2014; 
Mrokowska 2018). Disk rotation has been claimed to be 
additionally amplified by the torque exerted by a jet moving 
from the centre of the disk to its edge (Mercier et al. 2020), 
an effect visualized also in Mrokowska (2018).

Disk-like particles constitute a large group of particles 
that are of significance in environmental processes, e.g. dia-
toms, minerals, and ashes, and are convenient representa-
tion of oblate spheroids. Therefore, their dynamics are worth 
studying in the context of sedimentation in natural fluid 
systems. The pattern of individual disk settling has been 
described for two ambient conditions so far: a linear (Mer-
cier et al. 2020) and nonlinear stratification (Mrokowska 
2018). In the first study, short-length cylinders settling in 
a linearly stratified liquid have been considered (Mercier 
et al. 2020), and in the second one thin disks settling though 
a density transition have been studied (Mrokowska 2018). 
In the linear stratification set-up, the whole water column 
has been stratified with the maximum density exceeding the 

density of a particle, while in the other case there has been a 
two-layered set-up with two homogeneous layers of liquid: a 
less dense upper and a denser lower, both of density smaller 
than the density of the particle, with a nonlinear density 
transition between the layers. For both configurations, a disk 
reorients from stable horizontal to stable vertical position 
after some distance fallen broadside on in a stratified layer, 
which has been described as phase 1 and 2 in Mercier et al. 
(2020) and phases 1, 2, 3 in Mrokowska (2018). However, 
the dynamics of a disk settling in a nonlinear stratification 
are more complex, which manifests in two local velocity 
minima, while no minima have been observed for linear 
stratification. It should be noted that the first velocity mini-
mum is an effect of particle deceleration during reorientation 
and the second one is achieved when a disk is in vertical 
position, but occurs only when stratification is sufficiently 
strong (Mrokowska 2018). Two different mechanisms have 
been described for the reorientation from vertical to horizon-
tal position. In the case of a linear stratification, reorienta-
tion occurs when the particle achieves the level of neutral 
buoyancy, which is described as phase 3 in (Mercier et al. 
2020), while in the nonlinear stratification the second reori-
entation is an effect of fading influence of stratification when 
the particle enters the lower homogeneous layer where the 
role of inertia is restored. This is described as phase 4, and 
further settling in a stable horizontal position in the lower 
layer is denoted as phase 5 (Mrokowska 2018).

Another study (Lam et al. 2019) has investigated the set-
tling of heavy disks in a stably stratified liquid column for 
Re of order 1000. In this study, the effect of stratification 
on secondary motion of disk, specifically a fluttering mode, 
has been examined. The study showed that, compared to a 
homogeneous fluid, stratification modifies settling dynam-
ics enhancing particle radial dispersion, decreasing settling 
velocity, inclination angle, and uttering amplitude.

The settling process through stratified fluid has not been 
yet well recognised at the fundamental level, and deeper 
insight into settling dynamics of non-spherical particles 
in a stratified fluid is necessary to enable development of 
methods that will improve the performance of sedimen-
tation estimations and particle flux modelling in future. 
This study aims at improving our understanding of non-
spherical particles settling in stratified conditions. I show 
a series of settling experiments in a two-layered water col-
umn with nonlinear density transition extending the previ-
ous research (Mrokowska 2018) to focus on new aspects of 
settling dynamics. To gain more detailed characteristics of 
disk settling behaviour in a transition layer, 3D trajectory 
of particle settling was retrieved. The settling dynamics of 
thin disks were evaluated for a range of settling conditions 
in an upper layer and various stratification strengths in a 
density transition region. Two types of thin disks varying 
in diameter were used in this study. The objectives of the 
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study was to (1) quantify the effect of settling conditions in 
an upper layer and stratification characteristics on the set-
tling behaviour, i.e. settling velocity, reorientation pattern, 
and particle trajectory of disks in a low and moderate Re 
number regime, and to (2) assess the effect of disk diameter 
on settling dynamics.

Methods

Characterization of particles and experimental 
set‑up

Experiments were carried out in the Laboratory of Hydro-
dynamic Micromodels, Institute of Geophysics, Polish 
Academy of Sciences, Warsaw, Poland. Disks were man-
ufactured from acrylonitrile butadiene styrene (ABS) foil 
with a density of 1050 ± 5 kg m−3 and thickness h = 50 μm. 
Specially designed puncher was used to produce two sets of 
disks differing in diameter, d—2 mm and 3 mm with 0.1 mm 
accuracy, denoted as d2 and d3 disks, respectively. Disks 
were considered thin with a geometrical aspect ratio χ = d/h 
equal to 40 and 60. Several disks of each type were pre-
pared, and diameters were verified by image analysis using 
one of cameras applied in this study to take high-resolution 
photographs.

Disk settling was investigated in a series of experiments 
carried out in a 0.50-m-high transparent tank with a square 
base (0.10 × 0.10 m). A two-layered water column was 
formed before an experiment by filling the tank with denser 
salt water solution (density ρll) up to about 0.19 m from the 
bottom and with less dense salt water solution (density ρul) 
from 0.19 m up to the height of about 0.48 m. Thereby, two 
layers referred to as an upper and lower layer were formed 
(Fig. 1). To fill the tank, a method applied in the previous 
study has been used where details are described (Mrokowska 
2018).

To estimate vertical variation of salinity, a procedure 
described in the mentioned paper was applied. Inspection 
holes spaced every 5 mm (Fig. 1) were used to sample aque-
ous salt solution, and the salinity of each sample was meas-
ured using Kruss refractometer, model DR301-95. Given the 
temperature measurements, salinity was recalculated to den-
sity using literature tables (Kestin et al. 1981). The vertical 
variation of density was fitted to the hyperbolic tangent func-
tion (Prairie et al. 2015), as in previous study (Mrokowska 
2018). The experiments were carried out at room tempera-
ture varying in a range 22.1–23.4 °C.

A particle was released beneath a water surface in the 
centre of x–y plane, and particle descent in density transition 
region was recorded using two identical cameras (Basler 
acA2500-60um equipped with Schneider–Kreuznach macro 
lenses Componon 2.8/28–001) positioned orthogonal to each 

other. Camera#1 filmed x–z plane and camera#2 y–z plane 
(Fig. 1), which enabled the reconstruction of particle trajec-
tory. Two LED panels with DC power supply were used to 
generate backlight necessary to visualise the settling particle 
and to record the projection of particle shadow. The field of 
view (FOV) of a camera covered 77-mm-high and 62-mm-
wide area with one pixel corresponding to 31 μm. Upper 
edges of both cameras FOV were precisely positioned to the 
same level slightly above the density interface. Particle tra-
jectories were recorded at 60 fps, and the capturing of image 
pairs was synchronized. Each settling test was repeated a 
few times.

The settling of a few disks of the same type was inves-
tigated in each experiment to check the repeatability of an 
experiment. The number of repetitions varied from 2 to 5 
and was constrained by (1) the quality of visualisation in two 
orthogonal planes (tests were discarded from analysis when 
a particle was settling not in the centreline of the tank) and 
(2) timescale of mixing in transition layer due to diffusion 
and mixing induced by settling particles.

Experimental set-ups were checked for the optical dis-
tortions, due to possible change of refractive index in 

Fig. 1  Experimental set-up showing a two-camera configuration for 
measuring 3D disk trajectory
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density-stratified fluid, using a ruler (Abaid et al. 2004) and 
examining the dimensions of settling particles in experimen-
tal images; no deformations have been observed.

Cameras location enabled recording particle settling 
only in the transition layer; hence, another set of experi-
ments in homogeneous conditions corresponding to set-
tling conditions in an upper layer were performed in the 
same tank to assess terminal settling velocity in the upper 
layer. In these experiments, only one camera was used to 
record settling particle in FOV positioned about 0.3 m 
below a free water surface to ensure terminal settling 
conditions.

Processing of images

Pairs of orthogonal views of settling disk (images cap-
tured by camera#1 and camera#2) were obtained from 
each experimental test on particle settling within den-
sity transition. Image analysis was performed using 
procedures available in ImageJ and using ad hoc scripts 
in MATLAB® following methods applied in the previ-
ous studies (Mrokowska 2018; Mrokowska and Krztoń-
Maziopa 2019) to identify particles and assess their 
position. Thresholding method was applied to assess the 
contours of particle projection in each image. Coordinates 
of particle projection geometrical centre representing the 
centre of mass were evaluated from image pairs, which 
were next used to retrieve the particle trajectory. Small 
vertical shifts (not exceeding 1.1 mm in average) between 
images in each pair were corrected based on the loca-
tion of the first minimum velocity (defined further in the 
test), which is unequivocal in both images. Time-resolved 
position data were smoothed by a moving-average cubic 
polynomial using Savitzky–Golay filter. Settling velocity 
was evaluated as a central-point difference quotient using 
particle position data and time step between consecu-
tive images (Mrokowska 2018; Mrokowska and Krztoń-
Maziopa 2019).

Experimental conditions

Three sets of experiments in a two-layered configuration 
were carried out with density of upper layer, ρul, ranging 
between 1003 and 1016 kg m−3, while the density of lower 
layer was constant (ρll = 1036 kg m−3). Viscosity of fluid 
was assumed constant for the purposes of data analysis, 
since the difference in viscosity between an upper and 
lower layer was insignificant (smaller than 5%). Names 
of experiments ES%dx reflect salinity in an upper layer 
and a disk diameter, where S stands for salinity [%] and x 
is a diameter [mm]. Details on the physical properties of 
liquids are reported in Table 1.

Density of ambient fluid varies nonlinearly with depth. 
Figure 2 shows vertical distribution of ambient fluid den-
sity, ρf, both measured and fitted to the hyperbolic tangent 
function (Eq. 1) with R2 > 0.99:

where ρf is the density of fluid [kg m−3], ρul and ρll—den-
sity of homogeneous upper and lower layer, respectively 
[kg m−3], z—vertical coordinate [m], z0, p—fitting param-
eters [m]. Density jump, b = (ρll—ρul)/ρul, indicating density 
difference between an upper and lower layer varies between 
0.020 and 0.033. Brunt–Vaisala buoyancy frequency, N, var-
ies within density transition (increases with rising density 
gradient (Fig. 2)) and was evaluated from the formula:

where g = 9.81—acceleration due to gravity [m s−2], ��f (z)
�z

—background density gradient. Since there is no specific 
value of N as in the linear stratification, the maximum buoy-
ancy frequency Nmax is defined to be a general parameter 
describing stratification strength for the purposes of this 
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Table 1  Experimental 
conditions for two-layered 
density configuration

b—density jump given as (ρll—ρul)/ρul, N—Brunt–Vaisala buoyancy frequency evaluated from Eq.  (2), 
Nmax—maximum Brunt–Vaisala buoyancy frequency, Lt—transition thickness defined as a region where 
N > 0.2 s−1, ν—reference kinematic viscosity, T—temperature of liquid

Exp ρll [kg m−3] ρul [kg m−3]  b [–] ν × 10–6 
 [m2  s−1]

T [°C] Nmax  [s−1] Lt/d [–] Total no. 
of repeti-
tions

E2.6%d2 1036 1016 0.020 1.0 22.1 4.328 20 4
E2.6%d3 13 4
E1.6%d2 1037 1009 0.028 1.0 22.5 5.366 19 3
E1.6%d3 12 2
E0.7%d2 1036 1003 0.033 1.0 23.4 5.980 19 3
E0.7%d3 12 5



1150 Acta Geophysica (2020) 68:1145–1160

1 3

study. Buoyancy frequency increases with density jump with 
Nmax varying from 4.328 to 5.980 (Table 1).

Transition thickness, Lt, does not vary significantly 
between the three experiments; however, it decreases slightly 
with the increasing density jump. Transition thickness rela-
tive to disk diameter, Lt/d, varies from 12 to 20 (Table 1) and 
is considered continuous, since it exceeds the dimensions of 
particles in contrast to sharp interface configurations where 
the thickness of density transition was comparable with par-
ticle dimensions (Blanchette and Shapiro 2012; Camassa 
et al. 2009).

Experiments in homogeneous conditions referring to 
terminal settling in an upper layer accompanied each two-
layered experiment. Two homogeneous experiments, each 
comprising several repetitions, were performed for each con-
figuration to gather meaningful number of repetitions, and 
the experimental conditions are reported in Table 2. These 
data were used to analyse the impact of settling parame-
ters in an upper layer on particle settling behaviour within 
the transition layer. Reynolds number in an upper layer (or 
entrance Reynolds number) is defined as  Reul = d Uul/ν, 
where Uul denotes the terminal settling velocity (Table 2).

This study has been a continuation of previous experi-
mental research (Mrokowska 2018) extending the range of 
conditions and focusing on the quantification of the effects 
of density transition on settling behaviour of disks. In the 
present study, stratification strength was controlled by the 
density of upper layer varying between three experiments, 
while the density of lower layer was kept constant. Con-
versely, the density of upper layer was kept constant in the 
previous study. Here, the thickness of transition layer, Lt, 
was almost constant (0.037–0.040 m) in all experiments. 
Hence, density jump between upper and lower layer may be 
considered as the main source of stratification variability 
within transition layer with negligible impact of transition 
thickness. This is different configuration than studied in the 
previous research, where the stratification strength was con-
trolled by the transition thickness. Disks used in the present 
study were of larger diameter than in the previous one where 
diameters smaller than 2 mm were investigated.

Fig. 2  Density profile (measured and fitted using Eq. (1)) for two-lay-
ered experiments (a) E2.6%, (c) E1.6%, (e) E0.7% and corresponding 
variation of Brunt–Vaisala buoyancy frequency, N, evaluated using 
Eq. (2), z = 0 corresponds with the upper boundary of transition layer 
(b) E2.6%, (d) E1.6%, (f) E0.7%

Table 2  Experimental 
conditions for homogeneous 
fluid configuration referring to 
an upper layer conditions

Reul—entrance Reynolds number,  Arul—Archimedes number in an upper layer, Uul—terminal settling 
velocity, SD—standard deviation

Exp. ρul [kg  m−3] T [°C] ν × 10–6 
 [m2  s−1]

Uul ± SD [m s−1] Reul [–] Arul [–] Total no. of 
repetitions

E2.6%d2 1016 22.5–23.0 1.0 0.0025 ± 0.0003 5.0 2.9 7
E2.6%d3 0.0030 ± 0.0003 9.0 4.4 8
E1.6%d2 1009 22.5–23.0 1.0 0.0028 ± 0.0004 5.6 3.4 8
E1.6%d3 0.0035 ± 0.0004 10.5 5.1 7
E0.7%d2 1003 22.5–23.0 1.0 0.0032 ± 0.0003 6.4 3.7 11
E0.7%d3 0.0037 ± 0.0002 11.1 5.5 7
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Since fluid density, buoyancy frequency, and settling 
velocity are variable with depth for a particle translating in 
a nonlinear stratification, it is sensible to consider param-
eters as a function of depth. In such conditions, Reynolds 
number reads:

Archimedes number for a disk with characteristic length 
taken as equivalent sphere diameter (sphere of the same vol-
ume) is (Auguste et al. 2013):

where ρp is the particle density [kg m−3].
Froude number within transition layer reads:

A ratio between Reynolds and Froude number forms 
another useful parameter (Mercier et al. 2020):

Settling velocity was estimated using a standard approach 
in homogeneous fluids to demonstrate to what extent over-
simplified approach using formulas dedicated to homogene-
ous conditions may misestimate particle settling velocity and 
residence times in density transition. Settling velocity was 
evaluated iteratively using the equation for steady settling 
velocity of a disk:

with drag coefficient, Cd, calculated from the formula dedi-
cated to a terminal falling of a disk with Re number between 
1.5 and 133 (Clift et al. 1978):

Results and discussion

Phases of disk settling and evolution of settling 
velocity

Disk settling dynamics followed the pattern observed in 
the previous research (Mrokowska 2018) where five phases 
of settling were identified (please refer to the explanation 
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therein). Figure 3 presents the typical variation of settling 
velocity with depth, where characteristic velocities, i.e. the 
first local velocity minimum, umin1, the second local veloc-
ity minimum, umin2, and mean locations for the beginning 
of phase II and III with corresponding standard deviations, 
are shown.

Disks were settling in an upper homogeneous layer 
(phase I) with terminal velocity varying from 0.0025 to 
0.0032 m s−1 for d2 disks and from 0.0030 to 0.0037 m s−1 
for d3 disks (not shown in the figure). Disks were trans-
lating broadside on, which is in line with phase diagrams 
describing dynamics of disks in terms of the relation 
between Re and dimensionless moment of inertia, I* 
(Field et al. 1997; Willmarth et al. 1964) with the range 
of parameters observed in the study, Re between 5.0 and 
11.1, and I* of the order 1 × 10–3, corresponding to the 
steady falling mode. Disks entered the transition with a 
broadside position and continued to settle in this orienta-
tion experiencing deceleration due to stratification effects.

Figure 3 shows that the location of the first minimum 
velocity, umin1, corresponds with the beginning of reorien-
tation (beginning of phase II). A particle assumes vertical 
position around the level where N = Nmax, which may indi-
cate that the maximum density gradient enhances rotation 
of particle to the vertical position. After the reorientation, 
the particle continues settling in a stable vertical position 
with a broadside perpendicular to horizontal (phase III) 
until stratification effects dominate over the inertia. It has 
been confirmed numerically in other study (Mercier et al. 
2020) that stratification supports the descent of disk in 
a vertical position when settling velocity is low enough. 
Vertical position seems to be quite stable, and some par-
ticles descended in this position much further than oth-
ers reaching the onset of reorientation to the horizontal 
position outside the camera field of view. It suggests that 
the orientation instability may be triggered not only by 
the stratification conditions but may be also induced by 
imperfections on the particle surface or in the location of 
the centre of mass, which may modify pressure distribu-
tion around the particle inducing rotation. Thus, “imper-
fect disks” are likely to change orientation earlier than 
perfect ones. The reorientation to the horizontal position 
occurs in a gliding motion with fading stratification effects 
when a disk is leaving the transition (phase IV). All stud-
ied disks achieved the second minimum velocity, umin2, 
when translating in vertical position, which is analysed 
further in this paper.

Since phase IV (reorientation from vertical to horizontal 
position) was not recorded for some data sets due to limited 
field of view, data analysis for this phase is only partial. 
All particles assumed a stable horizontal position in a lower 
homogenous layer (phase V); however, this phase was out-
side FOV and has not been presented herein.
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Data presented in Fig. 3 indicate that repeated experi-
mental tests show a good agreement up to the point when 
particles achieve the level of maximum buoyancy frequency. 
This agreement is in both settling velocity values and the 

location of reorientations. Below this level, the dispersion 
of settling velocity is observed and the onset of reorientation 
from vertical to horizontal position does not have a unique 
location.

Fig. 3  Evolution of instantaneous settling velocity with depth for 
two-layered experiments (a) E2.6%d2, (b) E1.6%d2, (c) E0.7%d2, (d) 
E2.6%d3, (e) E1.6%d3, (f) E0.7%d3 with the location of characteris-
tic velocities umin1, umin2. Vertical location of the onset of phases—the 
beginning of phase II (ph II) and the beginning of phase III (ph III) 

are mean locations for all experimental runs accompanied with stand-
ard deviation shown as a grey area. Settling velocity is non-dimen-
sionalized by the terminal settling velocity in an upper layer, Uul, and 
particle position by a disk diameter, d. (z − z0)/d = 0 corresponds to 
the upper boundary of transition region
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All disks travelled some vertical distance in density 
transition before they started to reorient from a stable 
horizontal to vertical position. (See the location of the 
beginning of phase II in Fig. 3.) Similar effect has been 
observed in a linear stratification where it was found that 
stable broadside on position changes to vertical when a 
disk decelerates to some threshold velocity (Mercier et al. 
2020). However, when we compare the settling velocity 
profile in a linear and nonlinear stratification, significant 
differences are evident. First of all, in a linear stratifi-
cation velocity decreases monotonically (Mercier et al. 
2020). Conversely, in the case of a nonlinear density gra-
dient, a particle decelerates and accelerates in response 
to the variable stratification strength, which is addition-
ally combined with the change of particle orientation. 
Consequently, drag exerted on a particle is a combination 
of buoyancy variation due to vertical density gradient, 
stratification strength, and axisymmetric particle shape. 
Quantification of drag is still challenging in such condi-
tions and needs consideration in future studies.

Effect of stratification on evaluation of settling 
velocity and residence time

Figure 4 presents the sample results of setting velocity 
estimation using Eq. (7) with drag coefficient defined 
with Eq. (8), the approach which is relevant in homoge-
neous conditions. The results are presented here to dem-
onstrate that methods derived for a homogeneous fluid 
may result in serious misestimating of settling process 
in the presence of stratification. This approach showed 
satisfactory results in an upper homogeneous layer, 
slightly underestimating settling velocity with percent-
age error 100(ucal − uobs)/uobs, where ucal is the settling 
velocity calculated with Eq. (7) and uosb is a measured 
value, between 4 and 10%. However, the comparison of 
the results obtained with Eq. (7) with velocities meas-
ured in the density-stratified region reveals significant 
deviations between estimated and observed values, which 
is shown in Fig. 4. First of all, this approach does not 
reproduce the existence of settling velocity minima. Con-
sequently, predicted settling velocity in the major part of 
transition layer is larger than observed values. Secondly, 
this approach underestimates residence time of a parti-
cle in the transition layer (A–B in Fig. 4) as well as in 
the region where the particle was tracked (A–C region 
in Fig. 4). Results presented in Table 3 show that meas-
ured residence times in the transition are up to threefold 
larger than estimated by the homogeneous fluid approach. 
Moreover, the formula underestimates also the total resi-
dence time which varies between 0.61 and 0.88 of meas-
ured value.

Trajectory and orientation pattern

Figure 5 shows the sample trajectories of disks retrieved 
from the view of settling particle recorded by camera#1 (x, 
z) and camera#2 (y, z) with the indication of characteris-
tic velocity points and onsets of phases II, III, and IV. 2D 
positions of particle centre in the pairs of images, shown in 
Fig. 5b, c, e, f, h, i, were combined to get 3D trajectories of 
settling disks shown in corresponding plots in Fig. 5a, d, g. 
It could be seen from Fig. 5 that in phases I and III, when a 
disk settles in a horizontal and vertical position, respectively, 
a particle tends to settle in a vertical path. Some deviation 
from the perfect vertical path is observed as the effect of tilt-
ing of particles which could be due to unavoidable imperfec-
tions of manufactured particles (uneven surface, location of 
the centre of mass) which affect settling dynamics in a low-
inertia motion. Nonetheless, settling could be considered as 
vertical. On the other hand, in reorientation phases II and 
IV, the particle moves in a horizontal plane as the effect of 
particle inclination with respect to the gravity.

The extent of particle horizontal drift was assessed as 
the Euclidean distance. Figure 6 presents the variation of 
distance travelled by the centre of particle mass with respect 
to its initial position in a horizontal plane. The results show 
very good repeatability of settling behaviour in phase II, 
while some discrepancies (deviation from vertical settling) 
are observed for phase III similarly to the above analysis of 
data presented in Fig. 5.

The analysis of 3D data shows that particles do not 
descend in a plane along the whole path (Figs. 5, 6). While 
the settling in phases I–III could be considered as pla-
nar, the disk may change the plane of settling in a second 

Fig. 4  Comparison between measured settling velocity and set-
tling velocity calculated with Eq. (7) for sample data E2.6%d2. Grey 
dashed lines A, B, C show vertical locations described in text
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reorientation phase (phase IV), since there is no preferential 
direction of horizontal drift during this phase. It causes the 
translation of particle with respect to its initial position in 
a horizontal plane and consequently affects the extent of 
dispersion of particles.

Plots in Fig. 7 show the horizontal dispersion of parti-
cles in the x–y plane. It is clear from the figure that there 
is no preferential direction of reorientations, which results 
in a random final position of particle with respect to the 
initial position. Horizontal drift is attributed to reorienta-
tion phases and has not exceeded 0.01 m along the vertical 
distance (0.077 m) analysed in this study. It should be noted 
that the fact that particles do not fall in a plane affects the 
variance of horizontal drift results.

The results reveal some trends in horizontal dispersion 
when particle diameter is considered. Figure 8 presents the 
comparison between an average horizontal drift for two sets 
of particles. The comparison between a drift in phases I and 
II and the total drift in considered paths indicates that the 
second reorientation contributes to the horizontal drift to 
a larger extent than the first one; that is, a particle travels 
larger horizontal distance in phase IV in which rotation 
is accompanied with gliding motion than in phase II. The 
results indicate that d3 disks tend to travel larger distance in 
a horizontal direction compared to d2 disks; hence, greater 
dispersion may be expected for disks with a larger diameter 
given the same stratification conditions. The effect of strati-
fication strength on particle dispersion is not clear.

Analysis of parameters for characteristic minimum 
velocities and onsets of reorientation

Settling velocity decreases significantly when a particle is 
translating across a density transition from terminal settling 
value in an upper layer, Uul, to the first minimum settling 
velocity, umin1, within the transition layer. Velocity reduc-
tion is more pronounced for larger particles (see Figs. 9 and 
10) with umin1/Uul ranging between 0.05 and 0.08 for disks 
d3, while it is within the range (0.14; 0.19) for d2. Moreo-
ver, the ratio between umin1 for d3 and d2 is less than 75%, 
indicating that d3 achieves smaller local settling velocity 
after crossing the interface than d2. It could be explained 

by the fact that a disk falling with its face normal to gravity 
in the upper part of transition region starts to experience 
additional stratification-induced drag. This drag is associated 
with the entrainment of lighter fluid into the wake of settling 
disk (see Fig. 3 in (Mrokowska 2018)). Since a disk with 
larger diameter is able to entrain larger volume of lighter 
fluid, the added-buoyancy effect increases with the particle 
dimensions, which implies larger drag and velocity reduc-
tion. On the other hand, local minimum velocity umin2 does 
not vary significantly between the two types of particles for 
the same conditions in density transition, indicating that set-
tling velocity is not so sensitive on particle geometry when 
it descends in vertical position.

It is expected that the parameters for characteristic points 
within the density transition (the first and the second local 
minima and reorientation points) depend on the settling 
characteristics in the upper layer and the characteristics of 
stratification. Four depth-dependent parameters describing 
settling conditions within the transition layer relevant in this 
study problem have been analysed (Eqs. 3–6): Re(z), Fr(z), 
Ar(z), Re(z)/Fr(z) and the entrance Re number,  Reul was con-
sidered to elucidate how settling dynamics is affected by the 
stratification and characteristics of settling dynamics in the 
upper layer.

To get insight into the particle dynamics, the evolution of 
Re number with depth has been analysed. While Re number 
assumes constant values in the upper layer between 5.0 and 
11.1 depending on experimental conditions (particle diam-
eter and fluid density) (Table 2), it varies with depth within 
the transition layer following the pattern of settling velocity. 
Re number achieves two local minima corresponding with 
settling velocity minima dropping to the minimum Re ~ 1 
for all considered particles. Reynolds number correspond-
ing to the first minimum velocity,  Reumin1, achieves smaller 
values for larger disks;  Reumin1 is within the range (0.92, 
1.1) for d3 and within the range (0.48, 0.89) for d2 disks. 
Related observation for velocity is presented in Fig. 10 and 
described above. Observations for  Reumin2 are in line with 
that for umin2, that is, disk dimensions do not have signifi-
cant impact on  Reumin2. Results presented in this study show 
that the onset of reorientation from the stable horizontal to 
stable vertical position overlaps with the minimum settling 

Table 3  Comparison between 
residence times of disks 
measured (tr obs) and calculated 
(tr cal) in the transition layer 
(A–B distance) and in A–C 
distance (see Fig. 4 for 
definition)

Exp A–B distance A–C distance

tr cal [s] tr obs [s] tr cal/tr obs [–] tr cal [s] tr obs [s] tr cal/tr obs [–]

E2.6%d2 24.1 42.9 0.56 55.3 63.0 0.88
E2.6%d3 19.0 42.3 0.45 41.2 56.1 0.73
E1.6%d2 22.3 48.0 0.46 55.7 72.7 0.77
E1.6%d3 17.1 46.2 0.37 42.5 63.9 0.67
E0.7%d2 20.3 40.6 0.50 51.7 62.4 0.83
E0.7%d3 15.4 45.6 0.34 39.3 64.2 0.61
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Fig. 5  Reconstructed 3D trajectories of disk descent and 2D (x,z) and (y,z) planar projections with indication of density transition, characteristic 
velocities points, and location of phases for sample experimental tests (a, b, c) E2.6%, (d, e, f) E1.6%, (g, h, i) E0.7%
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velocity, umin1. Since Re number drops significantly at this 
point to values close to unity or even smaller, the reduction 
in inertial effects enables buoyancy-induced torques to over-
come pressure-induced torques. Particles accelerate when 
descending in the transition in a vertical position as a result 
of diminishing stratification strength (Fig. 3), and Re number 
increases accordingly. However, disks are able to keep stable 
vertical position up to relatively high Re (in some tests ~ 6) 

despite growing effect of inertia, which indicates that density 
gradients effectively overcome pressure-induced torques.

Another relevant parameter, Froude number, varies with 
depth between infinity in homogeneous layers to finite val-
ues within the transition layer. Fr achieves the minimum in 
the region where buoyancy frequency assumes the highest 
values and the particle decelerates considerably, indicating 
that the stratification dominates over inertia. Considering all 
experimental sets, minimum Froude number varies between 
0.05 and 0.06 for d2 and between 0.02 and 0.03 for d3, sug-
gesting greater influence of stratification on a disk with a 
larger diameter. Fr number increases up to Fr ~ 5 at the lower 
border of transition where N = 0.2 s−1, and then it increases 
to infinity in a homogeneous layer.

Archimedes number decreases monotonically from a 
constant value in an upper layer (between 3.5 and 6.2 in 
considered experimental sets) to 2.2 and 3.3 for d2 and d3, 
respectively, in the lower layer showing a great dependence 
on density difference between the fluid and the particle.

The relation between settling dynamics in an upper layer, 
characterised by  Reul, and characteristic values of parameters 
Fr(z), Re(z)/Fr(z), Ar(z) corresponding to settling velocity 
minima, denoted here by a subscript “c”, were analysed, and 
the results are presented in Fig. 11. Plots show a decreas-
ing trend for  Frumin1 versus  Reul and increasing trend for 
 Arumin1 versus  Rul and  Reumin1/Frumin1 versus  Rul, indicat-
ing that these relations may be good candidates to elucidate 
threshold values for the onset of the first reorientation (and 
occurrence of the first minimum velocity). These results 
indicate that settling dynamics in the upper layer, stratifi-
cation characteristics in the transition layer, and particle 
dimensions affect characteristic minimum velocities and 
the onset of reorientation which is compatible with umin1. 
However, more data sets for wider range of conditions are 
necessary to define a functional relationship.

Similar relationships are observed for parameters  Frumin2, 
 Reumin2/Frumin2, and  Arumin2; however, trends are weaker, 
showing that the occurrence of the second velocity mini-
mum is less sensitive to the settling conditions in the upper 
layer than the first minimum velocity. No clear dependence 
was observed between characteristic Reynolds number and 
entrance Re number.

Conclusions

Settling dynamics of thin disks descending through a non-
linear density transition were studied experimentally. The 
results have demonstrated that complex hydrodynamic 
interactions between a particle and a liquid lead to settling 
orientation instabilities and unsteady particle descent. The 
most interesting aspects of disk settling through the den-
sity transition are conditions necessary for reorientation, 

Fig. 6  Horizontal drift of disks in x–y plane. (a) E2.6%,d2, (b) 
E2.6%,d3, (c) E1.6%d2, (d) E1.6%d3, (e) E0.7%d2, (f) E0.7%d3
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Fig. 7  Projection of disk trajectory in x–y plane showing planar dispersion of particles. Initial position of disk centre of mass marked by a red 
dot has been set as (0, 0) and final recorded points marked by green and black dots for disks d3, and d2, respectively

Fig. 8  Average horizontal drift 
in phase I and II and in the 
whole path for disks d2 and 
d3; (a) E2.6%, (b) E1.6%, (c) 
E0.7%

Fig. 9  Local velocity minima 
umin1 and umin2 in relation to 
terminal settling velocity in an 
upper layer, Uul, for disks d2 
and d3 in two-layered experi-
ments (a) E2.6%, (b) E1.6%, (c) 
E0.7%

Fig. 10  Average values for local 
velocity minima umin1 and umin2 
for disks d2 and d3 in two-
layered experiments, error bars 
denote standard deviation (a) 
E2.6%, (b) E1.6%, (c) E0.7%
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the pattern of non-monotonous velocity with focus on 
local minima in the second and third phase, and the hori-
zontal drift of particles.

Relations between entrance Reynolds number,  Reul, and 
Re/Fr, Ar, and Fr were identified for characteristic points 
(settling velocity local minima and the first reorientation), 
indicating settling conditions in an upper layer, the stratifi-
cation strength of transition, and particle dimension control 
settling dynamics within the transition layer.

The condition for reorientation from a stable horizon-
tal to stable vertical position is of particular interest, which 
has been analysed for linear stratification in other research 
(Mercier et al. 2020). Results presented herein show that a 
particle keeps a horizontal position within nonlinear den-
sity transition up to a point where the particle achieves the 
first local minimum and the onset of reorientation has been 
attributed to Re number low enough to let stratification 
effects overcome inertial ones.

The comparison of settling dynamics of thin disks with 
two different diameters showed that the dynamics are sensi-
tive to a particle diameter mainly in the upper part of den-
sity transition with a non-obvious result that a larger disk 
settling with higher terminal velocity in the upper layer 
achieves smaller first minimum velocity than disk with a 
smaller diameter. Settling dynamics of two types of disks 
within a transition layer does not vary considerably in terms 
of settling velocity with negligible difference in the second 

minimum velocity. All these results suggest that geometry 
of particles should be carefully considered to assess settling 
dynamics just after crossing a density interface, since small 
deviations in geometry may affect settling parameters.

Fundamental understanding of dynamics of individual 
particles in stratified systems is critical for further elucida-
tion of physical mechanisms of particle groups settling nec-
essary to develop prediction methods for sedimentation flux 
and descent of immotile microorganisms. Specifically, the 
knowledge on settling dynamics within transition layer may 
improve the understanding of thin layers formation, since 
one of reasons for little understanding of this process is our 
scarce knowledge on the dynamics of non-spherical particles 
and effects of stratification. The results showed that disks 
experience horizontal drift in reorientation phases (phase II 
and IV) and fading stratification in phase IV and a gliding 
motion of particle in this phase play the major role in hori-
zontal dispersion of particles. This fact may be important 
in a wider context when a group of disks settles and may 
interact with each other, e.g. a group of disk-shaped diatoms 
in the ocean. Since the dispersion of particles is expected in 
the lower part of transition, interactions between particles 
are likely to be intensified in this region.

It has been demonstrated that parameters critical to esti-
mate particulate flux, namely the residence time of particles 
in a water column and settling velocity, are misestimated 
by conventionally used approaches which do not take into 
account the dynamics of non-spherical particles in stratified 
systems. Settling behaviour of particles within the transi-
tion layer has impact not only on the prolonged residence 
of particles at pycnoclines which may lead to the formation 
of thin layers, but also increases the total residence time of 
particles in a water column, which is of importance to the 
estimation of sedimentation rate, carbon transport, as well 
as other biogeochemical processes.

Density transitions occurring commonly in natural waters 
are much thicker compared to the dimensions of settling 
particles and could be considered as linear; nonetheless, 
the results presented herein reveal physical mechanisms 
that could explain settling behaviour of solid particles in 
nature. Although a vast amount of particles present in the 
environment is of non-spherical shapes including disks, a 
few research performed so far (Doostmohammadi and Arde-
kani 2014; Mercier et al. 2020; Mrokowska 2018) indicated 
that the settling dynamics including orientation instabilities 
and non-monotonous settling velocity are more important 
than probably previously thought. Hence, present challenge 
is to incorporate the geometry of non-spherical particles into 
the analysis of settling behaviour of particles in background 
stratification, since the variation of particle orientation with 
its descent highly affects settling velocity due to orientation-
dependent drag.

Fig. 11  Relation between settling conditions in an upper layer char-
acterised by entrance Re number,  Reul, and critical values of param-
eters for minimum velocities. Mean results for all experiments are 
presented with standard error



1159Acta Geophysica (2020) 68:1145–1160 

1 3

This study is constrained to the limited experimental con-
ditions, i.e. particle characteristics and stratification param-
eters; only a disk diameter was variable while thickness was 
kept constant. The relationships between settling parameters 
could be different for disks with different aspect ratio which 
should be considered in further studies. More experimen-
tal results on disks settling through a density transition are 
necessary to find parameter ranges characteristic for vari-
ous behaviours of disks settling in a low to moderate Re 
numbers. Wider range of experimental conditions should 
be considered to investigate some limiting cases in density 
transition with a nonlinear stratification to quantify condi-
tions governing the onset of stratification-induced reori-
entations. Moreover, development of numerical models is 
necessary to facilitate laboratory experiments due to their 
limited capacity.
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Abstract
The development of temperature forecasting models for the state of Kerala using Seasonal Autoregressive Integrated Moving 
Average (SARIMA) method is presented in this article. Mean maximum and mean minimum monthly temperature data, for 
a period of 47 years, from seven stations, are studied and applied to develop the model. It is expected that the time-series 
datasets of temperature to display seasonality (and hence non-stationary), and a possible trend (due to the fact that the data 
spans 5 decades). Hence, the key step in the development of the models is the determination of the non-stationarity of the 
temperature time-series, and the transformation of the non-stationary time-series into a stationary time-series. This is car-
ried out using the Seasonal and Trend decomposition using Loess technique and Kwiatkowski–Phillips–Schmidt–Shin test. 
Before carrying out this process, several preliminary tests are conducted for (1) finding and filling the missing values, (2) 
studying the characteristics of the data, and (3) investigating the presence of the trend and seasonality. The non-stationary 
temperature time-series are transformed to stationary temperature time-series, by one seasonal differencing and one first-
order differencing. This information, along with the original time-series, is further utilized to develop the models using the 
SARIMA method. The parsimonious and best-fit SARIMA models are developed for each of the fourteen variables. The 
study revealed that SARIMA(2, 1, 1)(1, 1, 1)12 as the ideal forecasting model for eight out of the fourteen time-series datasets.

Keywords Autocorrelation function (ACF) · Partial autocorrelation function (PACF) · Sen’s slope estimator · Seasonal 
autoregressive integrated moving average (SARIMA) · Mann–Kendall (MK) trend test

Introduction

India, with a population of more than 1.3 billion, has more 
than 50% of its population dependent on agriculture (Arjun 
2013). Most states in India still heavily rely on rainfall for 
various agricultural activities. It is well known that rainfall, 
a part of the hydrological cycle, is susceptible to changes 
in global temperature (Allen and Ingram 2002; Andronova 
and Schlesinger 2000; Trenberth 1999). Hence, an exclu-
sive look into the long-term temperature variations would 

constitute a vital part in the analysis of agricultural output 
of any region of the country.

In this regard, many researchers have carried out studies 
in the last decade on global, continental and regional level 
long-term temperature variations (Hänsel et al. 2016; Jain 
and Kumar 2012; Kocsis et al. 2017). Also, many attempts 
have been undertaken by researchers to develop models for 
understanding and extrapolating the temperature variation 
(Hänsel et al. 2016; Mills 2014; Tiwari et al. 2016). In 
India, among all the studies focused on temporal tempera-
ture variation, the most noteworthy study is the one con-
ducted by the Indian Network for Climate Change Assess-
ment (INCCA) (2010). The projections of mean annual 
surface temperature for the 2030s (average of 2021–2050) 
were carried out on country level using PRECIS (Provid-
ing Regional Climates for Impact Studies), with the data 
obtained from 1970s (average of 1960–1990). In this 
study, it was predicted that the annual mean surface air 
temperature would rise by 1.7–2 ◦C over the entire Indian 
subcontinent. Though this study indicates that significant 

 * P. Kabbilawsh 
 kabbi.civil@gmail.com

 D. Sathish Kumar 
 sathish@nitc.ac.in

 N. R. Chithra 
 chithranr@nitc.ac.in

1 Department of Civil Engineering, NIT Calicut, 
Calicut 673601, India

http://orcid.org/0000-0003-3957-6237
http://crossmark.crossref.org/dialog/?doi=10.1007/s11600-020-00462-9&domain=pdf


1162 Acta Geophysica (2020) 68:1161–1174

1 3

changes could be expected in the overall characteristics 
of rainfall, the projections are at a macroscopic level (i.e. 
for the entire Indian subcontinent), and not for each indi-
vidual states. Regional studies focussing on individual 
states are necessary to get a better understanding of the 
local factors that influence these variations. A state-wise 
study is important because local policies and actions can 
be exclusively implemented by the state governments to 
combat any expected adverse changes in their respective 
states. In this study, the temporal variation of the monthly 
mean maximum (MMAX) and mean minimum tempera-
ture (MMIN) is analysed for the state of Kerala.

The analysis is carried out for a period of 47 years, 
starting from 1969 to 2015. The overall objective of the 
study is to develop a model for future forecasts of MMAX 
and MMIN for the state of Kerala. Prior to the time-series 
modelling, it is necessary to carry out preprocessing of 
the data to identify the missing values. The time-series 
data available for each station and the number of miss-
ing values are listed in Table 1. The data gaps are to be 
eliminated before any time-series modelling. The data 
infilling process is carried out using expectation–maxi-
mization algorithm. Further, for the construction of a 
suitable forecasting model, it is necessary to evaluate the 
time-series datasets to understand the existing pattern. 
This preliminary analysis provides a good insight regard-
ing the available data. It comprises of (1) a descriptive 
statistical analysis of the monthly data, (2) performance 
of the normality test, (3) test to check for outliers, (4) 
Mann–Kendall trend analysis and (5) performance of the 
Sen’s slope test. The results obtained from the prelimi-
nary analysis revealed the presence of non-stationarity in 
the datasets. In order to confirm the preliminary results 
obtained, the time-series datasets are decomposed using 
STL decomposition to get the time-series components. The 
obtained time-series components also revealed the pres-
ence of seasonality and the presence or absence of a trend. 
The value of parameters (seasonal and non-seasonal dif-
ferencing, D and d, respectively) needed for converting the 
non-stationary time-series to a stationary series is obtained 
using the results of Kwiatkowski–Phillips–Schmidt–Shin 
(KPSS) test. These values, along with the original time-
series datasets, are used for the SARIMA model build-
ing process. The next section (“Temperature data and 
research methodology” section) briefly describes each of 
the process (the preliminary tests, STL decomposition, 
Unit root test and SARIMA) applied in this study. Section 
“Temperature data and research methodology” describes 
the application of these tests to our data. Also, in “Result 
and discussions” section, the result of each test is ana-
lyzed and elaborated, and a final forecast is also delivered 
with the developed model. Lastly, section “Summary and 

conclusions” concludes the article with an overview of 
the entire study.

Temperature data and research 
methodology

The main reason for carrying out the temperature-related 
studies for the state of Kerala is that the state is the gate-
way of the summer monsoon (South-West) for India. Any 
disturbance to the South-West monsoon creates a cascad-
ing effect on the rainfall patterns in the entire country. As 
stated earlier, this section presents the techniques applied 
for (1) estimating the missing values, (2) conducting the 
preliminary analysis, (3) decomposing the time-series data, 
(4) converting the non-stationary data to stationary data, and 
(5) developing the model.

An account of Kerala and its temperature dataset

The state Kerala is a small strip of coastal land located in 
the southern part of India. It consists of an area of 38,850 
km2 . It is located between 8◦ 18′ N–12◦ 48′ N latitudes and 
74◦ 52′ E–77◦ 24′ E longitudes. Figure 1 shows the location 
map of the study area. The state has a shoreline of 580 km, 
and the width of the state varies between 30 and 120 km. 
Geologically, the state Kerala can be categorised into three 
climatically distinct regions: the eastern highlands (rugged 
and cool mountainous terrain), the central midlands (roll-
ing hills), and the western lowlands (coastal plains). The 
lowlands and highlands bound the state of Kerala, where 
the lowlands comprise the regions which adjoin the shore-
line, and highlands cover the region slopping down from the 
Western Ghats. The midlands spread between the highlands 
and lowlands. Area-wise, the highlands comprise of 18,650 
km2 , while the midlands and lowlands comprise of 16,200 
km2 and 4000 km2 respectively. Tea, coffee and rubber are 
major plantation crops grown in the highlands. It also houses 
several endemic flora and fauna. Wide variety of fruits, nuts 
and vegetables are grown in the midland region. Paddy and 
coconut are grown in the fertile lowlands.

The temperature datasets from 13 observatories that cover 
the entire state of Kerala are obtained from the Indian Mete-
orological Department (IMD). The observatories spread 
across all the three climatic regions. The observatories are 
located at Palghat, Fort Cochin, Kovalam, Karipur, Trichur, 
Ernakulum, Kozhikode, Kannur, Alappuzha, Punalur, Kot-
tayam, Thiruvananthapuram and Trivandrum Airport. Out 
of 13 stations, three observatories (Palghat, Fort Cochin 
and Kovalam) are not properly functioning for the past 15 
years, and the datasets for recent years are not available. 
For three observatories (Karipur, Trichur and Ernakulum), 
the datasets are available starting from the year 1996 and 
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later. Adequate datasets for the analysis are available only 
for seven meteorological stations. The spatial locations of 
the observatories are shown in Fig. 1b.

The data from the rest of the seven stations are found 
ideal for the study. Table 1 shows the data availability for the 
selected seven stations. A total of 235 intermittent monthly 
values (about 3.13% of the data) are found to be missing 
in the available dataset. Table 1 lists the number and types 
of missing values for each station. Datasets with missing 
values present several problems in the representativeness 
of the samples (Kang 2013). Hence, the missing values 
are to be determined first. For this purpose, the expecta-
tion–maximization algorithm is used. The missing values 
estimated through this method is used to fill the data gaps in 
order to obtain continuous time-series datasets. Preliminary 

statistical tests are conducted using these datasets. The 
results indicated the presence of skewness and kurtosis. 
Further, a test for normality is carried out using the Shap-
iro-Wilk normality test and the outliers are identified using 
Grubb’s test. The results indicated that datasets followed a 
non-normal distribution without any outliers. Therefore, a 
nonparametric Mann–Kendall trend test (Gocic and Trajko-
vic 2013; Kocsis et al. 2020) and Sen’s slope test are used to 
determine the direction and magnitude of monotonic trends 
in the time-series.

Mann–Kendall trend test

The Mann–Kendall trend test (Mann 1945; Kendall 
1975; Gilbert 1987) is widely used test in the field of 

Fig. 1  a Location map of the 
state Kerala, b the location map 
of the seven stations for which 
study is conducted

Table 1  The amount of missing data present in the meteorological observatories

Station name Starting year 
of time series

Ending year 
of time series

Total length 
of data 
(years)

MMAX MMIN

Number of 
monthly val-
ues present

Number of 
monthly val-
ues missing

% of 
missing 
values

Number of 
monthly val-
ues present

Number of 
monthly val-
ues missing

% of 
missing 
values

Kozhikode 1969 2015 47 564 0 0 564 0 0
Kannur 1981 2015 34 404 16 3.81 404 16 3.81
Alappuzha 1969 2015 47 549 15 2.66 548 16 2.84
Punalur 1969 2015 47 532 32 5.67 500 64 11.34
Kottayam 1973 2011 43 498 18 3.49 496 20 3.88
Thiruvanan-

thapuram
1969 2015 47 564 0 0 564 0 0

Trivandrum 
Airport

1969 2015 47 545 19 3.37 545 19 3.37
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Hydro-meteorology, dealing with variables like temperature, 
rainfall and streamflow. The Mann–Kendall test is used to 
statistically assess the presence of an increasing or decreas-
ing trend in the series. The Mann–Kendall test operates by 
checking whether to reject the null hypothesis ( H0 ) and 
accept the alternative hypothesis ( H1 ). The null hypothesis 
( H0 ) means there is no trend in the temperature over time, 
and the alternative hypothesis ( H1 ) implies the presence of 
either an increasing or decreasing trend in the temperature 
data. The sign of the computed Mann–Kendall test statistic 
ZMK reveals the direction of the trend. The positive value of 
ZMK indicates that the temperature tends to increase with 
time, while the negative value of ZMK denotes the decrease 
in temperature over time. The null Hypothesis ( H0 ) is 
rejected, and the alternative hypothesis ( H1 ) is accepted if 
|
|ZMK

|
| ≥ Z1−�∕2 at the Type I error rate �.

Sen’s slope estimation

All the available statistical techniques may not be equally 
good in detecting the magnitude of the trend in the time-
series data (Radziejewski and Kundzewicz 2004). A simple 
parametric least-square regression technique is not suit-
able to calculate the magnitude of the trend for non-normal 
time-series. In such cases, a test which is nonparametric, 
robust against outliers would be an appropriate choice. Sen’s 
Slope estimation, a nonparametric test is selected to detect 
the magnitude of trends in the temperature time-series. It is 
impartially resistant to outliers, with a breakdown point of 
0.29 (Sen 1968). It was initially proposed in 1968 to account 
for the non-normality of precipitation data. A mathematical 
explanation of the scheme is not detailed here, as it has been 
already presented in detail by various authors (Gocic and 
Trajkovic 2013; Kocsis et al. 2020).

STL decomposition

The Mann–Kendall trend test and Sen’s slope estimation 
are carried out as a part of the initial investigation. Further 
to provide a better understanding of the datasets, the time-
series data is decomposed as the trend component, the sea-
sonal component and the remainder component. It is carried 
out using STL (Seasonal and Trend decomposition using 
Loess) decomposition method (Cleveland et al. 1990). The 
decomposed components are plotted for graphical visualisa-
tion of the data. It allows us to visualise the presence of trend 
and seasonality in the data. Compared to the other classical 
decomposition methods, STL has several advantages like 
the ability to handle any type of seasonality (daily, monthly, 
quarterly, annual, etc.), being robust to outliers, facilitat-
ing the user to control the smoothness of trend cycle, and 
allowing the user to control the rate of change of seasonal 
component.

Unit root test

The trend and seasonal components obtained from the STL 
decomposition will reveal the presence of non-stationarity 
in the temperature time-series. The non-stationarity is only 
inferred from the graphs of the decomposed components 
(only visual inference). To mathematically confirm the 
presence of non-stationarity in the time-series, the unit root 
tests are performed. In the present study, KPSS (Kwiat-
kowski–Phillips–Schmid–Shin) unit root test is performed 
to confirm the presence of non-stationarity (Kwiatkowski 
et al. 1992). The original temperature time-series and the 
decomposed components are used for this purpose. The 
KPSS method proceeds with the null hypothesis (i.e. the 
data are stationary) and tries to find evidence to show that 
the null hypothesis is false for the selected time-series. If the 
non-stationarity is confirmed, then the next step is the con-
version of the non-stationary data to stationary data. The p 
values determined from the KPSS test provides information 
about the differencing; small p values typically, less than 
0.05 points the necessity of differencing for the conversion 
of the time-series.

Seasonal autoregressive integrated moving average 
(SARIMA) model

After the non-stationary time-series is converted to a sta-
tionary time-series (i.e. after the determination of d and D), 
the next step is to develop a model for future predictions. 
Forecasting models developed from the historical records 
are generally used to predict the future changes in the cli-
mate variables. Several authors have proposed temperature 
models using a number of forecasting techniques (Aguado-
Rodríguez et al. 2016; Tiwari et al. 2016; Wang et al. 2019; 
Lai and Dzombak 2020; Wanishsakpong and Owusu 2020). 
Several climate variables are generally influenced by sea-
sonality, and one of the best forecasting models for such 
variables is the SARIMA model. It combines the advantage 
of the autoregressive model and the moving average model.

In an autoregressive model, a linear combination of the 
past values of the variable is used to predict the future of the 
variable. Mathematically, Eq. 1 represents an autoregressive 
model of order p, i.e. AR(p) model.

The equation shows that the observation y at time t 
( yt ) is estimated from p previous observations ( yt−i , 
i = 1, 2, 3,… , p ). �k , with k = 1, 2, 3,… , p are the param-
eters, and �t is the white noise.

In a moving average model, the forecast is done using the 
past forecast errors in a regression-like model.

(1)yt = �0 + �1yt−1 + �2yt−2 +⋯ + �pyt−p + �t
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Equation 2 describes the moving average model of order 
q, i.e. MA(q) model, where yt is the observation at time t; 
�i , with i = 1, 2, 3,… , q , are the parameters and �t−k , with 
k = 1, 2, 3,… , q are the error terms, respectively.

By combining differencing with autoregression and a 
moving average model, the non-seasonal Autoregressive 
Integrated Moving Average (ARIMA) model is obtained. 
Mathematically, the ARIMA model is represented by Eq. 3.

y′
t
 denotes the differenced series. It has to be noted that the 

series may have been differenced more than once, and the 
degree of the differencing involved is denoted by d. This 
series is represented as the ARIMA(p, d, q) model, where 
p denotes the order of autoregressive part, d denotes the 
degree of differencing, and q denotes the moving average 
part.

If seasonality is observed in a time-series, then a sea-
sonal-ARIMA model or SARIMA model (Hyndman and 
Athanasopoulos 2018) has to be applied. The seasonal-
ARIMA model is obtained by including the additional sea-
sonal terms to the ARIMA models. The seasonal-ARIMA 
model is represented as SARIMA(p, d, q)(P,D,Q)m . The 
non-seasonal part of the model is represented as (p, d, q), 
and the seasonal part of the model is given by (P,D,Q)m . 
The terms P, D and Q represents the order of the seasonal 
autoregressive term, degree of the seasonal differencing and 
order of the seasonal moving average part, respectively. The 
term m represents the number of observations per year. The 
terms of the seasonal part of the model are similar to the 

(2)yt = �0 + �t + �1�t−1 + �2�t−2 +⋯ + �q�t−q

(3)y�
t
= �0 + �1y

�
t−1

+ �2y
�
t−2

+⋯ + �py
�
t−p

+ �1�t−1 + �2�t−2 +⋯ + �q�t−q + �t

non-seasonal part expect that they involve backshifts of the 
seasonal period.

Result and discussions

All the tests discussed in the previous section are applied 
parallelly or sequentially based on the requirements. The 
results of these tests, and their significance, are discussed 
in this section.

Results from descriptive statistics

Descriptive statistics of the temperature datasets are obtained 
after filling the missing values using the expectation–maxi-
mization algorithm. The analysis is carried out for seven sta-
tions for two variables (MMAX and MMIN) in each station. 
Therefore, altogether fourteen time-series datasets are ana-
lysed. The average MMAX and MMIN temperature covering 
all the seven stations are 31.84 ◦C and 23.48 ◦C respectively. 
The MMAX varies between 31.11 ◦C (at Trivandrum Air-
port), and 33.06 ◦C (at Punalur), and MMIN varies between 
22.34 ◦C (at Punalur) and 24.22 ◦C (at Kozhikode). The 
standard error of the mean of all fourteen variables ranges 
between 0.04 ◦C and 0.1 ◦C . The maximum deviation of the 
sample-mean from the population-mean is 0.2 ◦C , at a con-
fidence level of 95%. The difference between the sample-
mean and the population-mean is negligible. Therefore, it 
can be concluded that a sample mean is a genuine represen-
tation of the population mean. The descriptive statistics of 
the variables are listed in Table 2. In the tabulation, SEM, 

Table 2  Descriptive statistics of the variables

Station name Variable type Mean SEM SD Variance CV Q1 Q3 Range IQR Skewness Excess kurtosis

Kozhikode MMAX 31.50 0.08 1.79 3.22 5.69 30.20 32.80 8.40 2.60 – 0.23 – 0.64
Kozhikode MMIN 24.22 0.05 1.24 1.54 5.12 23.50 24.80 8.10 1.30 0.22 0.29
Kannur MMAX 32.13 0.10 2.04 4.16 6.35 30.50 33.70 8.90 3.20 – 0.14 – 0.89
Kannur MMIN 23.47 0.07 1.33 1.78 5.68 22.70 24.20 7.20 1.50 0.12 – 0.12
Alappuzha MMAX 31.48 0.07 1.64 2.70 5.22 30.10 32.80 7.70 2.70 – 0.25 – 0.90
Alappuzha MMIN 23.92 0.05 1.17 1.36 4.88 23.20 24.60 6.50 1.40 0.07 0.03
Punalur MMAX 33.06 0.09 2.14 4.58 6.47 31.40 34.70 10.30 3.30 0.36 – 0.57
Punalur MMIN 22.34 0.05 1.19 1.42 5.33 21.70 23.10 7.10 1.40 – 0.25 0.14
Kottayam MMAX 32.03 0.08 1.76 3.11 5.51 30.70 33.40 9.50 2.70 – 0.09 – 0.65
Kottayam MMIN 23.08 0.04 0.98 0.95 4.23 22.70 23.70 6.20 1.00 – 0.91 1.52
Thiruvananthapuram MMAX 31.56 0.06 1.38 1.90 4.37 30.50 32.68 6.20 2.18 0.04 – 0.83
Thiruvananthapuram MMIN 23.56 0.04 0.97 0.94 4.12 23.00 24.10 5.90 1.10 0.24 0.13
Trivandrum Airport MMAX 31.11 0.05 1.18 1.39 3.79 30.20 31.90 5.90 1.70 0.21 – 0.66
Trivandrum Airport MMIN 23.76 0.05 1.10 1.20 4.61 23.20 24.32 6.60 1.12 – 0.23 0.60
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SD, CV, Q and IQR stand for standard error of the mean, 
standard deviation, coefficient of variation, quartile, and 
inter-quartile range, respectively.

The MMIN variable at Kottayam has a skewness of 
−0.91 , and since this value is within the range of −0.5 and 
−1 , it implies that data is moderately skewed. Moreover, the 
excess kurtosis values of all fourteen variables are nonzero, 
which implies that all fourteen temperature time-series 
are non-mesokurtic. Although the excess kurtosis values 
(nonzero) indicate the non-normal distribution of all the 
variables, it has to be noted that the values are small. There-
fore, it necessitates a dedicated normality test. Consequently, 
a Shapiro-Wilk test is conducted to validate the nature of the 
distribution.

Test for normality

The test for normality indicated that all fourteen variables 
are indeed non-normally distributed. The results of the 
Shapiro-Wilk test are presented in Table 3.

Additionally, the Grubb’s test is also conducted to 
determine the presence of outliers in the data. The results 
of the Grubb’s test are presented in Table 4. The G-statis-
tic values of all fourteen variables are found to be less than 
their corresponding critical values indicating that there 
are no outliers in any of the fourteen temperature datasets.

Table 3  The results of the test 
for normality of the variables

Station name Variable type Degrees of 
freedom

Shapiro–Wilk

Statistic p value Decision at level (5%)

Kozhikode MMAX 564 0.983 3E−06 Reject normality
Kozhikode MMIN 564 0.977 9E−08 Reject normality
Kannur MMAX 420 0.978 6E−06 Reject normality
Kannur MMIN 420 0.987 1E−03 Reject normality
Alappuzha MMAX 564 0.972 6E−09 Reject normality
Alappuzha MMIN 564 0.991 2E−03 Reject normality
Punalur MMAX 564 0.979 3E−07 Reject normality
Punalur MMIN 564 0.989 4E−04 Reject normality
Kottayam MMAX 516 0.988 2E−04 Reject normality
Kottayam MMIN 516 0.953 1E−11 Reject normality
Thiruvananthapuram MMAX 564 0.984 7E−06 Reject normality
Thiruvananthapuram MMIN 564 0.983 5E−06 Reject normality
Trivandrum Airport MMAX 564 0.983 4E−06 Reject normality
Trivandrum Airport MMIN 564 0.981 1E−06 Reject normality

Table 4  The results obtained 
from the Grubb’s test for the 
variables

Station name Variable type G-statistic Critical value Approximate p 
value (%)

Decision

Kozhikode MMAX 2.4 3.9 9.18 No outliers
Kozhikode MMIN 3.49 3.9 0.26 No outliers
Kannur MMAX 2.22 3.82 10.87 No outliers
Kannur MMIN 2.95 3.82 1.3 No outliers
Alappuzha MMAX 2.61 3.9 5.05 No outliers
Alappuzha MMIN 2.93 3.9 1.85 No outliers
Punalur MMAX 2.82 3.9 2.61 No outliers
Punalur MMIN 1.83 2.89 1.78 No outliers
Kottayam MMAX 2.97 3.87 1.49 No outliers
Kottayam MMIN 3.78 3.87 0.01 No outliers
Thiruvananthapuram MMAX 2.35 3.9 10.4 No outliers
Thiruvananthapuram MMIN 3.26 3.9 0.6 No outliers
Trivandrum Airport MMAX 2.88 3.9 2.22 No outliers
Trivandrum Airport MMIN 3.34 3.9 0.45 No outliers
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Trend analysis using Mann–Kendall test and Sen’s 
slope estimation

Since the datasets are not normally distributed, the 
Mann–Kendall test is applied to check the presence or 
absence of the trend in the datasets. The results of the trend 
analysis are presented in Table 5. As mentioned earlier, the 
results of the Mann–Kendall indicate only the presence or 
the absence of a trend in the series and its direction. How-
ever, it fails to quantify the magnitude of the trend.

In this test, a p value greater than � (i.e. 0.05), indicates 
the absence of the trend. The sign of MK-statistic indicates 
the direction of the trend. The test results indicate that a 
certain amount of trend is present in ten variables. The 
magnitude of trend determined using Sen’s slope estima-
tion is presented in Table 5. The �-slope represents the mag-
nitude of the trend. This is consistent with the findings (p 
value) from the Mann–Kendall’s test. The four stations that 
indicated the absence of a trend in the Mann–Kendall test 
resulted in very low values of �-slope. It may be noted that 
for non-stationary series with small slopes (< 0.0002) , even 
at p < 0.01 , Mann–Kendall trend test rejects null-hypothesis, 
resulting in Type-I error. The other specific inferences that 
could be made from this test is that the MMAX series of 
Kozhikode, Kannur and Thiruvanathapuram has a signifi-
cant trend ( �-slope exceeding 0.2%), and MMIN series of 
Alapuzzha station is the only one with a decreasing trend, 
confirming the result obtained from the Mann–Kendall test.

Analysis through STL decomposition

Though the previous two tests reveal the presence or 
absence of a trend, the presence of non-stationarity result-
ing from seasonality cannot be directly inferred from them. 
A time-series decomposition technique is applied to obtain 
the components. The fourteen time-series variables are 
decomposed to get each one’s trend, seasonal and remain-
der components using the STL decomposition. Figure 2 
shows the original data, trend, seasonal, and remainder 
components of the MMAX variable of Kozhikode station.

For STL decomposition, only the first 80% of the time-
series datasets are utilized. The remaining 20% of the data 
is retained for the validation of the forecasting model. 
The increasing trend, which was predicted by both the 
Mann–Kendall test and Sen’s slope estimation, can be vis-
ualised from the figure. It also indicates the existence of a 
strong seasonal pattern. Similar to Kozhikode MMAX var-
iable, the other thirteen variables also exhibited seasonal 
patterns. On this basis, it is possible to conclude that the 
datasets are non-stationary. Before developing a forecast-
ing model, the non-stationary datasets must be converted 
to stationary datasets, and subsequently the parameters 
d and D must be determined. The non-stationarity of the 
datasets are validated by applying the unit root test.

Table 5  The results of Mann–Kendall trend test ( � = 0.05 ) and Sen’s slope test ( � = 0.05)

Station name Variable type MK S-statistic Standard error z statistic p value Presence 
of trend

Sen’s slope Sen’s-slope 
(lower 95 % 
Confidence 
Interval)

Sen’s-slope 
(Upper 95 % 
Confidence 
Interval)

Kozhikode MMAX 35,826 4469.78 8.02 0 Yes 0.0038 0.0029 0.0046
Kozhikode MMIN 26,011 4467.88 5.82 0 Yes 0.0015 0.001 0.0021
Kannur MMAX 16,583 2873.8 5.77 0 Yes 0.0048 0.0032 0.0063
Kannur MMIN 9118 2873 3.17 0 Yes 0.0016 0.0006 0.0025
Alappuzha MMAX 9169 4469.78 2.05 0.04 Yes 0.0009 0 0.0017
Alappuzha MMIN – 14,724 4468.65 – 3.3 0 Yes – 0.001 – 0.0016 – 0.0004
Punalur MMAX 2670 4470.12 0.6 0.55 No 0.0003 – 0.0008 0.0015
Punalur MMIN 5220 4468.91 1.17 0.24 No 0.0003 – 0.0001 0.001
Kottayam MMAX 5403 3912.08 1.38 0.17 No 0.0007 – 0.0003 0.0018
Kottayam MMIN – 4099 3909.71 – 1.05 0.3 No 0 – 0.0008 0
Thiruvanan-

thapuram
MMAX 33,767 4469.45 7.56 0 Yes 0.0028 0.0021 0.0035

Thiruvanan-
thapuram

MMIN 20,561 4467.24 4.6 0 Yes 0.001 0.0006 0.0015

Trivandrum 
airport

MMAX 18,572 4469.01 4.16 0 Yes 0.0013 0.0007 0.0019

Trivandrum 
airport

MMIN 21,046 4467.87 4.71 0 Yes 0.0011 0.0006 0.0016
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Unit root test and the conversion to a stationary 
series

The Kwiatkowski–Phillips–Schmid–Shin (KPSS) test is 
applied to categorise the datasets as stationary or non-sta-
tionary. The results of the unit root test are presented in 
Table 6. The test results for the original temperature time-
series are listed in the third column of the table. A p value 
of less than 0.05 implies that the series is non-stationary. 
The results indicate that time series datasets of Alappuzha, 
Punalur and Kottayam corresponding to MMAX variable, 
and MMIN variable of Punalur and Kottayam are stationary. 
This is contrary to what was inferred from the STL seasonal 
plots. To resolve this paradox, the autocorrelation (ACF) 

plots and partial autocorrelation (PACF) plots of those five 
variables are analyzed. The ACF and PACF plots of the 
Punalur MMAX are shown in Fig. 3. The ACF and PACF 
values in the plots follow a decaying sinusoidal pattern, 
which indicates seasonality and the dataset is non-stationary.

Similar trends are observed in the ACF and PACF plots 
for the other four variables. Therefore, it is conclusive that 
all fourteen variables are indeed non-stationary. As the 
seasonality is confirmed, at least one seasonal differencing 
is necessary to convert the non-stationary time-series to a 
stationary time-series. As this technique ascertains non-
stationarity by means of seasonality, there are possibilities 
that the non-stationarity may exist exclusive of the seasonal 
component. In other words, it is possible that there could 

Fig. 2  The decomposed compo-
nents of the Kozhikode MMAX 
time-series

Table 6  The result of KPSS test 
for level stationarity

Station name Variable type Original 
series (p 
value)

Seasonally 
adjusted series (p 
value)

Series after seasonal adjustment 
and first-order difference (p 
value)

Kozhikode MMAX 0.01 0.01 0.1
Kozhikode MMIN 0.01 0.01 0.1
Kannur MMAX 0.01 0.01 0.1
Kannur MMIN 0.049 0.01 0.1
Alappuzha MMAX 0.1 0.01 0.1
Alappuzha MMIN 0.01 0.01 0.1
Punalur MMAX 0.1 0.1 0.1
Punalur MMIN 0.1 0.051 0.1
Kottayam MMAX 0.1 0.01 0.1
Kottayam MMIN 0.06 0.01 0.1
Thiruvananthapuram MMAX 0.01 0.01 0.1
Thiruvananthapuram MMIN 0.01 0.01 0.1
Trivandrum Airport MMAX 0.01 0.01 0.1
Trivandrum Airport MMIN 0.01 0.01 0.1
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be a non-stationarity in the non-seasonal component of the 
time-series. In order to determine this possibility, the KPSS 
test is conducted on the seasonally adjusted time-series.

The seasonally adjusted series is obtained by subtracting 
the seasonal component from the original time-series data-
sets (seasonal differencing). The test results for the season-
ally adjusted time-series are listed in Table 6. The results 
indicate that most of the seasonally adjusted series are non-
stationary. Hence, it is evident that the non-stationarity of 
the datasets is not just due to the presence of seasonality 
alone. It indicates that, in addition to seasonal differenc-
ing, performing the first-order difference would be prudent 
in conversion of non-stationary time-series to stationary 
time-series. Subsequently, all fourteen time-series datasets 
are subjected to one seasonal differencing and a first-order 
difference. The KPSS test is performed on the resulting 
time-series datasets. The test results are presented in the 

last column of Table 6, where it can be observed that all the 
differenced time-series datasets are stationary.

Modelling by seasonal autoregressive integrated 
moving average (SARIMA) method

Forecasting models are developed by applying the SARIMA 
method using the original time-series datasets. The model 
has an inherent ability to transform non-stationary data into 
stationary data using the parameters d and D determined ear-
lier. SARIMA models for each variable are developed with 
a different combination of parameters, and the best-fitting 
model is selected based on statistical evaluation. The proce-
dure followed to develop the SARIMA model for MMAX 
variable of Kozhikode station is detailed. A similar proce-
dure is adopted for the other thirteen variables.

Fig. 3  a ACF plot of MMAX 
variable at Punalur station, b 
PACF plot of MMAX variable 
at Punalur station
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In the SARIMA model, where the model is represented 
by SARIMA(p, d, q)(P,D,Q)m , the determination of the 
parameters p, d, q, P, D, Q and m, for a particular time-
series data, completes the development of the model for 
that dataset. In the present case, from the previous analysis, 
it was found that d = 1 and D = 1 , and for monthly data 
m = 12 . Therefore, it is necessary to determine the values 
for parameters p, q, P and Q alone. These parameters are 
determined from the ACF and PACF plots of the station-
ary series (the seasonally and first-order differenced series) 
(Hyndman and Athanasopoulos 2018). The ACF and PACF 
plots of Kozhikode MMAX which are seasonally and first-
order differenced are shown in Fig. 4, where the first 30 lags 
are considered for determining the parameters.

The value of non-seasonal autoregressive term (p) and 
seasonal autoregressive term (P) are determined from the 

PACF plot (Fig. 4b). In the first span of seasonality, there 
are significant spikes at lag 1, lag 2 and lag 3, and this indi-
cates that a non-seasonal autoregressive component up to 
AR(3) (i.e. p ≤ 3 ) would be appropriate. The spikes at lags 
1, 2 and 3 are considered, while the spikes at lags 5, 6 and 
11 are ignored, because lags 1, 2 and 3 serially lie outside 
the bounds and lag 4 lies within the bound, and thus break 
the continuity. All the out of bound lags, in the first span of 
seasonality, after lag 4 are ignored for this reason. Both the 
second (lags 12 to 23) and third span (lags 24 to 35) of sea-
sonality have out of bound lags. Therefore, a seasonal autore-
gressive component AR(2) (i.e. P ≤ 2 ) would be appropriate. 
Similarly, the moving average components are determined 
from the ACF plot Fig. 4a. The appropriate values of moving 
average components are q ≤ 1 and Q ≤ 2 (seasonal). Thus, 
the candidate model is SARIMA(3, 1, 1)(2, 1, 2)12.

Fig. 4  a ACF plots for the 
stationary series of MMAX 
variable at Kozhikode station, 
b PACF plot for the stationary 
series of MMAX variable at 
Kozhikode station
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It may be noted that the nature of the fourth span (lags 
36 to 47) in the PACF and ACF plots is unknown. There-
fore, due consideration should also be given for the sea-
sonal autoregressive component AR(3) (i.e. P = 3) and the 
seasonal moving average component MA(3) (i.e. Q = 3). In 
the model development phase, it is necessary for the devel-
oper to ensure that the model is parsimonious. In order to 
satisfy the parsimony principle, the sum of the parameters 
p, q, P and Q of the SARIMA model should be less than or 
equal to six. Therefore, these four parameters of the can-
didate model are perturbed in the range of −1 and + 1. It 
resulted in 15 possible combinations to build the SARIMA 
model. Out of these, the best model is the one which mini-
mises AICc (corrected Akaike information criteria) and BIC 
(Bayesian information criteria). The AICc and BIC values 
for the 15 models are presented in Table 7. The most suit-
able model that corresponds to the lowest AICc and BIC 
value is SARIMA(2, 1, 1)(1, 1, 2)12 . However, it may be 
noted that the AICc and BIC values of the other four mod-
els SARIMA(2, 1, 2)(1, 1, 1)12 , SARIMA(2, 1, 1)(1, 1, 1)12 , 
SARIMA(2, 1, 1)(2, 1, 1)12 and SARIMA(3, 1, 1)(1, 1, 1)12 
are also closer to the selected model.

Statistical evaluation of the developed models is carried 
out using the validation dataset. The computed statistical 
measures are root mean square error (RMSE), mean absolute 
error (MAE), mean absolute percentage error (MAPE) and 
mean percentage error (MPE). The results of the statistical 
evaluation of the models are presented in Table 8. In the 
statistical evaluation, the SARIMA(2, 1, 1)(2, 1, 2)12 model 
did not produce the best results; nevertheless, the results 
are very close to the models that produced the best results. 
Therefore, the SARIMA(2, 1, 1)(1, 1, 2)12 is considered to be 

an appropriate model for forecasting the MMAX variable of 
the Kozhikode station.

The selected model is also validated using the ACF of the 
residuals obtained from the fitted SARIMA(2, 1, 1)(1, 1, 2)12 
model to the complete time-series data. The residual plot and 
the ACF plot are shown in Fig. 5. Ideally, for a model to be 
absolutely perfect, it is expected to have autocorrelation of 
residuals close to zero.

However, if 95% of the spikes lie within the bounds (± 
2 
√
T  , where T is the length of the time-series), that would 

confirm that the series is white noise without autocorrela-
tion. Here, there are two significant spikes (at lag 25 and 
lag 35), and this translates to 94.4% of the spikes remaining 
within the bounds. The percentage of spikes lying within the 
bounds is close to 95% indicates that the selected model has 
the ability to provide good forecasting results.

Model building and validation for other thirteen vari-
ables are carried out using a similar procedure. The data 
length used for model building and validation is presented 
in Table 9. Finally, Table 10 shows the apt models for all of 
the fourteen temperature time-series.

Summary and conclusions

The development of temperature forecasting models for the 
state of Kerala, India, is presented in this article. Monthly 
mean maximum (MMAX) and mean minimum (MMIN) 
temperature time-series, obtained from seven stations 
of Kerala is used for the development of the model. The 
time-series temperature data observed over a period of 47 
years, spanning from 1969 to 2015 is utilised in this study. 

Table 7  The AICc and BIC values of the SARIMA models for 
MMAX variable of the Kozhikode station

SARIMA Model AICc BIC

SARIMA(3,1,1)(1,1,1)12 – 2208.86 – 2180.66
SARIMA(3,1,0)(2,1,1)12 – 2176.63 – 2148.43
SARIMA(3,1,0)(1,1,2)12 – 2180.75 – 2152.56
SARIMA(3,1,0)(1,1,1)12 – 2176.52 – 2152.33
SARIMA(2,1,1)(2,1,1)12 – 2208.06 – 2179.86
SARIMA(2,1,1)(1,1,2)12 – 2212.19 – 2183.99
SARIMA(2,1,1)(1,1,1)12 – 2208.52 – 2184.33
SARIMA(2,1,0)(2,1,2)12 – 2173.92 – 2145.72
SARIMA(2,1,0)(2,1,1)12 – 2168.88 – 2144.68
SARIMA(2,1,0)(1,1,2)12 – 2174.36 – 2150.16
SARIMA(2,1,0)(1,1,1)12 – 2169.02 – 2148.83
SARIMA(2,1,0)(1,1,3)12 – 2173.91 – 2145.72
SARIMA(2,1,0)(3,1,1)12 – 2168.35 – 2140.16
SARIMA(2,1,2)(1,1,1)12 – 2210.84 – 2182.64

Table 8  The statistical evaluation results of the SARIMA models 
developed for the Kozhikode MMAX

SARIMA Model RMSE MAE MPE MAPE

SARIMA(3,1,1)(1,1,1)12 0.846 0.656 – 1.36 2.046
SARIMA(3,1,0)(2,1,1)12 1.092 0.891 – 2.41 2.8
SARIMA(3,1,0)(1,1,2)12 1.121 0.92 – 2.541 2.9
SARIMA(3,1,0)(1,1,1)12 1.117 0.918 – 2.551 2.891
SARIMA(2,1,1)(2,1,1)12 0.817 0.627 – 1.18 1.951
SARIMA(2,1,1)(1,1,2)12 0.878 0.675 – 1.454 2.11
SARIMA(2,1,1)(1,1,1)12 0.868 0.674 – 1.451 2.107
SARIMA(2,1,0)(2,1,2)12 1.024 0.825 – 2.136 2.588
SARIMA(2,1,0)(2,1,1)12 1.056 0.856 – 2.27 2.685
SARIMA(2,1,0)(1,1,2)12 1.089 0.886 – 2.402 2.79
SARIMA(2,1,0)(1,1,1)12 1.082 0.882 – 2.411 2.776
SARIMA(2,1,0)(1,1,3)12 1.022 0.823 – 2.127 2.581
SARIMA(2,1,0)(3,1,1)12 1.13 0.93 – 2.582 2.933
SARIMA(2,1,2)(1,1,1)12 0.869 0.679 – 1.5 2.12
SARIMA(4,1,0)(1,1,1)12 1.162 0.962 – 2.738 3.037
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Some data gaps are identified in the datasets obtained from 
IMD. The missing values are estimated using the expecta-
tion–maximisation algorithm. It is natural for a long term 
time-series dataset of a meteorological variable to possess 
a trend. Moreover, the monthly mean of the meteorological 
variable is bound to have seasonal variations. The inher-
ent seasonality in the variable induces a non-stationarity 
in the time-series datasets. Statistical analysis is carried 
out on the time-series datasets to understand the nature 
of the data.

The results from the descriptive statistics indicated that 
most of the temperature time-series are kurtotic. A prelimi-
nary analysis is carried out to test the normality of the data 
and to check the presence of outliers. The Shapiro-Wilk test 
and the Grubb’s test are conducted to test the normality and 

to check the outliers. The results indicated that the time-
series datasets are non-normal and outliers are absent.

The trend analysis is carried out by applying Mann–Ken-
dall’s trend test and Sen’s Slope estimation. The results indi-
cated the presence of trend in at least ten of the fourteen 
time-series datasets. This served as the first indication for 
the non-stationary nature of the datasets. In order to con-
firm the presence of seasonality, with absolute confidence, 
STL decomposition and KPSS test are conducted. In STL 
decomposition, the time-series is decomposed into trend, 
seasonal, and remainder components. The results obtained 
from these tests clearly indicated the presence of seasonal-
ity and thereby, confirmed the non-stationarity of the all 
the fourteen time-series datasets. Subsequently, one sea-
sonal difference and one first-order difference are applied to 

Fig. 5  The residual 
time-series of the fitted 
SARIMA(2, 1, 1)(1, 1, 2)12 
model for the Kozhikode 
MMAX variable, ACF plot of 
the residuals and the distribu-
tion of the residuals

Table 9  The training and the 
validation data length utilised

Station name Variable type Training data Validation data

Kozhikode MMAX 1969–2005 (37 years) 2006–2015 (10 years)
Kozhikode MMIN 1969–2005 (37 years) 2006–2015 (10 years)
Kannur MMAX 1981–2005 (28 years) 2006–2015 (7 years)
Kannur MMIN 1981–2005 (28 years) 2006–2015 (7 years)
Alappuzha MMAX 1969–2005 (37 years) 2006–2015 (10 years)
Alappuzha MMIN 1969–2005 (37 years) 2006–2015 (10 years)
Punalur MMAX 1969–2005 (37 years) 2006–2015 (10 years)
Punalur MMIN 1969–2005 (37 years) 2006–2015 (10 years)
Kottayam MMAX 1969–2003 (35 years) 2005–2011 (8 years)
Kottayam MMIN 1969–2003 (35 years) 2005–2011 (8 years)
Thiruvananthapuram MMAX 1969–2005 (37 years) 2006–2015 (10 years)
Thiruvananthapuram MMIN 1969–2005 (37 years) 2006–2015 (10 years)
Trivandrum Airport MMAX 1969–2005 (37 years) 2006–2015 (10 years)
Trivandrum Airport MMIN 1969–2005 (37 years) 2006–2015 (10 years)
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transform the non-stationary datasets into stationary data-
sets. The results assist in identifying the values of the dif-
ferencing parameters necessary for building the SARIMA 
model.

The SARIMA models are developed individually for each 
of the fourteen variables using the original time-series data-
sets. The SARIMA models are developed individually for 
each of the fourteen time-series datasets. The results indi-
cated that the SARIMA(2, 1, 1)(1, 1, 1)12 model the ideal one 
to forecast eight out of the fourteen time-series variables. In 
order to have a better understanding of local influences, the 
studies must be carried out on a better spatial and temporal 
scales.
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Abstract
In this study, an integrated approach has been adopted for optimum selection of locations for rain water harvesting (RWH) 
in Kohat district of Pakistan. Various thematic layers including runoff depth, land cover/land use, slope and drainage density 
have been incorporated as input to the analysis. Other biophysical criteria such as geological setup, soil texture and drainage 
streams characteristics were also taken into account. Drainage density and slope were derived from digital elevation model, 
and map of land use/land cover was prepared using supervised classification of multi-spectral Sentinel-2 images of the area. 
Aforementioned thematic layers are assigned respective weights of their importance and combined in GIS environment 
to form a RWH potential map of the region. The generated suitability map is classified into three potential zones: high, 
moderate and low suitability zones consisting of area 638 km2 (21%), 1859 km2 (62%) and 519 km2 (17%), respectively. 
The suitability map has been used to mark accumulation points on the down streams as potential spots of water storage. In 
addition, site suitability of artificial structures for RWH consisting of farm ponds, check dams and percolation tanks has also 
been assessed, showing 3.2%, 3% and 4.5% of the total area as a fit for each of the structure, respectively. The derived suit-
ability will aid policy makers to easily determine potential sites for RWH structures to store water and tackle acute paucity 
of water in the area.

Keywords Site suitability · Rain water harvesting · Remote sensing · Geographical information system

Introduction

Water is indeed one of the primary driving forces of our 
very nature. It is the basic need for human as well as for 
the animal and plant life. The global requirement of water 
is intensifying with time due to rapid increase in the world 
population, modern and improving living standards, indus-
trialization and irrigated agriculture (Buraihi and Shariff 
2015). Especially under the current climate change scenario 
where changed rainfall patterns are causing either scarcity 
or floods, the natural water balance has been lost. So at this 
time it is more important to manage fresh water resources 
than ever it was needed before. South Asian countries are 
more likely to get affected by this scarcity. Pakistan is a 

typical example of a country facing effects of this natural 
imbalance. It was a water surplus country once but now turn-
ing into a water deficit region as the fresh water is depleting 
rapidly. Pakistan is ranked third among the countries which 
are facing substantial water crisis unheeded by the authori-
ties (Nabi et al. 2019). And the country may run dry by 2025 
if such trend continues. It is an agricultural country and its 
economy relies heavily on the growth of agriculture sector 
which needs the water most (Ahmed et al. 2007).

Over the time people have acquired many alternative ways 
to get water for different purposes including digging wells, 
harvesting rain water, melting snow and ice, accumulating 
fog and dew, collecting water from the evapotranspiration of 
plants (Kadam et al. 2012; Tumbo et al. 2012). One of these 
management solutions is the rain water harvesting (RWH). 
In areas where water supply is barely sufficient this solution 
proves to be a propitious method to support scarce water 
resources of the area to satisfy the demand (Buraihi and 
Shariff 2015; Mugo and Odera 2019). This research aims to 
locate potential areas to efficiently harvest rainwater. At one 
side, proper management of rain water can help in avoiding 
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or at least reducing intensity of floods and at the other end 
provide naturally filtered water in the dry spells to fulfill 
domestic and other uses (Sekar and Randhir 2007; Buraihi 
and Shariff 2015). RWH is a combination of versatile and 
resourceful techniques to filter, stock, and distribute rain 
water for various domestic purposes. This is the simplest and 
easily accessible alternative of water management in areas 
with sufficient rain as it yields extra water to deal water defi-
cit problems (Helmreich and Horn 2009; Gavit et al. 2018). 
This process of RWH simply expresses the undeviating hold 
up of rainwater as surface runoff. For domestic purpose, the 
surface runoff from the roof of an individual house or from 
paved surface can be harvested. There are many advantages 
of RWH, i.e., rainwater is not chlorinated so it is unpolluted 
and open source of water, this harvested water is ideal for 
crop planting due to its clarity (Buraihi and Shariff 2015). 
The degree of harvesting can be enhanced from an indi-
vidual to a bigger catchment or reservoirs for public use. 
This process of RWH is also useful for the enhancement of 
ground water recharge. This system has been proved to be 
very beneficial for many countries in the world.

Although RWH has its history expanded over centuries 
but now in these modern days, for better results, before 
installation of RWH system, there are proposed analyses to 
check the land suitability for such an installation (Mugo and 
Odera 2019). The more effective and popular analyses made 
use of the geographic information system (GIS) and satellite 
remote sensing (SRS) utilities (Buraihi and Shariff 2015). To 
serve the purpose, various procedures are in practice. One 
of the methods is the Analytic Hierarchy Process (AHP), a 
multi-criteria decision analysis. It assigns weights to each 
of the input criteria showing its level of contribution in the 
decision support system. Another GIS-based method used 
in order to delineate these sites for RWH is the weighted 
overlay of geographic distribution of the involved input 
parameters, i.e., drainage density, slope, runoff depth, the 
soil map and the land-use/land-cover (LULC) map (Kadam 
et al. 2012; Buraihi and Shariff 2015). It also assigns weight 
to each of the parametric layers. This study has made use of 
these SRS- and GIS-based strategies to proposed potential 
rainwater harvesting sites for the district Kohat, Pakistan.

SRS has been emerged as an alternative of traditional 
in situ sampling methods that were expensive, time-consum-
ing and tedious in their (Mahmood et al. 2017a; Manzo et al. 
2017). Its ability to provide bird eye view of larger area with 
detailed topography and many other proxy factors helping 
in understanding ongoing process and natural settings of a 
region at once are the factors making it a better substitute 
in many environmental related studies (Manzo et al. 2017; 
Mahmood et al. 2019). The basic data of SRS is reflectance 
of Earth’s surface measured in various spectral range which 
is interpreted using spatial analysis of various types provided 
by GIS (Yan et al. 2014; Manzo et al. 2017). In addition to 

processing of SRS data GIS also provide ease and accu-
racy of many other space related data handling, a typical 
example of it is the Weighted Linear Combination (WLC) 
of multiple geographic datasets. A general recommendation 
by researchers is the SRS data with better spatial resolu-
tions, i.e., QUICKBIRD with pixel dimensions of 0.65 m. 
However, depending upon phenomenon under consideration, 
freely available SRS data of Sentinel 2 with generalization 
dimensions of 10 m may prove to be a very suitable option. 
So both these techniques (SRS and GIS) are helpful for stud-
ying surface phenomenon, i.e., RWH of an area.

Study area

The study area for this research is Kohat district located 
in the province Khyber Pakhtunkhwa (KPK) of Pakistan, 
situated adjacent to the Potwar plateau. The zone lies in 
the range from 33.06° N to 33.75° N and from 71.06° E 
to 72.01° E. Geographical association of the study area is 
shown in Fig. 1. With an area of about 2987 km2, it con-
tains a population of 723,000 (Population and Household 
Detail from Block to District Level: Khyber Pakhtunkhwa, 
2018). Administration wise the area has been divided into 
two tehsils Kohat and Lachi.

The climate of the area is semiarid and sub-humid sub-
tropical continental highland. The average temperature of 
the region varies with altitudes, i.e., plains are relatively 
warmer and mountains are cooler. The weather remains hot 
from May to September with peak in June (average maxi-
mum temperature 41 °C), whereas coldest month is Janu-
ary (average minimum temperature 5 °C). Annual average 
temperature in the region is around 24 °C. Monthly average 
temperature of the region, as per 40 years’ record from 1978 
to 2017, is shown in Fig. 2. Annual average precipitation 
in the region, as per 40 years’ record from 1978 to 2017, is 
580 mm. The monsoon downpours peak in July and August. 
Looking at the seasonal rain fall patterns (Fig. 3), Kohat dis-
trict has an additional advantage of two well separated peaks 
of higher precipitation. One of the peak, relatively smaller, is 
in March with 82 mm precipitation in a month, for which the 
surplus rainwater can serve as a reserve for the dry months 
of May and June, whereas the major peak centers in July 
and August with about 180 mm in 2 months, for which the 
collected rainwater can serve as a source for the upcoming 
dry months of October, November and December. So this 
way Kohat has two sets of supply and demand periods and 
seasonally the RWH system of the region can be divided into 
two temporal frames leading toward smaller collection units 
with maximum efficiency.
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Materials and methods

Datasets collection

The SRS data of Sentinel 2B acquired on 15-11-2018 has 
been used for preparing LULC of the area. For elevation, 
data of SRTM DEM with spatial resolution of 30 m has 
been used. A detailed soil map, topographic information, 
soil texture triangle and soil series information of Kohat 
district were acquired from Soil Survey of Punjab. Finally, 
for accurate rainfall information, data of past 10 years 
from two sources were obtained, Pakistan Meteorological 

Department (PMD) and Soil Survey of Punjab (Soil Sur-
vey of the Punjab, Pakistan).

Datasets preparation

The preprocessing on acquired four Sentinel-2B images 
was done, during the preprocessing stage, the bands (red, 
green, blue, NIR) with 10 m spatial resolution were stacked 
together, the four images were mosaicked, and the area of 
interest was clipped using ERDAS Imagine platform; the 
output is shown in Fig. 4. To prepare a Hydrological Soil 
Group (HSG) map the geo-referencing and digitization of 

Fig. 1  Study area map

Fig. 2  Average monthly tem-
perature profile of Kohat (from 
1978 to 2017)
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detailed soil information map of Kohat was carried out using 
Arc GIS as the GIS platform. Later on, hydrological soil 
groups were computed using soil texture triangle and Kohat 
soil series information. The 40 years’ rainfall information 
of Kohat district was utilized to calculate average monthly 
as well as annual rainfall of the area, the monthly average 
details are given in Fig. 3, and annual average is 560 mm.

Overall layout of the methodology has been given in 
Fig. 5. Solution of the problem statement initiated with 
the preparation of thematic layers using the collected data 
sets. This selection of the four contributory thematic layers 

comprises of runoff depth, slope, drainage density and land 
use/land cover which has been made based on the reviewed 
literature (Khalid et al. 2017). In order to prepare a land-use/
land-cover layer of the region, preprocessing and classifica-
tion of Sentinel-2B images performed in ERDAS Imagine, 
followed by supervised classification using maximum like-
lihood algorithm of images to six classes, were made, i.e., 
bare land, grassland, crops, fallow, urban, and open water. 
Topographic slope layer has been prepared by selecting 
appropriate z-factor value which computed to be 0.00001036 
depending on latitude range of the area by method devise by 

Fig. 3  Average monthly rainfall 
of Kohat (from 1978 to 2017)

Fig. 4  Sentinel 2B image (Kohat district)
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Fry (2007). Drainage density is defined as “the total length 
of streams per unit catchment area” and mathematically as 
follows (Dragicevic et al. 2019).

where n is number of streams, L is length of the streams 
(km) and A is contributing drainage area (km). For quanti-
fying drainage density, drainage network information and 
watershed delineation were required. Drainage network was 
derived from DEM using stream raster and flow direction 
raster, and then “Stream to Feature” tool was used to con-
vert it to vector format. Watershed delineation was carried 
out using flow-direction raster and stream-link raster, using 
hydrology tools. Spatial join has been used to combine the 
information of area of watershed and lengths of the streams 
falling in the respective watersheds for calculating drainage 
density per watershed.

Assessment of surface runoff has been made using 
SCS-CN method, initially developed by USDA, Soil 

(1)DD =

∑n

i=1
L

A

Conservation Service (SCS). It is explained in fourth sec-
tion of National Engineering handbook (NEH) (Ponce and 
Hawkins 1996). The main cause of success of SCS-CN is 
that this method compiles the parameters that affect the 
generation of runoff like, soil types, land use and land 
cover, moisture conditions of that area, surface condition, 
incorporated by single CN variable (Soulis et al. 2009; 
Kadam et al. 2012). The method based on the calculation 
of water balance is written as follows (Li et al. 2015):

where P is total rainfall (mm), Ia is initial abstraction (mm), 
F is cumulative infiltration excluding Ia (mm), S is potential 
maximum retention (mm) and Q is direct runoff (mm). By 
the combination of Eqs. (2) and (3), standard form of SCS-
CN method turns out into following equation.

(2)P = Ia + Q + F

(3)
Q

P − Ia
=

F

S

Fig. 5  Flow chart diagram of methodology



1180 Acta Geophysica (2020) 68:1175–1185

1 3

which is effective when P ≥ Ia; else Q = 0. This approach 
relies on two essential assumptions; first ratio of maximum 
possible runoff to actual rainfall is equal to ratio of real infil-
tration to maximum possible retention (Satheeshkumar et al. 
2017). As per the second supposition, the volume of Ia is the 
segment of maximum possible retention. Ia = 0.2S (Li et al. 
2015; Satheeshkumar et al. 2017).

S is calculated by using a mathematical mapping equation 
depicted in the form CN as follows:

where CN is the curve number that depends on LULC, 
HSG and AMC (Antecedent Moisture Condition) and can 
be obtained from SCS handbook of Hydrology (NEH-4), 
section-4 (Satheeshkumar et al. 2017). In addition to that 
Arc Hydro extended tool has a built-in function to gener-
ate CN lookup table and CN value raster. It has no dimen-
sions and has a range of 0-100 and depicts the abstraction 
properties of watershed. Ideal Impermeable surfaces such as 
water surfaces where all rainfall become runoff would have 
CN = 100. And the surfaces which absorb all rainfall would 
have CN = 0 (Gray and Burke 1983).

Runoff can be computed using Eq. (5), provided the value 
of CN is known. Estimating the CN for a catchment is con-
sidered an important application of GIS. In this research 
HEC-GeoHMS (Geospatial Hydrologic Modeling Exten-
sion) incorporated by Arc Hydro Tool has been used to 
investigate the value of curve number raster. Hydrological 
soil group chart has been prepared and is shown in Table 1. 
The participating layers have been classified before their 
unification using weighted overlay analysis (Satheeshkumar 
et al. 2017).

Hydrological Digital Elevation Model (Hydro-DEM) was 
generated from Arc hydro extension of ArcGIS. CN-Look-
up table was made using curve number details with respect 

(4)Q =
(P − Ia)2

P − Ia + S

(5)Q =
(P − 0.2S)2

P + 0.8S

(6)S =
25400

CN
− 254

to land cover as defined by USDA. Along with LULC and 
HSG merged layer, hydro-DEM and CN-Look-up table, 
“Generate CN Grid” tool from HEC-GeoHMS was used in 
the estimation of curve numbers per pixel (Amakrishnan 
et al. 2009; Shukur 2017).

The weights, showing relative importance of each of the 
parameters in assessing RWH potential, need to be specified 
so that contributing factor of each of used parameters can be 
controlled. For this study these weights to each of the con-
tributing factors have been assigned based on the reviewed 
literature, followed by pairwise comparison metrics analysis 
(Maina and Raude 2016; Mugo and Odera 2019). Classifi-
cation of all the input variables along with their weight of 
importance has been given in Table 2. Finally, weighted sum 

Table 1  Soil Conservation 
Service classification

Hydrologic soil 
(HSG)

Soil textures Runoff potential Final infiltration

Group A Deep, well-drained sands and gravels Low > 7.5
Group B Moderately deep, well drained with Moderate Moderate 3.8–7.5
Group C Clay loams, shallow sandy loam, soils with mod-

erate to fine textures
Moderate 1.3–3.8

Group D Clay soils that swell significantly when wet High < 1.3

Table 2  Factors and scale values of different factors (Buraihi and 
Shariff 2015)

Factor Weight of class 
(Pi) (%)

Classes Rank 
of class 
(Wi)

Land use 7 Barren 9
Grassland 7
Crops 3
Fallow 3
Urban 1
Water 1

Slope (%) 30 0–4.27 1
4.28–10.36 9
10.37–17.98 7
17.99–27.73 5
27.74–77.7 1

Runoff (mm) 48 217–301 1
302–411 3
412–462 5
463–479 7
480–529 9

Drainage density 
(km/km2)

15 0–0.14 1
0.15–0.37 3
0.38–0.57 5
0.58–0.86 7
0.87–1.87 9
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has been carried out to unified score for each of the location 
using individual ranks assigned by each of the parameters.

The specific suitability of individual RWH storage 
structures

In order to find suitability sites for individual RWH storage 
structures, the generated thematic layers of LU/LC, slope, 
HSG and runoff were considered. The layers were overlaid 
and suitable sites for RWH structures like farm ponds, check 
dams and percolation tanks were found. Characteristics of 
each criterion on the basis of which the sites for each struc-
ture were found are given in Table 3.

Results and discussion

This study has made use of different parameters. and each 
of them has its critical role in deciding ability of a location 
to be a potential RWH site. Out of all the four layers, runoff 
depth was assigned the highest weight (48%), whereas the 
lowest weight was assigned to LULC that is (7%). The slope 
and drainage density were given 30% and 15%, respectively. 
Assessing land cover distribution in the region, 0.65% out 
of the total land cover is water majorly consisting of small 
lakes (spatially found concentrated in the north) and stream/
rivers flowing along eastern boundary of the area. This small 
percentage is considered to be absolutely unsuitable for the 
installation of any rainwater harvesting system. Grasslands 
occurring at the outskirts along northern and western bound-
ary has a coverage of 29% and 0.5% is covered by crops 
and lies in the northeast, whereas the urban settlements are 
occupying a small percentage of 0.2% and definitely unsuit-
able for constructing RWH sites. Fallow lands are peppered 
throughout the study area, covering 11%, whereas major 
portion (59%) is barren land. Spatial arrangement of all 
these land covers is shown in Fig. 6a.

The soils of Kohat region were categorized into four 
hydrological sets A, B, C and D in accordance with the 
rates of infiltration of different types of soils on the basis of 
their textures, for example loamy, sandy clay loam, etc., as 
referred by Soil Conservation Service Classification (USDA 
1974). The type A soil (the well-drained soils and grav-
els), mainly covering northern regions of the area, consists 

of about 135 km2. Type B soil (the moderately drained), 
expanding toward north from center, has an area coverage 
of about 438 km2. Type C soil (clay loams), having coverage 
along eastern and western boundaries of the area, is found 
to have an area value approximately 364 km2. The Type D 
is with the maximum area coverage of about 2050 km2 and 
is situated mostly on edges of the region. As it is previously 
mentioned in Table 1, the suitable soil type for installing 
RWH structure is type D because of its high runoff potential 
and low infiltration rate and luckily it is the top existing soil 
(70% of study area). The spatial distribution of these four 
hydrological soil groups is shown in Fig. 6b.

An average rainfall of 529 mm is generating surface 
runoff ranging from 217 mm to 529 mm depending on the 
geographical situations, whereas for a site to be suitable the 
runoff should be greater than 300 mm so 98% of the area 
satisfying this condition (Buraihi and Shariff 2015), while 
the remaining 2% area of non-suitability is covered either by 
urban settlements or water bodies, which is already excluded 
for the potential list. Figure 6c illustrates spatial distribution 
of curve numbers on the basis of which runoff depth has 
been calculated that is shown in Fig. 6d. Slope was assigned 
the second highest weight (30%) in the analysis and ranges 
between 0%-77%, as shown in Fig. 6e. Most of the areas 
have range of 0–10% that is considered RWH site, while 
the edges of the boundary in the north part of Kohat are 
considered to be unsuitable for rainwater harvesting due to 
the very high values of slope. Drainage density, carrying an 
importance of 15% in the analysis, has been shown in Fig. 6f 
for individual watersheds that ranges from 0 to 1.874 per km 
which is quite suitable for potential RWH site.

RWH potential suitability map

The final output of unified suitability score with geographi-
cal spread has been given in Fig. 7. The output has been 
divided into three classes of suitability level and percentage 
area for each of the class has been calculated to assess over-
all suitability of the study area for RWH potential. This clas-
sification over weighted overlay raster has been performed 
using equal interval classifiers that divides input values to 
specified number of classes (three in this particular case) 
while giving same value intervals to each of the class.

Only 17.2% of the study area has been categorized into 
poorly suitable as potential site for RWH. This area mainly 
consists of urban settlements and the water bodies which is 
already discussed as the non-suitable land covers for such 
an arrangement. Major portion (61.6%) of the study area lies 
with optimized score range of moderately suitability and 
21.1% has been assessed as the region of top suitability. For 
the most suitable sites, the runoff values were maximum, 
the infiltration rate was least, and land cover was mostly the 
barren land. However, these regions of high suitability have 

Table 3  Selection of artificial structures for RWH (Ammar et  al. 
2016; Khalid et al. 2017)

Artificial RWH structure Slope (%) Land cover type Soil type

Farm-pond < 5 Agriculture C and D
Check dam < 15 Barren C
Percolation tank < 10 Barren B
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their spread throughout the region, with high concentration 
in the extreme southern parts which can get the maximum 
accumulation of rain water. Similarly, areas with low suit-
ability have high concentration in the north. Emergence of 
these patterns with large rainwater collecting areas as the 
most suitable sites is an advantage of the region, making 
the area naturally blessed with high potential of success rate 
as a pilot project of RWH. Looking at the potential points 
of rain water collection, the highly suitable stream points 
are distributed throughout the area, not showing the similar 
extreme concentration in the south as was shown by the suit-
able geography. It is because of the fact that the points have 
been marked at end of the suitable stream with some specific 

amount of water to be tackled at the location, whereas the 
low suitability points are well concentrated in the low suit-
able geography in the central north. The distribution of most 
suitable location throughput the area can lead to a highly 
efficient system of RWH in the region in terms of water 
storage as well as utilization management.

Artificial storage structures map

In addition to general suitability of sites, additional analysis 
has been performed to assess sites for artificial RWH stor-
age structures, i.e., check dams, farm ponds and percola-
tion tanks as shown in Fig. 8. It will prove a further help 

Fig. 6  Geographical display of 
various parameters (a LULC; 
b hydrological soil groups; c 
curve numbers; d runoff depth; 
e: slope; f: drainage density)
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Fig. 7  Spatial distribution of 
RWH potential sites and suit-
able accumulation points

Fig. 8  Artificial structures for 
RWH
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for development of application specific infrastructure to the 
decision makers in the region. These three types of struc-
tures need specific soil type and runoff depth.

Though the critical analysis 3.21% of the study area is 
found suitable for farm ponds that needs slope range of 
0–5%, runoff depth lies from moderate to high and soil type 
as sandy clay loam. About 3% of the study area satisfies the 
conditions for the development of check dams with slope 
between 5 and 15% and runoff depth and soil type same as 
for farm ponds. The third structure is percolation tank with 
a suitability area of about 4.5% of the total, which can be 
installed in the regions where slope value is less than 10%, 
runoff is low and soil type is clay. Over this area allocation, 
the possible locations of individual structures, with maxi-
mum benefits, have also been pointed out and are shown in 
Fig. 7.

Well-distributed six locations have been marked for per-
colation tanks, four for the farm ponds concentrated mainly 
in the center of the region, and three for check dams. Instal-
lation of percolation tanks has been marked with four points 
at upstream of the main residential region of Kohat with 
two points as a facility to relatively low populated areas in 
the east and west of it. All the farm ponds suggestions have 
been emerged from periphery of the residential area where 
most of the farm land and farming business is concentrated. 
Three check dam suggestions are also providing a perfect 
distribution in the downslope of main Kohat and will be of 
great benefit for southern settlements to this main population 
zone. Overall the arrangement of potential sites for RWH 
system has come out with maximum potential benefits prov-
ing the use techniques as the perfect solution for planning 
such a system and the chosen area as the perfect fit of a pilot 
project for the RWH.

Conclusion

The aim of this study was to identify the suitable sites for 
harvesting rain water in the region of Kohat, Pakistan. The 
study area has been found having a natural setup to sup-
port RWH as an alternate for fulfilling water requirements 
at different scales. If the rainwater is harvested, filtered, 
stored and managed properly, the water scarcity problem 
can be fixed to considerable extent in the area. This research 
successfully develops the suitable sites in the area where 
rainwater can be harvested with the installation of different 
artificial RWH structures. Geographical multicriteria evalua-
tion process has been successfully utilized for analyzing site 
suitability that is based on various methods of GIS and SRS. 
These methods have been put together in such a sequence 
that suits with natural settings of the phenomenon. The used 
thematic layers in the analysis are slope, land cover/land use, 
runoff depth, and drainage density that were combined using 

weighted overlay process in GIS environment. The study has 
provided many insights into the spatial distribution of RWH 
controlling parameters.

About 0.65% of the study area is covered by water that 
is absolutely not suitable for building any RWH structure 
and major land cover is barren that comprises about 58% 
of the area. The most appropriate soil type has a spread, 
covering of 70% and 98% of the area having a runoff greater 
than 300 mm, needed for building a RWH system. Similarly, 
maximum of the area has a suitable slope value of 0–10% 
and drainage density of all the individual watersheds is also 
fit for planning a RWH system. Although individual param-
eters have suitable scenario over major portion of the area, 
a geographical mismatch of their combination has somehow 
decreased this area to suitability. Even then the final suitabil-
ity map has come out with only 17% of the area that is not 
suitable. Still 83% of the study area is supporting develop-
ment of RWH system in the region with 21% area as highly 
suitable. So overall the study area is naturally blessed with 
all the ingredients needed for the development of sustainable 
and efficient RWH systems.

The area in immediate surroundings of Kohat city lies 
in the low suitable region while most of the highly suitable 
sites lie in the center and the southern parts. Conclusively, 
the generation of accumulation points at the end of down 
streams proved that there are enough points of accumula-
tion throughout the region where different artificial recharge/
storage structures can be installed in the selected sites which 
can prove to be greatly helpful in conserving water in water 
deficit areas.

In addition to this general suitability of RWH, sites for 
specific structure have also been determined. The area of 
suitability found for farm ponds is 3.2% with four construc-
tion sites, for check dams it is 2.9% with three construction 
sites and for percolation tanks it is 4.5% of the total with 
six construction sites. Overall the arrangement of potential 
sites, both general and specific, for RWH system in the area 
is proving beneficial in two ways. At first, emergence of 
these patterns with large rainwater collecting areas as the 
most suitable sites and distribution of these resource points 
throughout the area both are leading to highly efficient sys-
tem in terms of water storage and utilization. This is an 
advantage of the region, making the area naturally blessed 
with high potential of success rate as a pilot project of RWH. 
At second place perfection in the output with maximum 
potential benefits has proved the used techniques as the pre-
ferred solution for planning such a system.

The SCS-CN approach adopted for the study has been 
proved to be a better technique not only for determining best 
sites for RWH system but also to assess natural settings of 
an area for the purpose. This approach can be implemented 
as it is to almost all the hilly areas. As the approach pro-
vides pre-assessment of RWH potential so when combined 
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with some existing ranking criteria like one proposed by 
Mahmood et al. (2017b) can lead toward a better and ben-
eficial resources allocation for such systems in the world.
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Abstract
The goal of the study was to investigate if aviation emissions could influence the climate and weather by modifying the chemi-
cal composition of the atmosphere and subsequently, the radiative balance. To carry out the set objective, we used the global 
environmental multiscale atmospheric chemistry model with comprehensive tropospheric and stratospheric chemistry that is 
interactive with the radiation calculations. The model was run for two current climate scenarios, with and without aviation 
emissions. The results of the study indicate that the most significant difference in the jet stream propagation occurred during 
the winter season, and the smallest was observed during summer. Changes in the jet stream propagation vary by season and 
region. During the colder time of the year, the eddy-driven jet stream tends to shift poleward, while during the spring season 
the equatorward shift was observed in a scenario with aviation emissions. Analysis of regional changes shows that the most 
noticeable differences occurred over the Pacific Ocean, Atlantic Ocean and Asia. The changes over the oceans changed the 
occurrence of the North Pacific and Bermuda–Azores Highs. Over Asia (Siberia), a stronger and more poleward drift of the 
eddy-driven jet stream was observed in a scenario without aviation emission. Dissimilarity in the jet stream velocity was 
found only during the winter seasons when in a scenario with aviation emission, the jet stream velocity was 10 m/s smaller 
as compared to the scenario without aviation emission.

Keywords Aviation emissions · Jet stream · Upper troposphere lower stratosphere · Global environmental multiscale 
atmospheric chemistry model (GEM-AC)

Introduction

One of the most significant regions of the atmosphere is 
the tropopause layer, called the upper troposphere and the 
lower stratosphere region (UTLS). UTLS is a transition 
layer where the boundary between the polluted troposphere 
and ozone-rich stratosphere lies. It plays an important role 
in tropospheric large scale circulation, stratosphere-tropo-
sphere exchange (STE) and the quasi-biennial oscillation 
(QBO) in the stratosphere (i.e. Holton 1995; Jensen et al. 
1996; Garfinkel and Hartmann 2010; Forster and Shine 
1997). Any changes in the chemical composition of this 
region will lead to changes in the dynamics through changes 

in the radiative processes (Brasseur et al. 2008; Gettelmann 
et al. 2011; Hegglin et al. 2010; Shepherd 2002, 2007).

Anthropogenic pollution has a significant impact on 
atmospheric composition in the troposphere. Most of 
the sources are near the ground. Thus, the majority of 
the chemical reactions will take place in the lower and 
the middle troposphere. Only inert and a small number 
of reactive species from the ground-based anthropogenic 
emissions reach the upper troposphere. The aviation emis-
sions, on the other hand, are released mostly in the UTLS 
region (Olsen et al. 2013a, b). That may cause significant 
changes in the atmospheric chemistry near the tropopause, 
especially in the area of heavy airline traffic. Analysis of 
different aircrafts’ fuel burn datasets indicates that 69.0% 
of aviation emissions are released over the mid-latitudes 
of the Northern Hemisphere (with the maximum at 40° N), 
especially over North America (with maximum at 90° W), 
Europe (maximum between 0° and 10° E) and East Asia 
(maximum over 115° E). Almost 75% of aircrafts’ fuel 
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burn takes place in the UTLS, at the height of 7 km (Wilk-
erson et al. 2010; Olsen et al. 2013a, b).

The complex interactions of gaseous species, direct and 
indirect effects of aerosols, as well as aviation contrails on 
the atmospheric chemistry and microphysics, make it dif-
ficult to estimate the potential impact of aviation emissions 
on climate (Penner 1999 (IPCC); IPCC AR5 2014). Lee 
et al. (2009, 2010) estimated that for the year 2005, avia-
tion was responsible for about 3.5% of the total anthropo-
genic radiative forcing, including aviation inducted cloudi-
ness. This contribution increases up to 4.9% with a range 
of 2% to 14% for a 90% likelihood range. Many studies 
show how sensitive modelling results are to aviation emis-
sions and their changes in the UTLS region. For exam-
ple, lowering flight altitude would lead to changes in the 
radiative forcing near the tropopause due to the increase 
in the upper troposphere’s ozone mixing ratio. Increasing 
the fight altitude would lead to the injection of aviation 
emissions directly into the stratosphere that may have a 
significant influence on radiative processes (Frömming 
et al. 2012; Jacobson et al. 2012; Skowron et al. 2015; 
Søvde et al. 2014).

Most studies focusing on the impact of aviation emis-
sions on climate calculate the global or regional climate 
change indicator like the mean temperature, radiative forc-
ing or GWP100. However, available studies do not show the 
exact influence of aviation emissions on global circulation. 
In the presented study, we decided to examine the sensitiv-
ity of the jet stream propagation to aviation emissions, as an 
indicator of changes in global circulation. We can assume 
that due to changes in temperature over the Arctic (Yang 
et al. 2019; IPCC AR5, 2014; Jacobson et al. 2012) or in the 
low latitude upper troposphere (Grewe et al. 2002; Lee et al. 
2010; Lund et al. 2017) there may be a noticeable change 
in the jet stream propagation that can strongly affect some 
regions, especially over the mid- and high latitudes (Barnes 
and Simpson 2017; Cohen et al. 2014; Linz et al. 2018; Xue 
et al. 2017). Studies suggest the general poleward shift of the 
eddy-driven jet stream (EDJ) as well as the subtropical jet 
stream (STJ), but those trends vary, depending on seasons or 
regions (Melamed-Turkosh et al. 2018; Rikus 2018; Strong 
and Davis 2007; Zolotov et al. 2018).

The tendency of the jet stream to poleward or equator-
ward shifts is mostly driven by the upper troposphere tropi-
cal warming (Sun et al. 2013; Simpson et al. 2012) and Arc-
tic warming (Barnes and Simpson 2017), respectively. The 
Arctic warming will slow down the poleward jet stream shift 
due to GHG impact on low latitudes (Barnes and Polvani, 
2013; Barners and Screen, 2015; Haigh et al. 2005; Linz 
et al. 2018). On the regional scale, the changes in the jet 
stream propagation may be influenced by sea surface tem-
perature, ice cover, ENSO, stratospheric polar vortex, radia-
tive forcing, QBO or volcanic eruptions (Hall et al. 2015).

Method

The objective of the presented study was to examine 
changes in jet stream propagation due to aviation emis-
sions. We designed two current climate modelling sce-
narios: base scenario A0 without aviation emissions and 
scenario A1 with aviation emissions. We used the Global 
Environment Multiscale model GEM-AC with interactive 
and coupled tropospheric and stratospheric chemistry (de 
Grandpré et al. 2000; Kaminski et al. 2008; Mamun et al. 
2013; Lupu et al. 2013). The model horizontal grid was 
defined as the global variable resolution from 3° × 3° to 
1.5° × 1.5° zoomed over the high latitudes of the Northern 
Hemisphere, starting from 55° N (Fig. 1) with 70 hybrid 
vertical levels up to 0.1 hPa and a 30 min time step and 
output set at every 6 h. The vertical resolution in the UTLS 
region was 500 m.

Both simulations were run in a climate mode setup for 
years 2001–2010. Both scenario runs were started with a 
“cold” model, allowing chemical species to balance in the 
atmosphere during the first 5 years of the simulation. Due 
to the model “cold” run, only results after 2005 could be 
analysed. Inventories of aviation emissions were available 
only for 2006, while for other years the aviation emissions 
were rescaled based on estimations provided by the Inter-
national Civil Aviation Organisation (ICAO). In this paper, 
only results for the year 2006 are presented.

Climatological information is based on monthly mean ice 
cover and sea surface temperature, obtained from the geo-
physical fluid dynamics laboratory (GFDL) model. Histori-
cal anthropogenic emissions (excluded aviation) were taken 
from ACCMIP (Lamarque et al. 2012). Aviation emissions 
used in scenario A1 were from AEDT 2006 database pro-
vided as hourly 3D fields of the total fuel burn and CO, HC, 
 NOx,  PMNV,  PMSO,  PMFO,  CO2,  H2O,  SOx with horizontal 
of 1° × 1° and 500 ft in vertical (Kim et al. 2007; Wilkerson 
et al. 2010). The initial conditions for GEM-AC were gener-
ated using CMAM (de Grandpre et al. 2000, 2009).

For this study, the jet stream was defined as a narrow, 
horizontal air current with a wind speed greater than 
25 m/s, located between 400 and 100 hPa. The definition is 
based on WMO’s jet stream description (1958), and simple 
jet stream detection method proposed by Pena-Ortic et al. 
(2013) was used.

Results

Results for 2006 simulations with (scenario A1) and 
without (scenario A0) aviation emissions were analysed 
using the annual, seasonal (winter (DJF), spring (MAM), 
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summer (JJA), autumn (SON)) and monthly time interval 
averaging of the meridional and zonal wind velocities. 
For each period, we created three different visualizations: 

average by longitudes, separately for Western and East-
ern half of the Northern Hemisphere (shown in Fig. 2), 
average by latitudes in three bands: low (0–30), middle 

Fig. 1  Visualisation of the GEM-AC model grid with global variable horizontal resolution 3.0° × 3.0° and 1.5° × 1.5° regional nested over the 
Northern Hemisphere. European (left) and the North American (right) vantage point of view
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Fig. 2  Left: The difference between annual mean temperature 
between scenarios A1 and A0, averaged over longitudes, separately 
for Western (W) and Eastern half of the Northern Hemisphere. Right: 

The difference between annual mean temperature scenarios A1 and 
A0, averaged over latitudes for low (0–30  N), mid (30–60  N) and 
high (60–90 N) latitudes bands
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(30–60) and high (60–90) latitudes (shown in Fig. 2) and 
standard zonal average for the whole globe. The jet streams 
propagation was compared using monthly averaged wind 
velocity at several isobaric levels. Results for 250 hPa 
level are shown as both the subtropical and eddy-driven 
jet streams. Also, we analysed changes in the temperature 
using analogical methods for the wind velocity to focus on 
changes of temperature, especially between high latitudes 
and low latitudes. We focused on changes in temperature 
near the ground over the polar regions, polar UTLS and 
the tropical upper troposphere transition layer (TTL).

Changes in the temperature

Analysing the differences between A1 and A0 scenarios’ 
annual mean temperatures, we noticed that the largest 
changes occurred in the upper troposphere lower strato-
sphere region over the high latitudes, where scenario A1 
shows a temperature that was 2 K higher (Fig. 2). On sea-
sonal and monthly time scales, changes between scenarios 
were much larger. In the winter season, the influence of avia-
tion emissions on temperature was the strongest over the 
lower troposphere of high latitudes, especially over the Arc-
tic and Scandinavia, where the seasonal mean temperature 
in scenario A1 was 4 K higher than in scenario A0 (shown 
in Fig. 3), and the monthly differences vary from 3 K up 
to 8 K. Also, we noticed regions with significant negative 

temperature changes in the high latitudes, but with strong 
regional variation from month to month where changes 
reached  − 5 K.

During the winter season, the aviation emissions lead 
to a small temperature decrease in the low latitudes’ upper 
troposphere indicate (up to − 2 K). The changes in the mid-
latitudes’ troposphere vary, depending on region, from − 2 K 
(mainly over the Eastern NH) up to 2 K (mostly over the 
Western NH), as can be seen on Fig. 3. In the mid-latitude 
UTLS region, the aviation emissions mainly cause small (up 
to − 2 K) temperature increase. The changes due to aviation 
emissions in the high latitudes’ lower troposphere indicate 
a − 5 K decrease over the region between mid- and high 
latitudes but up to 5 K increase over the Arctic region. In 
the UTLS, we were able to observe up to 5 K temperature 
increase.

The analysis of the monthly regional changes shows 
pronounced temperature differences between scenarios, 
especially over the high latitudes. The largest differences 
between scenarios occurred over Russia, Europe, Baffin Bay, 
the Bering Sea and Central North America, with tempera-
ture variation from − 9 K up to 10 K, from  − 6 K to 0 K, 
from − 9 K to 5 K, from − 10 K to 5 K and from − 7 K up 
to 3 K, respectively. Only over the central and eastern part 
of the USA, there was a constant increase in temperature in 
scenario A1, with the differences between scenarios of less 
than 4 K. In the UTLS region, we noticed a small decrease 
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Fig. 3  Left: The difference between the seasonal mean temperature 
between scenario A1 and A0, averaged over longitudes, separately 
for Western (W) and Eastern half of the Northern Hemisphere for the 
winter season. Right: The difference between the seasonal mean tem-

perature between scenario A1 and A0, averaged over latitudes for low 
(0–30 N), mid (30–60 N) and high (60–90 N) latitudes bands for the 
winter season
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(− 3 K) over the Atlantic Ocean between 30° N and 45° N. 
A similar tendency occurred over the Pacific Ocean for the 
same latitude range, but with stronger variation along the 
longitudes. The increase in the UTLS temperature occurred 
mostly over the Western US, Canada, the Labrador Sea and 
Greenland, with the highest difference of up to 5 K. Also, a 
small temperature increase was noticed over the eastern part 
of Russia, where the differences between scenario A1 and 
A0 did not exceed 3 K. Over Europe, monthly differences 
varied from 3 K to − 4 K.

During the spring season, the analysis of changes between 
scenarios A1 and A0 also indicates a small (up to − 2 K) 
temperature decrease in the low latitudes upper troposphere 
due to aviation emissions. In the mid-latitudes, the influ-
ence of aviation emissions on the troposphere temperature 
leads to substantial regional variation, mostly related to the 
ocean–land presence (please see Fig. 4, right panel). Over 
the region with land domination (except Eastern Europe), we 
noticed up to 5 K temperature increase in the troposphere. 
In contrast, for the region with ocean domination—scenario 
A1 shows up to − 5 K lower mean meridional temperature. 
That may be connected with the stronger aviation emissions 
in the lower and mid-troposphere over the land, because 
of the presence of airports, while over the oceans aviation 
emissions take place at cruising altitudes because of the 
small number of airports at isolated archipelagos. In the 
mid-latitudes UTLS region, the temperature changes due to 

aviation emissions were opposite to the trend we noticed in 
the troposphere and varies from − 2 K over the lands up to 
2 K over the oceans. The mean zonal temperature difference 
for spring season shows the small west–east hemispheric 
contrast with the prevailing warming effects in the Eastern 
NH and cooling effect in the Western NH of the aviation 
emissions in the troposphere. Over the high latitudes, we 
noticed the same general trends in temperature changes as 
we did for winter months. The temperature increases (up to 
2 K) over the Arctic, but there is a small ( − 2 K) decrease 
around the Arctic between 60° N and 70° N. In the high lati-
tudes UTLS region, the aviation emissions scenario shows 
up to 5 K temperature increase (especially in the lower 
stratosphere).

For the summer, the decreasing trend in the low lati-
tude upper troposphere temperature due to aviation emis-
sions visible during the winter and spring seasons start to 
change, showing the regional upper troposphere temperature 
increase. The analysis of monthly zonal temperature means 
for low latitudes indicate month to month trend changing 
from temperature decrease to temperature increase in sce-
nario A1. In the mid-latitudes troposphere, the seasonal 
mean temperature difference between scenarios was rather 
small and oscillated between ± 1 K. The changes in the mid-
latitudes UTLS indicate a similar regional variation as in 
the troposphere, but with the opposite sign of changes (see 
Fig. 5, right middle panel). These regional changes follow 
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Fig. 4  Left: The difference between the seasonal mean of temperature 
between scenario A1 and A0, averaged over longitudes, separately 
for Western (W) and Eastern half of the Northern Hemisphere for the 
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the trend described for the spring season. In the high lati-
tudes, we noticed a decreasing trend in temperature due to 
aviation emissions. The exception occurred between 30° W 
and 120° W, over the northern part of Canada and Green-
land, where we noticed up to 5 K increase.

During the autumn season, the direction of changes in 
the low latitudes upper troposphere indicates a 2 K increase 
in temperature due to aviation emissions. The changes in 
the troposphere and UTLS mean temperature over the mid-
latitudes have a robust regional variability, similar to the 
trend described for spring and summer season with a small 
spatial shift. The overall mean seasonal changes indicate 
a small (1 K) tropospheric temperature increase over the 
Western NH and a small ( − 1 K) temperature decrease over 
the Eastern NH. Over the high latitudes, the changes in the 
lower troposphere indicate a − 2 K decrease over the Arctic 
with 1 K increase over Northern Canada and Scandinavia. 
The changes in the high latitude UTLS vary from − 2 K 
over the Siberia region up to 5 K over North Canada. The 
mean seasonal changes over the high latitudes UTLS during 
autumn indicate a 2 K increase in scenario A1 (Fig. 6).

The mean annual changes between scenarios presented in 
Fig. 2 show no noticeable changes between scenarios. How-
ever, the analysis shows significant monthly and regional dif-
ferences between scenarios A1 and A0. Although the most 
intense aviation emissions occur over the mid-latitudes, 

the most sensitive regions seem to be high and near high 
latitudes, where the changes vary in a range of ± 7 K. The 
changes in the temperature over the mid-latitudes show a 
less strong response to aviation emissions, yet the changes 
strongly depend on the emission area. When aviation emis-
sions were present in the whole troposphere, we observed 
the temperature increase in the low and middle troposphere 
but decrease in the UTLS region. On the one hand, when 
aviation emissions were limited only to cruise altitudes 
temperature in the UTLS increase while in the middle and 
low troposphere, we noticed a temperature decrease. The 
influence of aviation emissions on the tropical upper tropo-
sphere’s temperature was the weakest, yet we still noticed 
some small changes.

Changes in the jet stream propagation

The analysis of annual means shows almost no differences 
between scenarios A1 and A0 for the zonal wind velocity 
and only small shifts in the meridional jet stream velocity 
over the North America mid-latitudes (Fig. 7). However, 
differences between scenarios in seasonal and monthly 
mean values show noticeable changes in the jet stream 
propagation.

The strongest influence of aircraft emissions on jet 
stream was noticed during the winter season, where 
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for the autumn season. Right: The difference between the seasonal 

means of temperature between scenario A1 and A0, averaged over 
latitudes for low (0–30 N), mid (30–60 N) and high (60–90 N) lati-
tudes bands for the autumn season

 -20.0  -10.0   -3.0   0.0      3.0    10.0   20.0 

       1.0

       0.3

      10.0

       3.0

     100.0

      30.0

    1000.0

     300.0

Pr
es

su
re

 (h
Pa

)

 EQ 30N 60N NP 60N 30N EQ 
Latitude (degrees)

W & E hemisperic average for A1-A0_3x3_2006_YEAR

UU  (m/s)(c) 2017 Wx’
 -20.0  -10.0   -3.0   0.0      3.0    10.0   20.0 

   1

  10

 100

1000

Pr
es

su
re

 (h
Pa

)

180W 120W 60W 0 60E 120E 180E
Longitude (degrees)

Average latitude bands for A1-A0_3x3_2006_YEAR

UU (m/s)

 0 - 30N

   1

  10

 100

1000

30N - 60N

   1

  10

 100

1000

60N - 90N

(c) 2017 Wx’
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aviation caused an increase in zonal wind velocity in 
the UTLS region over the high and low latitudes and a 
decrease in mid-latitudes, indicating the separation of the 
STJ and EDJ. The poleward shift of the polar jet stream 
and equatorward shift of the STJ was observed mostly over 
the Western Hemisphere. The changes over the Eastern 
Hemisphere in the seasonal wind speed analysis are less 
visible. Analysis of the regional changes in the jet stream 
propagation shows that the largest differences between 
scenarios occurred over Northern America, the Atlantic 
Ocean, East Asia and the Pacific Ocean. In the scenario 
with aviation emissions, the jet stream has a tendency to 
split into two streams and propagate on both sides of the 
Rocky Mountains, travelling more often over Northern 
Canada and more often over the southern part of the USA. 
Those stronger tendencies to propagate along the Rocky 
Mountains can be seen in changes in the meridional wind 
velocity, shown in Fig. 8. Both the EDJ and STJ jets stay 
separated over the Atlantic Ocean. The tendency of the 
jet stream to split over North America results in poleward 
(EDJ) and equatorward (STJ) shifts we noticed in the sea-
sonal mean of the wind velocity in the UTLS region. Also, 
we noticed a tendency of jet stream superposition over 
Asia, which cause a decrease in EDJ occurrence over the 
Eastern Siberia and wind velocity increase over East Asia 

(China). The tendency for January is shown as an example 
in Fig. 9.

The analysis of differences in the jet core velocity 
between A1 and A0 scenarios shows small, not noticeable 
changes in the seasonal mean of the jet core velocity. How-
ever, the regional differences between scenarios can reach up 
to − 10 m/s. The largest difference occurred over the Pacific 
Ocean in January, when the monthly mean of the jet core 
velocity in scenario A1 was around 66 m/s while in scenario 
A0 it was 77 m/s. During the spring season, the changes 
between scenarios were less visible as compared to the win-
ter season. The direction of changes in the spring season did 
not follow the winter trend. The jet streams in the scenario 
with aviation emissions show a small equatorward shift with 
a stronger and more stable subtropical jet. The changes in the 
jet stream propagation vary between scenarios on a month 
to month time scale. Still, the mean seasonal trend shows 
that stronger changes occurred over the Western Northern 
Hemisphere (Fig. 10).

The regional changes in the jet streams propagation due 
to aviation emissions mostly affected the Pacific and Atlantic 
Oceans. Analysis of the monthly means of wind velocity 
field indicates that in scenario A1 the jet stream tends to split 
over the East Pacific, where EDJ propagate poleward toward 
Alaska and Canada, and STJ propagate equatorward toward 
Mexico. This tendency follows the trend from the winter 
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Fig. 8  Left: The difference between and seasonal means of zonal 
wind velocity between scenario A1 and A0, averaged over longitudes, 
separately for Western (W) and Eastern half of the Northern Hemi-
sphere for the winter season. Right: The difference between seasonal 

means of meridional wind velocity between scenario A1 and A0, 
averaged over latitudes for low (0–30  N), mid (30–60  N) and high 
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Fig. 9  Monthly mean wind velocity at 250 hPa in knots for scenario A1 (top panel) and scenario A0 middle panel). The bottom panel shows a 
difference between monthly mean wind velocity between scenarios A1 and A0 at 250 hPa in knots. 1 knot is equal to 0.514 m/s
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Fig. 10  Left: The difference between seasonal means of zonal wind 
velocity between scenario A1 and A0, averaged over longitudes, sep-
arately for Western (W) and Eastern half of the Northern Hemisphere 
for the spring season. Right: The difference between seasonal means 
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season. In scenario A0, this tendency is much weaker and 
appears at the end of the spring season. On the other hand, in 
the scenario without aviation emissions, we noticed a strong 
tendency to form the North Atlantic Subtropical High that 
split the jet flow into two streams. The blocking pattern of 
the Bermuda-Azores high is not visible in the results for the 
scenario A1.

The smallest changes in the jet stream propagation due to 
the aviation emissions were found during the summer season 
(Fig. 11). Analysis of the monthly zonal means of the wind 
velocity has shown the small variation in the zonal jet stream 
flow between scenarios. Small shifts in the jet stream propa-
gation, visible in monthly means of the zonal wind speed in 
the upper troposphere, show no particular trend in the jet 
stream modification between June and August for A1 and 
A0 scenarios. For the meridional wind velocity, we noticed 
meander-like structures in the jet stream propagation over 
the mid-latitudes. The monthly means show that in scenario 
A1 the jet stream tends to wobble more often over North 
America. In contrast, in scenario A0, the meanders are more 
frequent over Asia and the Pacific Ocean. The changes over 
North America were connected to the stronger trend of the 
jet stream split over the East Pacific Ocean that we noticed 
in scenario A1 from the winter season. The differences over 
Asia and the West Pacific Ocean were due to an increase in 
the tendency to jet stream split over Asia in the scenario with 
aviation emissions. This tendency results in more frequent 

EDJ occurrence over the high latitudes and equatorward shift 
of the STJ over the West Pacific Ocean during the summer 
season.

The analysis of the differences between wind fields for 
the autumn season indicates a poleward shift of the EDJ and 
STJ in the scenario with aviation emissions, as presented in 
Fig. 12. Both scenarios show the tendency to jet stream split 
over the East Pacific Ocean, but in the scenario A0, this ten-
dency is more noticeable. The differences in meridional flow 
indicate a significant change in the jet stream propagation, 
especially over Asia. The analysis of the wind velocity in the 
UTLS region shows that in both scenarios, the jet streams 
tend to wobble with similar intensity. There was no notice-
able tendency in changes in jet stream meandering between 
scenarios A1 and A0. The strongest influence of aviation 
emissions was observed over the Pacific Ocean, Atlantic 
Ocean and Europe. In the scenario with aviation emissions, 
the jet stream shows a poleward shift over the Pacific Ocean 
with a small difference in the mean jet core velocity. On 
the other hand, over the western part of the Atlantic Ocean, 
we noticed a significant decrease in jet stream strength and 
equatorward shift of the jet stream flow over Europe that 
leads to the increase in the zonal wind velocity over Central 
and South Europe.

In summary, there is a noticeable month to month and 
season to season variation in the jet streams propaga-
tion between scenarios A1 and A0. The most significant 
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Fig. 11  Left: The difference between seasonal means of zonal wind 
velocity between scenario A1 and A0, averaged over longitudes, sep-
arately for Western (W) and Eastern half of the Northern Hemisphere 
for the summer season. Right: The difference between seasonal 

means of meridional wind velocity between scenario A1 and A0, 
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difference occurred during the winter season and the small-
est in summer. There is no regular trend in the jet stream 
shifts between scenarios. During the colder time of the year, 
the EDJ tends to shift poleward while during the spring sea-
son we noticed an equatorward shift in scenario A1. The 
analysis of the jet core monthly mean velocity shows no 
difference between scenarios except for the winter season, 
when the jet streams in scenario A1 seems to be slower 
as compared to the results for the A0 scenario. Regional 
changes in the jet stream propagation due to aviation emis-
sions are mainly visible over the Pacific and Atlantic Oceans, 
where jet streams tend to be more stable, most likely due to 
the uniform surface. The most noticeable difference between 
scenarios is the stronger tendency of the jet stream split in 
scenario A1, especially over the East Pacific Ocean.

Summary and conclusions

Changes in the troposphere and the UTLS region tempera-
ture due to aviation emissions indicate around 2 K tempera-
ture decrease in the tropical upper troposphere region dur-
ing the winter season, while in the UTLS region over high 
latitudes we noticed up to 5 K temperature increase. The 
analysis of changes in the tropopause temperature, presented 
by Hu and Vallis (2019) for the years 1979–2017 shows that 
the standard deviation of the mean annual temperature at 

the tropopause is 1.5 K and 1.0 K, for the low and high lati-
tudes, respectively. We can assume that changes in the tropi-
cal tropopause exceed 1σ of the mean annual climatological 
tropopause temperature variation, and for the latitudes the 
changes due to aviation emissions exceed 2σ. It would indi-
cate significant changes in the UTLS temperature, especially 
over the high latitudes.

The general propagation of the jet stream in scenarios 
A1 and A0 was in agreement with the results presented by 
Christenson et al. (2017), Koch et al. (2006), Kuang et al. 
(2014) or Pena-Ortic et al. (2013). Also, there were regional 
differences, especially over North America and North Asia, 
where scenario A1 shows better agreement with jet stream 
climatological studies than was expected. The preliminary 
results of the presented one-year case study show that avia-
tion emissions lead to significant changes in jet stream prop-
agation. Analysis of changes in the jet streams propagation 
indicates that the aviation emissions lead to more polar and 
subtropical jet splits than in the scenario without aviation 
emissions, especially during winter. We noticed a poleward 
EDJ shift during the colder part of the year that may be 
caused by changes in the UTLS temperature described in 
the previous paragraph. During the winter, the warming of 
the high latitudes UTLS is stronger than the cooling in the 
tropical upper troposphere that leads to the poleward shift 
of the jet streams over the Northern Hemisphere in scenario 
A1 during the winter season. The poleward shift of the jet 
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Fig. 12  Left: The difference between seasonal means of zonal wind 
velocity between scenario A1 and A0, averaged over longitudes, sep-
arately for Western (W) and Eastern half of the Northern Hemisphere 
for the autumn season. Right: The difference between seasonal means 

of meridional wind velocity between scenario A1 and A0, averaged 
over latitudes for low (0–30 N), mid (30–60 N) and high (60–90 N) 
latitudes bands for the autumn season
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streams in the autumn season was mostly connected with 
warming over the high latitudes rather than changes in the 
TTL. There were no significant changes in the jet stream 
velocity except in winter, when the mean seasonal jet core 
velocity in scenario A1 was about 10 m/s slower than in sce-
nario A0. There was no strong constant tendency of the jet 
stream more frequent wobble flow, yet there were significant 
regional differences in the jet streams propagation. The most 
noticeable changes were observed over the Eastern Pacific, 
Eastern Atlantic and North-East Asia. Over the Northern 
Pacific, we observed a significant difference in jet streams 
split what leads to changes in the North Pacific High (NHP) 
development. In scenario A1, the persistent high pressure 
system was much stronger in the spring season and weaker 
in autumn than in scenario A0. These changes may have 
a significant influence on drought season, especially over 
California. Another important change in mid-latitudes was 
the impact of aviation emissions on Bermuda-Azores High 
during the spring season, which was caused by changes in 
the jet stream propagation over the North and Subtropical 
Atlantic. Over Asia (Siberia), we observed stronger and 
more poleward EDJ in scenario A0.

Modelling results have shown that aviation emissions 
alone may have a significant influence on the jet stream 
propagation that leads to the conclusion that aviation emis-
sions may have a significant influence on the climate. At 
this point, it is essential to highlight that the presented study 
covered the early research results, based only on one year of 
the simulation, focusing on the question “if aviation emis-
sions may influence the jet stream propagation”. The future 
results will be focused on climatological aspects of changes 
in the jet stream due to increasing aviation traffic.
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Abstract
This paper investigates the relationship between selected percentiles, return periods and the concepts of rare and extreme 
events in climate and hydrological series, considering both regular and irregular datasets, and discusses the IPCC and WMO 
indications. IPCC (Annex II: Glossary. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change. IPCC, Geneva, 2014) establishes that an extreme event should be rare and 
exceed selected upper and lower thresholds (10th and 90th percentiles); WMO (Guidelines on the definition and monitoring 
of extreme weather and climate events—TT-DEWCE WMO 4/14/2016. World Meteorological Organization, Geneva, 2016) 
suggests thresholds near the ends of the range, but leaves them undetermined. The concept of “rare” relates the extreme 
events to the time domain and is typically expressed in terms of return period (RP). The key is to find the combination 
between “rare”, percentile and return period. In particular, two crucial items are analysed: (1) how the return period may 
vary in response to the choice of the threshold, in particular when it is expressed in terms of percentiles; (2) how the choice 
of producing a regular or irregular dataset may affect the yearly frequency and the related return periods. Some weather 
variables (e.g. temperature) are regular and recorded at fixed time intervals, while other phenomena (e.g. tornadoes) occur 
at times. Precipitation may be considered either regular, all-days being characterized by a precipitation amount from 0 (no 
precipitation) to the top of the range, or irregular (rainy-days only) considering a precipitation day over a selected instru-
mental or percentile threshold. These two modes of interpreting precipitation include a different number of events per year 
(365 or less) and generate different return periods. Every climatic information may be affected by this definition. The 90th 
percentile applied to observations with daily frequency produces 10-day return period and the percentiles necessary to get 
1 year, 10 years or other return periods are calculated. The general case of events with selected or variable frequencies, and 
selected percentiles, is also considered with an example of a precipitation series, two-century long.

Keywords Extreme events · Return period · Temperature records · Precipitation records · Time series · Percentiles

Introduction

“Extreme event” is a term nowadays commonly understood 
and used for a number of different weather phenomena, i.e. 
heavy precipitation, droughts, earthquakes, tsunamis, epi-
demics and so forth. Anyhow, its definition is not obvious, 
or unique, as it is strongly related to the field of application. 

In some disciplines, the definition is based only on the mag-
nitude of occurrence of the event, in others, it includes the 
assessment of its impact on human and natural systems (Bro-
ska et al. 2020).

According to WMO (2016), “An extreme can be identified 
when a single climate variable (e.g. precipitation or wind) 
exceeds its specific threshold, which can be varying percen-
tile-based values, fixed absolute values and return period”. 
The definition of extreme events is extremely important, not 
only for purely academic interest, but also in Earth sciences 
and in everyday life. It is fundamental not only for research 
on weather and climate variability (Kharin et al. 2018), but 
also to assess their adverse effect on landscape and society. 
For instance, the insurance coverage, the failure of a public 
service (e.g. transport) or the damage for the collapse of a 
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structure are reimbursed in a different way (or not at all) if 
they have been due to a normal or to an exceptional weather 
situation. In the real world, a number of different approaches 
have been considered.

In case of stationary systems, it is possible to establish 
reference levels in absolute terms, i.e. fixed thresholds. In 
the peak over threshold (POT) theory, all “data exceeding a 
selected threshold level”, e.g. 30 °C, are considered extreme 
(Goda 1988, 1992; Allen et al. 2013). This is an intensity-
oriented definition, with an absolute threshold.

In the extreme value theory (EVT), extreme events are 
those “contained in the tail distribution” of a given variable. 
EVT is tailored on the probability distribution (Galton 1879; 
Pearson 1895; Fréchet 1927; Gumbel 1941, 1958; Weibull 
1951; Tiago de Oliveira 1986; Coles 2001; Katz 2010) of the 
selected variable and requires an absolute level established 
as a threshold. The Fréchet distribution is characterized by a 
heavy-tail with polynomial decay; Gumbel distribution by a 
double-exponential decay and Weibull distribution by a flex-
ible domain with two parameters. These three approaches 
can be combined to obtain the generalized extreme value 
distribution (GEV) (Coles 2001; Neves and Fraga-Alves 
2008; Salvadori and De Michele 2013). In EVT, or GEV, 
the reference definition is: “An extreme (weather or climate) 
event is generally defined as the occurrence of a value of a 
weather or climate variable above (or below) a threshold 
value near the upper (or lower) ends (‘tails’) of the range of 
observed values of the variable” (WMO 2016).

When climate changes from the condition A to B, also the 
statistical distribution of the variable changes, and an abso-
lute threshold that was convenient in A will not be longer 
representative in B. Therefore, the threshold in absolute 
levels should be updated in terms of moving thresholds, i.e. 
relative thresholds. A solution is to link the threshold to the 
distribution, and express it in relative terms, e.g. making 
reference to a selected percentile level. “An extreme weather 
event is an event that is rare within its statistical reference 
distribution at a particular place. Definitions of “rare” vary, 
but an extreme weather event would normally be as rare as 
or rarer than the 10th or 90th percentile” (IPCC 2014). This 
relative threshold will remain unaffected by climate change, 
even if its absolute value will change.

Percentiles have been popularly adopted for their flexibil-
ity and multiple choice that is easily referred to a Gaussian 
distribution and the standard deviation (SD). For instance, 
the 50th percentile is the median; the 6.7th and 93.3th cor-
respond to ± 1.5 SD; the 2.3th and 97.7th to ± 2 SD; the 
0.13th and 99.87th to ± 3 SD. Alternatively, rounded val-
ues of percentiles may be preferred, e.g. 10th and 90th that 
correspond to ± 1.282 SD; 1st and 99th to ± 2.326 SD. The 
choice of the percentile level is apparently arbitrary; it is 
clear that the lower or the higher the percentile, the most 
rare and extreme the event. Several examples are found in 

the literature. Osborn et al. (2000) ranked all daily rainfall 
data, cumulated them and then identified the highest daily 
amounts that together contribute 10% of the total precipita-
tion, that corresponds to the 90th percentile of the distribu-
tion. Miao et al. (2015) used the 95th and the 99th percen-
tiles, as well as absolute threshold indexes (i.e. annual count 
of days, or the total amount, when precipitation exceeded 
certain selected thresholds) and Max indices (for some 
selected annual number of consecutive precipitation) to 
study extreme precipitation and flood risk in China, with 
its diverse conditions of geography and topography and its 
susceptibility to monsoons. The 95th and 99th percentile 
indices of extreme daily precipitation provided very simi-
lar maps over China, but with some differences from the 
other absolute indexes that were respondent to some specific 
conditions and different absolute thresholds. Domínguez-
Castro et al. (2015) analysed historical extreme precipitation 
1855–1856 in Iberia and to this aim they considered vari-
ous percentile levels (i.e. 10th, 30th, 70th, 90th and 98th) at 
every Iberian station. The highest percentile levels shown 
some marked specific features in comparison with the lower 
ones pointing out some specific periods or areas character-
ized by abnormal, intense precipitation. Boethe et al. (2018) 
used selected percentiles to recognize changes in the pre-
cipitation distribution in England since 1650 CE. They con-
sidered that the 6.7th and 93.3th percentiles (linked to ± 1.5 
SD) are frequently used to represent the regions of severe 
dryness and wetness, respectively, and decided to compare 
the evolution of these two percentiles over time, and in addi-
tion they considered the 50th percentile as a representative 
of the average features. A comprehensive review concerning 
percentiles to assess changes in heavy precipitation can be 
found in Schär et al. (2016).

The growing interest in trends of extreme weather phe-
nomena is related to their potential for adverse impacts on 
human life, civil infrastructure and natural ecosystems with 
socioeconomic consequences (Katz 2010). It is not a case 
that in some disciplines “extreme events” are also called 
“natural disasters”, e.g. “Major impacts of climate change 
on human health are likely to occur via changes in the 
magnitude and frequency of extreme events which trigger 
a natural disaster or emergency” (IPCC 2014). The atten-
tion to “extremes” is also fostered by concerns that extreme 
weather and climate events are increasing significantly in 
frequency and magnitude as a result of global warming 
while at the same time the natural and human systems are 
becoming more vulnerable to extremes (Kharin et al. 2018). 
Although the pathways connecting extreme events to health 
outcomes and economic losses can be diverse and complex 
(Stanke et al. 2013), extreme weather and climate-related 
events affect human health by causing death, physical and 
mental illness; in addition, they have large socioeconomic 
impacts (Bell et al 2018). Taking advantage of daily rainfall 
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measurements in Venezuela, Coles and Pericchi (2003) 
applied extreme value models to foresee the most critical 
areas, to be prepared to reduce the impact of disasters with 
timely interventions and mitigation measures.

Another criterion is based on return period (WMO 2016), 
also called recurrence interval (AMS 2020). This implies 
the concept of “exceptional” or “rare” that relates the events 
to the time domain and is typically expressed in terms of 
return period (RP) (Elsner and Kara 1999). However, the 
identification of the concepts of exceptional, extreme and 
rare should be considered cautiously because they are not 
always equivalent. For instance, an event may be considered 
extreme for its impact, but it may not be rare, or vice versa 
(Yu et al. 2013).

A RP is defined as “a statistical parameter used in fre-
quency analysis as a measure of the average time interval 
between the occurrence of a given quantity and that of an 
equal or greater quantity” (Huske 1959) and is expressed as 
the average time until the next occurrence of a defined event 
(AMS 2020). The National Academies of Sciences, Engi-
neering and Medicine gives a more detailed definition “a RP 
is a commonly used metric of probability. If the climate were 
not changing, RP can also be interpreted as the average time 
between events, but it should not be interpreted as the time 
that will pass before an event occurs again” (NASEM 2016). 
The RP may be interpreted in terms of expectation, and the 
concept of rarity and RP is particularly useful for insur-
ances, civil engineering and public works, public agencies 
or rescue teams. Estimating RP implies computing the time 
intervals between successive events with intensity exceed-
ing a selected threshold (Lestang et  al. 2018). Another 
definition in expectation terms is “in a fixed T-year period, 
the expected number of exceedances of the T-year event 
is exactly 1, if the distribution does not change over that 
period; thus, on average, one event greater than the T-year 
level occurs in a T-year period” (Stedinger et al 1993). In 
case of events with successive occurrences independent 
from one another, the average number of events occurring 
in a selected time interval is expected to be proportional to 
the length of that interval and follows a Poisson distribution. 
When it is necessary to know long RP and related intensi-
ties for very rare but catastrophic events, e.g. floods, heavy 
rainfall, the RP can be estimated using the Poisson distribu-
tion of occurrence in samples smaller than the selected RP 
(Yevjevich and Hatrmancioglu 1987). However, it should 
be considered that the concepts of return periods and return 
levels are strictly connected to a stationary climate (Katz 
2010; Cooley 2013; Salvadori and De Michele 2013) and 
should be revised in the context of climate change (NASEM 
2016; Pendergrass 2018).

In a recent paper (Camuffo et al. 2020a), the most popu-
lar definitions of climate and hydrological extremes have 
been considered and tested on some real case studies. The 

relationships between different thresholds, based on stand-
ard deviation, percentile, frequency of events exceeding the 
threshold and return periods were calculated and compared 
with long temperature and precipitation series. It was found 
that the 90th percentile threshold suggested by IPCC (2014) 
gives very short return periods, i.e. 10 days, when applied to 
long daily temperature or precipitation series, irrespectively 
of the distribution type and length of the series. Such a short 
RP was in contrast with the concept of “rare” contained in 
IPCC (2014) and WMO (2016). Several other examples 
were presented, but that paper did not include an exhaus-
tive mathematical explanation of how the arbitrary choice 
of thresholds may affect the returning periods.

This work investigates the relationship between RPs and 
selected percentiles in climate series as suggested by IPCC 
(2014). In particular, the relationships between percentiles, 
return periods, rare events, regular or irregular time series, 
and length of the dataset are presented. Finally, a theoretical 
explanation of the findings is provided.

Difference between regular and irregular 
time series

The data frequency is connected with percentiles and return 
periods, but may depend on the definition, that may consider 
regular or irregular time series, defined as follows: a regular 
time series stores data for regularly spaced (uniform inter-
val) time points, while an irregular time series stores data 
for arbitrary time points (nonuniform intervals) (Maidment 
2002). The latter should not be confused with series includ-
ing irregularities, e.g. missing observations, observations 
collected not regularly over time, or outlying observations 
(Wright 1986). Some atmospheric variables (e.g. tempera-
ture, pressure) are typically regular, flow with continuity and 
are recorded at fixed time intervals. Other variables have 
irregular occurrence; some of them are frequent (e.g. precip-
itation), other are rare (e.g. hailfall, heat waves) or very rare 
(e.g. floods, tornadoes, volcanic eruptions, earthquakes). For 
their exceptionality, the wide time window and the irregular 
interval of years from one event and the subsequent one, the 
very rare events are generally treated as irregular time series.

The weather phenomena, that occur irregularly, at 
intervals of days, may be considered in either way. An 
automatic weather station provides a regular record of all 
weather variables and their intensities. Concerning pre-
cipitation, the observer (or who analyses the data) may 
decide whether to produce a regular time series composed 
of all the daily values, which are representative of the 
observed amount (either zero or different from zero), or to 
produce an irregular time series composed only of the days 
in which precipitation had occurred. Basically, one may 
consider that every time series can be born regular, but 



1204 Acta Geophysica (2020) 68:1201–1211

1 3

the large number of zeros requires too much memory for 
storage, and too heavy computation time. The advantage of 
removing zeros is to reduce the size of the dataset and the 
calculation power. This is especially relevant in long time 
series. However, this action transforms a regular series 
into an irregular one. In other application fields, e.g. com-
putational finance, where market data are typically related 
to irregular time intervals, it is possible to apply methods 
(e.g. fast Fourier transform) to resample an irregular time 
series and transform it into a regular one, although this 
practice has significant limitations (Song et al. 2014).

Concerning climate or hydrological datasets, the choice 
regular or irregular series is reversible, because a regular 
precipitation series may be transformed into an irregular 
one removing from the dataset all days with zero precipi-
tation; vice versa, an irregular series may be transformed 
into a regular one, considering all the days of the observ-
ing period and attributing amount 0 mm to the days with-
out precipitation. Precipitation is a particularly important 
variable in climate or hydrological studies and may be 
interpreted either way, but with different consequences as 
discussed in the next sections.

Regular time series

Frequency of a regular time series

The most typical example of a regular time series is a 
yearly series composed of 365 daily values and the yearly 
frequency YF is YF = 365 year−1. This value will be useful 
in the next formulae, and will be compared with sub- and 
super-daily frequencies.

Precipitation may be interpreted as a daily or sub-daily 
variable (Schär et al. 2016), and the series is composed of 
values that may be greater than zero (rainy days) or zero 
(no precipitation). Like other regular weather phenomena, 
all the days of the year, rainy or dry, are represented and 
contribute to percentiles. The values of zero precipitation 
are called nil-values (Raes 2013) and do not contribute 
to the calculation of the monthly or yearly precipitation 
(either frequency or amounts), but may be used for statis-
tical calculations in climatology or hydrology concerning 
dry days and aridity periods. Under this point of view, a 
yearly precipitation record is composed of 365 daily values 
and YF = 365 year−1, and constitutes a regular series. This 
approach was used by Moberg et al. (2006), O’Gorman 
(2014), Ban et al. (2015) and Camuffo et al. (2020a). In the 
following, other approaches will be presented, which lead 
to other values of YF. The choice of the approach will be 
influential on the results, as discussed later.

To make an easier presentation, this and the next sections 
will proceed by steps, from the simplest case to the most 
general one.

The 90th percentile of regular time series of daily 
values

According to the IPCC (2014) definition, in a series of regu-
lar daily variables, in the first year or over the whole period 
composed of n years, 90% of the events are “normal” and 
the complement, i.e. 10%, “extreme”. Therefore, the total 
number Ntot,1 of extreme values is

The RP of these extreme events is

When 2, 3, …, n years are considered, the total time 
period Ttot and the total number of extreme events Ntot,n will 
increase accordingly, i.e., Ttot = n × 365 days and Ntot,n = n × 
Ntot,1, respectively. As a consequence:

The first result is that the RP of extreme events is inde-
pendent of the length of the observed period. The second is 
that the events exceeding the 90th percentile are character-
ized by RP = 10 days. RP is irrespective of the observed 
record and cannot be used to characterize climate conditions.

Substituting in Eq. (2) the value of Ntot,1 given by Eq. (1), 
Eq. (3) can be rewritten as:

that establishes a direct link between the return period and 
the yearly frequency of events, i.e. RP is inversely propor-
tional to YF or, which is the same, the variables RP and Nyear 
are related to each other by a hyperbolic function:

Consequently, in a plot of Eqs. (4) and (5) (Fig. 1a), the 
abscissa may be exchanged with the ordinate.

Long daily temperature series constitute a typical exam-
ple of the case discussed in this section. Equation (4) gives 
RP = 10 days and the same result was empirically obtained in 
Camuffo et al. (2020a) by counting the number of events that 
exceeded the 90th percentile in a long series of daily tem-
peratures, i.e. Bologna from 1715 to 2016 (Camuffo et al. 
2017). The same result was obtained with the long series of 

(1)Ntot,1 =
100 − 90

100
Nyear = 0.1Nyear.

(2)RP =
365

Ntot,1

(day).

(3)RP =
n 365

Ntot,n

=
365

Ntot,1

= 10 (day).

(4)RP =
3650

Nyear

=
3650

YF
= 10 (day),

(5)RP × Nyear = RP × YF = 3650 (day).



1205Acta Geophysica (2020) 68:1201–1211 

1 3

daily (regular type) precipitation, i.e. Bologna from 1813 to 
2016 (Brunetti et al. 2001; Camuffo et al. 2019).

For every selected year, values exceeding the 90th percen-
tile obtained with the above definition of RP (Huske 1959) 
are trivial and do not constitute climate information. Every 
year will have ten extreme hot days in summer (as well as 
10 extreme cold days in winter). However, the situation is 
different if the selected percentile is calculated over a certain 
number of years. A time series composed of n years will 
have 10 × n extreme hot days (as well as 10 × n extreme cold 
days), but these will likely differ from the highest 10 of each 
year (as well from the 10 lowest of each year). Therefore, 
the set of days exceeding the selected percentile constitutes 
a new series of irregularly distributed events (Lestang et al., 
2018). These “extreme” days may be evenly distributed 
over the whole period (every year with 10 hot days = sta-
tionary climate) or may be concentrated in some warmer 
years or warmer periods; the years (or periods) with less 
of these extreme days being considered colder. The climate 
information is how the extremes are distributed over time 
(e.g. trends) and space (e.g. characterization of regional cli-
mate). As an example, Przybylak et al. (2007) considered for 
Poland the trends of some climate variables, including the 

yearly frequency of days in which the maximum temperature 
exceeded the 90th and 99th percentiles calculated over the 
1950–2005 period. The result was that the frequency of the 
hot days exceeding the 90th percentile level increased with 
slope 0.36 hot days/year, and at the 99th level with 0.09 hot 
days/year. The indication was global warming, with larger 
increase of days exceeding the first threshold, and lower 
exceeding the second threshold. This example shows two 
(obvious) conclusions. The result depends on (1) the choice 
of the thresholds; (2) the peculiarity of the dataset. The anal-
ysis has extracted the information included in the dataset: the 
trend was evident as the dataset was long enough to include 
the recent climate change. In fact, if the period had been 
30 years, from 1990 to 2020, a more stationary situation 
would have appeared. If the analysis had been made consid-
ering different, indirect parameters, e.g. crop production or 
socioeconomic impacts, probably the result could have been 
different, because for their complexity, not all variables, and 
not all extremes can be approached with the same statistical 
analysis (Coles 2001; Neves and Fraga-Alves 2008).

The 90th percentile of sub‑ and super‑daily 
frequency of regular time series

The general case with a number of values smaller or greater 
than 1 per day is similar to the previous section. The formu-
lae are the same, but the number of events per year should 
be changed according to their frequency, e.g.

2 values per day, Nyear = YF = 2 × 365, hence RP = 5 days;
1 value every 2  days, Nyear = YF = 365/2, hence 

RP = 20 days;
100 values per year, Nyear = YF = 100, hence 

RP = 36.5 days.
Plots of matched values of YF and RP are reported in 

Fig. 1a, b.

Percentiles in a regular time series of daily values

In case of daily observations, i.e. Nyear = 365 year−1, and 
percentiles higher than a selected value, Eq. (1) becomes

where SP is the selected percentile, e.g. SP = 95 for the 95th 
percentile. To this aim, the selected normalized percentile 
threshold PT may be defined as

The key Eq. (5) assumes the general form:

(6)Ntot,1 =
100 − SP

100
Nyear = PT × Nyear,

(7)PT =
100 − SP

100
.

Fig. 1  How the 90th percentile matches the return period with the 
number of daily events per year. a Log-linear plot; b log–log plot. 
Calculation made for regular time series with daily values
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Equation (2) can be rewritten

With this equation, it is possible to calculate specific values 
of SP (Fig. 2a, b) to get particular return periods.

For instance, RP = 1 year is obtained when the denominator 
of Eq. (9) is 100 − SP = 100/365 and this particular percentile 
 SP1yr is

To get RP > 1 year, it is necessary to consider higher 
percentiles.

Similarly, for events with RP = 10 year, the needed percen-
tile  SP10yr is

(8)RP × Nyear =
3650

100 − SP
=

365

PT
.

(9)RP =
365 × 100

Nyear(100 − SP)
=

100

100 − SP
=

1

PT
(day).

(10)SP1yr = 99.7260274 (percentile).

(11)SP10 yr = 99.9726028 (percentile).

Irregular time series

Frequency of irregular time series

In irregular time series, the data sequence is not regular 
and every year is composed by a variable number of val-
ues, from a few to several ones. Precipitation may be inter-
preted as an event-oriented variable, i.e. only rainy days 
contribute to percentiles, while days without precipitation 
are excluded from the series. Precipitation is considered 
only when the rain gauge gives an output different from 
zero, i.e. the precipitated water exceeds the instrumental 
threshold, e.g., 0.1 mm (Sneyers 1990; Rajczak et al. 2013; 
Kendon et al. 2014). Another similar criterion is based on 
a percentile threshold (Zhang et al. 2011; Sillmann et al. 
2013; Giorgi et al. 2014).

The series used as examples will be characterized by a 
number Nyear of events per year and Ntot,1 will be the total 
number of “extreme values” over a selected period, i.e. 
the values above a selected threshold. For every individual 
year i, their frequency  YFi is  YFi < 365 year−1, with  YFi 
being different year by year. In the case of a long series 
composed of n years, one should consider the average 
yearly frequency YF over the whole series, i.e.,

The instrumental or percentile threshold is a crucial 
issue, because in early series, it is often unknown and 
cuts off the lowest amounts up to a certain unknown limit. 
As the probability density function of daily precipitation 
amounts follows a Gamma, Weibull or double-exponen-
tial function or other functions (Wilks 2011, Schär et al. 
2016), in a precipitation series, the lowest amounts are 
the most frequent ones. The combination of records taken 
with different instruments (i.e. with different thresholds) 
may constitute a serious bias (Camuffo et al. 2019, 2020b). 
The uncontrolled cut-off of the lowest amount is especially 
relevant for frequency, less for the total amount. If the 
interest is focused on the most intense precipitation, it is 
recommended to cut-off the low precipitation readings that 
are the ones more affected by the instrumental threshold.

The 90th percentile of irregular time series

In irregular time series composed of event-oriented vari-
ables, the dataset may be one or several years long. The 
treatment for frequencies lower than 365 per year is similar 
to the case of the regular daily frequencies, and is based 
on the equation:

(12)YF =
∑

i

YF
i

n
.

Fig. 2  Return periods for selected percentile thresholds from 90 to 
100th percentile. a RP in day for SP in the 90-100th percentile range. 
b RP in years for SP in the 99.5-100th percentile range. Calculation 
made for regular time series with daily values
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where YF is now variable and related to climate. It repre-
sents the average yearly frequency when more than 1 year 
is considered. From this formula, it is evident that the lower 
YF, the longer RP, and both variables are equally useful to 
point out climate changes or particular climate periods.

An example of only rainy-day precipitation type with 
threshold 1 mm is given in Fig. 3a, b, where the series of 
daily precipitation in Bologna, Italy, from 1813 to 2016, has 
been used (Brunetti et al. 2001). The plot provides informa-
tion about the climate variability, e.g. periods in which the 
increased precipitation frequency is associated with shorter 
return periods and vice versa. Apparently, the lowest RP, 

(13)RP =
3650

YF
(day),

or the highest YF, were in the periods 1880–1900 and then 
1960–1980, while the highest RP, or the lowest YF, in 
1820–1840 and 1900–1940.

However, as for every long series, the plot may be affected 
by instrumental bias when an instrument has been changed, 
because every instrument is characterized by a threshold 
that cuts off the lighter precipitation and the probability den-
sity function of precipitation reaches the highest values at 
the lowest amounts. The resulting precipitation distribution 
is not affected at intermediate to high percentiles, but may 
be significantly affected at low percentiles and in terms of 
rainy-day frequency. This is a serious problem in the long 
series, because the cut-off value of early instruments is gen-
erally unknown and this instrumental bias risks to be mis-
interpreted for climate signal (Camuffo et al. 2019, 2020b) 

Fig. 3  a Return period of 
precipitation events above the 
90th percentile (RP, black) and 
yearly frequency (YF, grey) of 
the Bologna series from 1813 
to 2016. Irregular time series 
composed of daily amounts 
higher than 1 mm. b Return 
period of events above the 90th 
and 99th percentile (RP90 and 
RP99, respectively) for the 
above series
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even if various techniques may be applied to detect discon-
tinuities and homogenize series affected by instrumental, 
location or other changes (Craddock 1979; Peterson et al. 
1998; Aguilar et al. 2003; Wijngaard et al. 2003; Costa and 
Soares 2009; Todd et al. 2015; WMO 2018). The climate 
signal becomes more evident if the analysis is performed 
considering the medium and intense precipitation and dis-
regarding the light one, e.g. < 1 mm per day, as in Fig. 3a, b. 
This confirms the observation that rainy-day percentiles are 
very sensitive to thresholds and evaporation losses that may 
affect the fraction of rainy days as well as their distribution, 
and may produce misleading results when used to address 
changes in heavy precipitation events (Schär et al. 2016).

Percentiles related to an irregular time series

The most general case is with any yearly frequency YF and 
any selected percentile threshold PT. The basic equation 
becomes

where the variables are two: YF related to climate; PT to an 
arbitrary choice of the percentile threshold. This equation is 
very general and may be applied to the regular events too, 
using the appropriate YF. From this equation, it is evident 
that the return periods of SP having the particular values 90; 
99; 99.9; 99.99; 99.999 etc. are related between them as 1; 
10;  102;  103;  104 and so forth.

An example for SP = 90 and 99 is shown in Fig. 3b for 
Bologna. Passing from SP = 90 to 99, RP increases by an 
order of magnitude. The two RP trends, however, remain 
unchanged. In this particular series and with 1 mm thresh-
old, a certain variability was visible especially in the first 
half of the nineteenth century, when the rain gauge was 
located on the Astronomical Tower at 48 m above ground 
level, thus strongly influenced by the more intense and vari-
able wind field (Respighi, 1857; Camuffo et al. 2019). Mile-
stones in instrument and exposure standardization were in 
1865, when the first Italian weather service for navy (named 
Servizio Operativo Marittimo) was created; 1879 when a 
general weather service (named Ufficio Centrale di Mete-
orologia) supervised all stations; 1925 when the forecast 
weather service of the air force (named Ufficio Presagi) 
became operative. Over the whole twentieth century, when 
the raingauge was at ground level under standard conditions, 
this parameter became stable, without evidence of increased 
frequency of extreme events over the most recent decades. 
This shows how the data homogeneity is a crucial prerequi-
site in long series.

Finally, this explains why Gilleland and Katz (2011) 
found the 95th and especially the 99th percentiles strongly 

(14)RP =
365

YF × PT
=

36500

YF(100 − SP)
(day),

correlated with the decadal top ten precipitation totals; 
similarly, Tu and Chou (2013), Knapp et al. (2015), Salack 
et al. (2018) and Wasko et al. (2018) preferred to classify 
as “extreme events” the most intense events on the basis of 
the 99th percentile.

Conclusions

This paper has analysed two crucial items: (1) how the return 
period may vary in response to the arbitrary choice of the 
threshold and, in particular, when it is expressed in terms 
of percentiles; (2) how the choice of producing a dataset in 
form of regular, or irregular time series may affect the yearly 
frequency and the related return periods.

The RP of an event is related to the occurrence, or the 
observation frequency, of a selected weather phenomenon. 
Depending on the weather variable, time series may be com-
posed of values distributed at regular time intervals (contin-
uous variables like temperature and pressure), or at irregular 
ones (event-oriented variables like extreme or less common 
weather events like floods, tornadoes and so on).

Precipitation constitutes a particular variable because it 
may be considered from two different points of view: (1) 
regular daily precipitation amounts, ranging from 0 (no 
precipitation) to the highest amount of collected water; 
(2) irregular daily precipitation amounts, starting from a 
selected instrumental or percentile threshold (i.e. only rainy 
days). The latter has lower YF and gives longer RP. Any 
quantitative information about climate changes is affected 
by the definition chosen.

When regular time series are considered, RP is irrespec-
tive of the observed record and is uniquely determined by 
the selected percentile threshold. RP and YF are inversely 
proportional between them and the RP of events exceed-
ing selected percentiles is independent of the length of the 
series. As RP depends on the arbitrary choice of the percen-
tile, its value is determined by the percentile and is not use-
ful to characterize a particular climate. However, different 
climate periods will be characterized by an uneven distribu-
tion of such extremes and this distribution may constitute 
climate information.

When irregular time series are considered (e.g. rainy-days 
only), RP depends on the selected percentile as well as on 
the actual value of YF, and may characterize a particular 
climate period.

In the general case of events at sub- or super-daily time 
scale and higher percentiles, RP is found considering that 
it is inversely proportional to the product of the yearly fre-
quency by the selected percentile level.

In the real world, WMO (2016) suggests a threshold 
value closer to the ends of the range; however, the value is 
not specified. IPCC (2014) suggests a lower and an upper 
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threshold (i.e. 10th and 90th percentile) that may be con-
venient for some datasets and certain purposes, but not 
for all. The results of this paper are in accordance with 
other Authors, i.e.: the approach is not unique, especially 
when dealing with variables that may be defined in differ-
ent ways, e.g. extreme precipitation (Pendergrass 2018). 
In addition, the choice of the statistical approach may be 
influential on the result (e.g. Coles 2001; Neves and Fraga-
Alves 2008).

This paper gives the key to calculate a proper percentile 
threshold for any observational frequency and any selected 
RP, and has shown that, in the case of regular series, the 
90th percentile may give too short RPs, which dissociates 
the concept of extreme from the concept of rare. In par-
ticular, it has been found that for a daily series it is neces-
sary to pass from the 90th to the 99.9726028th percentile 
to move from a 10-day to a 10-year RP. This poses the 
question: what is the most convenient length of a RP for 
an event to be considered “rare” and therefore extreme, as 
suggested by WMO (2016)? In the real world, the concept 
of rare should be tailored on the subject that should be 
protected from extreme events. For example, the agricul-
ture is vulnerable to moderately severe events and focuses 
on short RPs, while the infrastructure sector focuses on 
very long RPs, because civil works like bridges and dams 
should resist to extreme events with very low probability 
of occurrence.

This study suggests in particular that percentile thresh-
olds and RPs are strictly related between them by math-
ematical formulae, but their concepts are not equally 
related, because relatively high percentiles may be asso-
ciated with relatively short RPs. In other words, it may be 
misleading to use them synonymously, i.e. high percentile 
equal to long RP, but each of them has an individual mean-
ing and should be calculated for specific aims correspond-
ent to their very definitions. Briefly, in some cases, the 
percentile definition may be preferable (e.g. the analysis of 
a meteorological or hydrological records), while in others, 
the RP approach (e.g. forecast or design of engineering 
structures).
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Abstract
Site diversity gain prediction models were created to estimate mathematically the acquired benefits from the implementation 
of site diversity at place of choice. This work contributes to the comparison of existing gain prediction model to the gain 
of measured attenuation at Cyberjaya and Rawang, Malaysia. The experiment has been conducted for 4 years from 2014 to 
2017, in Ka band using a large 7.3-m diameter antenna and a high elevation angle of 68.8°, together with the rain analysis 
at both places for the same duration. The average monthly rainfall and attenuation for 4 years were presented. The results 
revealed that prediction model Hodge performs better than other models, while X. Yeo and Panagopoulos models appear to 
exhibit very similar graph shape to the measured gain data. More research on gain development in tropical region should be 
conducted, as the existing prediction model appears to be less consistent with the current data.

Keywords Signal propagation · Atmospheric attenuation · Ka-band signal · Model comparison · Site diversity

Introduction

The trend of wireless communication is gearing to 5G net-
work, which has capabilities of higher speed and larger 
bandwidth than earlier technology (4G). While terrestrial 
network is becoming a focus, satellite communication 
plays similar significant role to provide the requested future 
bandwidth capabilities, especially at unreachable area by 
the former. Ka band, Q/V band or even W band is a band 
of choice to provide this demand, because higher frequency 
corelates with higher capacity (Kyrgiazos et al. 2014). With 
high throughput satellite (HTS), this high capacity could be 
realized and resulted in consequent cost saving at roughly 
30% per annum in view of satellite communication service 
provider (Callaghan et al. 2008). Unfortunately, the high 

frequency is easily being degraded by tropospheric pre-
cipitation and scintillation. However, the most impairment 
comes from rain, together with cloud formation that contrib-
uted to the attenuation of the signal. Nonetheless, the effect 
of cloud attenuation is seen around 2–4 dB, impacting the 
received signal from the satellite (Omotosho et al. 2011; 
Yuan et al. 2017). This formation of cloud and the correlated 
attenuation is observed severe for VSAT (very small aperture 
terminal) (Yuan et al. 2016) at longer slant path and low 
elevation angle (Yang et al. 2013). For the past years, many 
techniques have been proposed to mitigate this weather 
effects. Most of the experiments studied the effect of rain 
attenuation at Ka-band frequency, using temperate region 
databank. The experimental samples observed in this region 
showed that the attenuation at Ka band is more severe than 
Ku, at mostly double the effect (Panagopoulos et al. 2004).

Fade mitigation technique (FMT) proposed power con-
trol, adaptive coding modulation (ACM) and diversity tech-
niques, as solutions depending on the purpose of the system 
application and requirement (Yussuff et al. 2017). However, 
since higher frequencies are expected to experience higher 
degree of signal degradations, so power control and ACM 
could no longer be applied (Rytir et al. 2017). Diversity 
itself is divided into four ways, namely frequency, time, sat-
ellite and site diversity. Among these techniques, site diver-
sity (SD) is viewed as more efficient (Ippolito 2017). The 
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concept of SD is to establish another receiver site at a sepa-
ration of at least a rain cell at about tens of kilometers (Pan-
agopoulos et al. 2005) to benefit from the inhomogeneity 
pattern of the rainfall. Both sites are receiving a signal from 
the same satellite, while the less attenuation sites will be 
chosen using selection combining or switching technique to 
be further process at the prime site (Rytir et al. 2017). This 
concept could be used together with ACM along the way 
after the selection has been made in case of severe condi-
tion of selected signal is still detected (Capsoni et al. 2009).

In tropical region, the number of SD studies is increasing 
recently. There are three types of data acquisition technique 
for SD investigation that have been conducted in the litera-
ture. One technique is using direct measurement from satel-
lite (Acosta et al. 2012; Cuervo et al. 2016), another tech-
nique is using weather radar data (Yeo et al. 2011; Lam et al. 
2015) and the third technique is using rainfall data (Islam 
et al. 2017; Harika et al. 2018). The propagation experi-
ment to investigate the effectiveness of SD scheme in tropi-
cal region was first reported by Timothy et al. (2001), where 
he compared the local gain measurement of two sites sepa-
rated by 12.3 km at Singapore with ITU-R SD gain model, 
using lowest claimed baseline orientation angle which was 
4°. Another comparison study was conducted by Yeo et al. 
(2011), also was based in Singapore. He used radar data to 
compare Hodge and ITU-R gain model and thus concluded 
that Hodge model was not sensitive to separation distance, 
while ITU-R model overestimated the gain in tropical region. 
The experiment was conducted at18.9 GHz signal with ele-
vation angle of 44.5°. Semire et al. (2014, 2015) investigated 
on SD link parameters at five different sites based in Malay-
sia, Indonesia, Philippines, Thailand and Fiji. The author 
compared Hodge, Panagopoulos and Nagaraja (2012) model 
at Ku-band signal, thus concluded that Hodge model is prac-
tical for separation distance below 10 km and Panagopoulos 
and Nagaraja models are best suited for temperate region. 
In year 2017, Islam et al. (2017) experimented SD scheme 
using rain attenuation deduced from rain intensity meas-
urement. The SD gain models were analyzed using local 
data, which was at International Islamic University Malaysia 
and Faculty of Engineering, UKM, Malaysia, separated by 
37 km. The comparison was made using elevation angle of 
77.4°, frequency 12 GHz and baseline angle of 0° and 90°, 
between ITU-R, Hodge, Panagopoulos and Semire models 
(Islam et al. 2017). With this local measurement, ITU-R and 
Hodge model showed good agreement when using baseline 
angle of 90°, while Panagopoulos gives better prediction of 
SD gain when baseline angle of 0° was used. Semire model 
was observed to underestimate the gain for both 0° and 90° 
baseline angles, probably because this model was derived 
from a small-scale data test values of baseline angle.

This study is motivated by the lack of Ka-band SD 
scheme research in Malaysia and in general in tropical 

regions. To the best knowledge of the authors, in year 2015, 
there was a study on SD scheme using 20.245 GHz fre-
quency at low degree of elevation angle; 25°, focusing on 
statistical analysis of rain fade dynamics (Jong et al. 2015). 
Therefore, there are less investigations on SD gain model 
at Ka band using direct measurement data from satellite 
with high elevation angle. From the comparison made by 
researchers in the literature, no prediction model shows con-
sistency with the local data in tropical region. Therefore, the 
model proposed by scholars of the field particularly focusing 
on tropical region climate need to be evaluated using various 
local configurations. In addition, since the distance of rain-
cell varies according to local terrain, the optimal exclusion 
zone for SD scheme should be considered to be as far as pos-
sible from the main site to avoid the same coming formation 
of coming cloud and rain caused by wind blow at nearby 
locality. SD gain prediction model is significant to assist the 
telecommunication engineer to estimate the capability of 
SD, before deploying the facilities. In other words, an effec-
tive investment can be performed by satellite operators if 
researchers can supply them with accurate and reliable tools 
to measure the level of SD technique, so that they can reduce 
costs and time to make decisions about the implementation 
of the scheme (Fenech et al. 2014).

This paper focuses on the SD gain obtained from live 
measurement of Ka-band signal at two separated location in 
west Malaysia with high elevation angle of 68.8° and large 
diameter of gateway antenna. The measured gain was com-
pared with the empirical model developed by Hodge, Pana-
gopoulos, Semire, X. Yeo, and ITU-R model as well. A brief 
description of each model is narrated at the next section, 
highlighting the differences of each other. Then, “Methods ” 
is the methods of the measurement, showing that the factors 
that contribute to the attenuation, and “Results and discus-
sions” discusses the results. Finally, a conclusion is drawn 
based on the results found.

Site diversity gain prediction models

Most common metric to measure the SD effectiveness is by 
calculating the gain and improvement factor. The SD gain is 
calculated as the difference between the attenuation of single 
site and attenuation of joint sites at the same percentage of 
probability of time exceedance. Due to scarce availability of 
measured data, two types of prediction methods are developed, 
which are physical and empirical model. This article focuses 
on empirical models, as it is more easily to be applied and 
provides faster results than physical models that require a com-
prehensive understanding of rain process, plus the difficulty of 
obtaining the data required to be used in the model (Yeo et al. 
2015). The first empirical model was proposed in 1981 (Hodge 
1981), an initiative from Hodge, that had started the research 
in early 1970’s. It was an improvement from the earlier version 
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(Hodge 1976), highlighting the fourth factors that contrib-
uted to the SD gain, which was the link frequency, with more 
experimental data than the former. This newly improved 
model, namely Hodge’s model was based on the 34 diversity 
experiments which was conducted in Canada, England, Japan 
and the United States, with frequencies ranged from 11.6 to 
30 GHz, separation distances from 1.7 to 46.9 km, elevation 
angle from 10.7° to 55° and baseline orientation angle from 
0° to 164° which was then scaled from 0° to 90° (Bosisio et al. 
1993; Hodge 1981). This model is a multiplicative of all gains 
contributed to the total overall site diversity gain,GSD , that are 
frequency, Gf , baseline orientation angle, G� , elevation angle, 
G� and site separation distance, Gd as in (1). 

With: Gd = a
(

1 − e−bd
)

,

where: a = 0.64A – 1.6(1-e−0.11A),
b = 0.585(1 − e−0.098A),

The model was then adopted in ITU-R with a bit modifica-
tion on the coefficient to suit the ITU-R databank (Ippolito 
2017). ITU-R model can be obtained from the guideline 
document available (ITU-R P.618–13 2017). Hodge model 
had been compared with another empirical techniques as well 
namely Goldhirsh, Allnutt and Rogers, and CCIR and physical 
model, namely Mass, Matricciani and Capsoni et al. model 
using temperate region databanks (Bosisio et al. 1993). The 
result was in favor to Hodge model. Panagopoulos et al. (2005) 
identified that Hodge model was not sensitive to the separation 
distance and portray gain saturation at a distance more than 
15 km. The gain was supposedly to increase proportionally 
to the distance due to higher decorrelation in rainfall events, 
which leads to unbalanced attenuation threshold at both sites. 
Therefore, the author proposed new coefficients to be used in 
the multiplication of the gain contributors, which is the addi-
tion of single site attenuation gain, such that in (2), so that it 
compensated the justified weaknesses of Hodge model, using 
temperate region database (Panagopoulos et al. 2005).

With:GAs
= 8.19As

0.0004 + 0.1809As − 8.2612,

(1)GSD = GfG�G�Gd,

Gf = 1.64e−0.025f ,

G� = 0.00492� + 0.834,

G� = 0.00177� + 0.887.

(2)GSD = GAs
GdGfG�G�

Gd = ln(3.6101d),

Gf = e−0.0006f ,

G� = 1.2347(1 − �−0.356),

Semire et al. (2015) experimented SD using databank 
from tropical region of five distinct countries, namely 
Malaysia, Philippines, Indonesia, Thailand and Fiji. Hodge 
model has been analyzed using the tropical region data and 
it was found that the model showed less accuracy at lower 
elevation angle and high frequency. Therefore, the author 
proposed new expressions and coefficients involving low 
elevation angles from 10° to 50° and high frequency up to 
70 GHz, while the model’s structure is unchanged and in line 
with the Hodge model, such that in (3). This new prediction 
model was compared with the original Hodge, Panagopoulos 
and Nagaraja (2012) models and it was apparently deduced 
that Semire et al. model predicted well than others when 
tested on data of tropics.

With: Gd = a
(

1 − e−bd
)

,

where: a = 0.7755A + 0.3374 (1 + e−9.16A),
b = 0.1584(1 + e−0.03164A),

G� = 0.899(1 + �−0.683),

Yeo et al. (2015) derived SD gain prediction model from 
experimental inference in Yeo et al. (2011) which concluded 
that the SD gain depends only on three factors; single site 
attenuation, As site separation distance, d and elevation 
angle, � . The model was in different structure than Hodge’s 
model such that in (4) (Yeo et al. 2015). The authors’ new 
model was compared with ITU-R Hodge-based model 
(empirical model) and ITU-R Paraboni–Barbaliscia (P–B) 
model (physical model). The result was in favor of Yeo’s 
model which was based on 2025 slant path attenuation of 
10–30 GHz frequencies at 45 sites in Singapore with eleva-
tion angle ranged from 10° to 90° at intervals of 20°. The 
site separation distance was varied from 5 to 37 km.

Methods

A live measurement to monitor the SD scheme has been con-
ducted at gateway stations, Cyberjaya (101.6584° E, 2.9356° 
N) and Rawang (101°33′16.6′′ E, 3°18′13.1′′ N) separated by 
a direct distance of 42.52 km. This monitoring activities are 
currently running by MEASAT Satellite System Sdn. Bhd., 

G� = 1 − 0.0006�.

(3)GSD = GdGfG�G�,

Gf = 1.006e−0.0015f − 0.395e−0.473f ,

G� = −0.0000015� + 0.9877.

(4)GSD =
(

−0.78 + 0.88As

)(

1 − e−0.18d
)(

1 + e−0.14�
)

.
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at Ka-band frequency (20.2 GHz) using large diameter earth 
station antenna of 7.3-m with antenna gain of 62.31 dB, ele-
vation angle of 68.8° and vertical polarization. The antenna 
received signals from MEASAT-5, a high throughput satel-
lite (HTS), with 87 Ku-band and 10 Ka-band transpond-
ers, deployed by space Systems/Loral (SS/L) contractors, 
located at 119.5° E with 63dBW EIRP. The beacon receiver 
samples in time series with 2 s interval at Cyberjaya and 
1 s interval at Rawang, stored in daily basis. The slant path 
attenuation at both locations was obtained by averaging each 
data to 1-min, thus deducting it with the clear sky value of 
the day. The spikes and outliers that were found in the time 
series data were eliminated, and 2 days (four files with the 
same date at Cyberjaya and Rawang) that consisted of data 
anomalies were removed as well. The anomalies might be 
caused by system malfunction or system under maintenance 
as they appeared to begin at the same point of time, such that 
in Fig. 1. Cyberjaya showed longer period of data unavail-
ability in Fig. 1. The percentage of data availability in aver-
age was 95.13% at Cyberjaya and 95.4% at Rawang for four 
years of measurements from January 1st, 2014 to December 
31st, 2017. Further analyses and single site results could be 
viewed in Samat and Mandeep (2020).

The averaged 1-min CCDF attenuation graphs were to 
allow the determination of joint attenuation. An internal 
program was developed to screen the data to get the low-
est attenuations amongst two sites. The program compares 
every 1-min average data for each day in Cyberjaya with the 
same data and day in Rawang. Two rain gauge was located 
near the stations, to record the rainfall in 1 min. The rain 
gauge was installed by Department of Drainage and Irriga-
tion (DID) Selangor, Malaysia to monitor the rain pattern 
at Cyberjaya and Rawang area, from January 1st, 2014 to 
December 31st, 2017. Rain value in millimeter (mm) was 
converted to millimeter per hour (mm/h) to represent the 
rain rate by multiplying each with 60. The 1-min rainfall was 
arranged in ascending order to calculate the frequencies of 
the same rain rate. Then, the probability of occurrences was 
derived using the accumulated frequencies divided by total 

amount of minutes for 1 month, thus the rain rate at percent-
age of probability of interest could be determined.

Baseline orientation angle was determined by measur-
ing the angle between azimuth line and baseline distance 
of Cyberjaya and Rawang, as shown in Fig. 2. The base-
line orientation angle was carefully ascertained based on 
the guideline given in the literature (Hodge 1981; Ippolito 
2017; Panagopoulos et al. 2005). Therefore, the significant 
parameters involved in this measurement are as listed in 
Table 1. From Table 1, the parameter associated with the 
SD prediction model was taken as input. Each SD gain pre-
diction model was reconstructed using Microsoft EXCELL 
including ITU-R P.618–13 diversity gain model. The aver-
age of 4 years measurement slant path attenuation at both 
sites was determined and was taken as input to the model as 
well. All results were discussed in the next section.

Results and discussions

From the experiment, the attenuation values were plotted 
and the percentage of time exceedance at 1%, 0.1% and 
0.01% were observed. Figures 3 and 4 shows the average 
monthly attenuation graph at Rawang and Cyberjaya for 
4 years started from 1st January of 2014 to 31st December 
of 2017. From Fig. 3, the highest average of attenuation was 
observed in April and November in Rawang. November is 
within northeast monsoon which started from November to 
March, and inter-monsoon is between end of March to end 
of April, then May to September is the southwest monsoon 
in Malaysia’s weather (Omotosho et al. 2017). The month 
of February experienced the lowest attenuation among all 
the months in the 4 years. From Fig. 3, the average attenu-
ation for percentage of signal unavailability at 1% of time 
was around 3 dB, 0.1% was in between 4 and 8 dB and 
0.01% was around 10–30 dB, then the twelve’s graphs tend 
to saturate above the 30 dB value. This might be due to the 
limitation of dynamic range value of the beacon receiver. At 
the same time, this beacon also received high noise from the 

Fig. 1  Data anomalies on 
28th of April 2014 during the 
same period at Cyberjaya and 
Rawang.
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system as well as airspace causing it to mistakenly identify 
the noise as a signal from the satellite. 

The graph of attenuation in Cyberjaya from 2014 to 2017 
in Fig. 4 depicted that the attenuation range of over the 
time of 1% was 1.5–2 dB, 0.1% was 2.6–5 dB and at 0.01% 
was from 8.2 to 24 dB, then the graph saturated and flat at 

around 26–27 dB. From this whole graph, it is observed 
that November was experiencing greater attenuation over 
the other months, as seen from the state of the graph being 
separated between the other graphs. The least attenuation 
was experienced in July when considering at 0.01% of signal 
outage time. Afterall, the attenuation value experienced in 
Cyberjaya at all months was less than Rawang. This condi-
tion is seen in relation to Fig. 6 which shows the low average 
rain intensity at 0.01 percentage of time exceedance of that 
site for 4 years compared to Rawang as in Fig. 5.

From Fig. 5, the rain rate was high in November at 
Rawang and the least was in February, the same goes 
at Cyberjaya in Fig. 6. The value of this monthly aver-
age accumulation is consistent due to northeast monsoon 
which is occurred in November to March of every year. 
The average of rain rate at 0.01 percent of time at Rawang 
ranges from 45 to 116 mm/h, and Cyberjaya ranges from 
39 to 112 mm/h. The average rain intensity for each year 

Rawang

Cyberjaya

Baseline Orientation 
Angle

Fig. 2  Baseline orientation angle, an angle between azimuth line (green line) and baseline direct distance of Cyberjaya and Rawang

Table 1  Parameter for SD gain measurement

Parameter Cyberjaya Rawang

Frequency (GHz) 20.2 20.2
Azimuth angle 99.3° 100.4°
Altitude (km) 0.01962 0.038
Elevation angle (°) 68.8° 68.8°
Antenna diameter (m) 8.1 8.1
Polarization Vertical Vertical
Baseline orientation angle 65° 65°
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Fig. 3  Average monthly attenuation from year 2014 to 2017 in Raw-
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Fig. 4  Average monthly attenuation from year 2014 to 2017 in 
Cyberjaya
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is displayed in Fig. 7. The rain intensity of 0.01 percentage 
of time exceedance at Cyberjaya was 80 mm/h, 76 mm/h, 
74 mm/h and 78 mm/h in year of 2014, 2015, 2016 and 
2017, respectively. While at Rawang, rainfall was more 
intense than Cyberjaya such that 92  mm/h, 82  mm/h, 
84  mm/h and 81  mm/h in year 2014, 2015, 2016 and 
2017, respectively, at the same percentage of time. Even 
though statistics conducted by Shayea et al. (2018) pre-
sented the average of 120 mm/h, the collected data were 
from June 2011 to May 2012. The author also admitted 
that the ITU-R latest prediction rain rate for Malaysia is 
still under investigation. Nevertheless, the latest ITU-R 
P.837–7 stated that the rain intensity in Malaysia is about 

100 mm/h. Therefore, in this case, the measurement of rain 
data did not differ much than predicted by ITU-R.

The average of attenuation and joint attenuation of year 
2014–2017 at each site was deduced and compared. Figure 8 
depicted that the trendline (average of two period) attenua-
tion at Rawang for 4 years measurement was 25.8 dB and at 
Cyberjaya was 17.4 dB. The differences between joint atten-
uation and single site attenuation at the same percentage of 
time were noted as gain. The site diversity improvement fac-
tor (IF) is calculated by taking the ratio of percentage of time 
of the same attenuation point at both sites, such that in (5). 
Ps is the percentage of time exceedance of single site (main 
sites), whereas Pd is the percentage of time exceedance of 
the joint graph at the same attenuation value. In this case, 
taking 12 dB of attenuation in Fig. 8 correlates to 0.02% of 
time exceedance at the Cyberjaya site and about 0.0016% 
of time exceedance at the diversity graph. Therefore, at this 
point of attenuation, the IF was 12.5, which mean a great 
improvement. This leads to meaning that for the same atten-
uation threshold, the signal unavailability could be improved 
to 0.0016% of time of an average year using site diversity 
scheme instead of only 0.02%.

From Fig. 8, it was measured that the gain obtained at 
0.01 percentage of time was 12.2 dB, measured between 
joint attenuation and Cyberjaya (main) site. The induced 
gain was compared with site diversity gain models as in 
Fig. 9.

All site diversity gain models deviated far from the meas-
ured gain at 0.1 percentage of time, as shown in Fig. 9. When 
percentage of time exceedance was approaching 0.02%, the 
Hodge model predicted gain was similar with the measured 
gain, then it goes a bit underestimated the gain at 0.01% of 
time. At this point of percentage of time, Semire model appar-
ently predicted the closest value as the measured gain. Fol-
lowing through the decreasing of time percentage, it can be 

(5)IF =
Ps(A)

Pd(A)
.
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noted that the measured gain was saturated at 0.005% of the 
time as what can be observed from the source of the original 
attenuation. Up to this point of percentage of time that the gain 
saturated, Semire model seems to have equal consistency of 
predicted gain value to the measured data. To further analyze 
the performance of each model, a statistical evaluation was 
performed according to ITU-R P.311–13 (2009). The root 
mean square error (r.m.s.e) was identified using formula (7). 
The test variable Ti was obtained from the logarithm of the 
ratio of predicted gain, Gp and measured gain, Gm , formulation 
of (6). For the measured gain less than 10 dB, a scaling factor 
is applied and without scaling factor for gain value of greater 
than 10 dB. The r.m.s.e values, denoted as rmse, was derived 
from the calculated mean, �T and its deviation, �T for each 
percentage of time. While N is the number of test variables 
and i is the count variable up to N . Table 2 shows the r.m.s.e 
values of each models.

(6)Si =
Gpi

Gmi

,

(7)Ti =

{

(
Gmi

10
)
0.2

xln
(

Si
)

forGmi < 10dB

ln(Si)forGmi ≥ 10dB

}

,

(8)�T =
1

N

∑N

i=1
Ti,

From the results of r.m.s.e, it is found that the Hodge 
model predicted the smallest error as a whole, calculated 
from a time exceedance of 1–0.005%, that is, before the time 
the measured graph gain changes to fall down. However, 
Hodge model tends to underestimate the gain from 0.005% 
and downward if the measured graph were to be extrapo-
lated up to 0.001% of time. It was obvious that the second 
least error was X. Yeo model, followed by Panagopoulos, 
Semire and ITU-R model. From the analysis of the mod-
els’ shape, X. Yeo and Panagopoulos model were portrayed 
similar shape with the measurement graph, which shows 
abrupt negative slope as the percentage of time decreases, 
at point 0.02% of time and downward. However, the gain 
predicted by both models is higher than the measured one, 
as if the measured gain was positively shifted at y-axis at a 
certain scale. X. Yeo model seems the most suitable predic-
tion model for this sample data, since it predicted less error 
than Panagopoulos model, and another merit is that it is 
having the same shape pattern of graph with the measured 
data. While Semire model apparently has the least error from 
0.02% of time up to 0.005% of time, the model predicted 
bigger error from 1 to 0.02% of time percentage. This con-
tributes to larger r.m.s.e to Semire model’s prediction.

Conclusion

The measurement of this study was obtained from two sites 
of Malaysia, at Cyberjaya and Rawang, of Ka-band HTS 
signal with large diameter of antenna and high elevation 
angle. The gain at 0.01% of time was measured as 12.2 dB, 
and when comparing with other models, at the same percent-
age of time, Semire Model shows the most suitable for the 
measured data. However, in overall, from the percentage 
of time exceedance of 1% up to 0.005%, where the point 
of attenuation saturated, none of models shows a compre-
hensive match to the measured gain. Though Hodge model 
shows the least r.m.s.e., yet from the visual observation of 
the graph, the lowest r.m.s.e value does not mean that it 
successfully predicted equal value as the measured gain for 
the whole percentage of time exceedance, only it portrayed 
less error than other models. The closest pattern of models’ 
graph with the measured one was X. Yeo and Panagopou-
los models, but both models overpredicted the gain. More 
research should be explored to further digging the character-
istics and factors that contribute to the development of site 
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Fig. 9  Comparison of each model; ITU-R, Semire, X.Yeo, Hodge and 
Panagopoulos with the measured gain

Table 2  RMSE value of each 
model

Models RMSE

ITU-R 0.578725742
Semire 0.507469426
X.Yeo 0.425821738
Hodge 0.383566864
Panagopoulos 0.476878661
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diversity gain model especially that is related to the pattern 
differences of two site’s attenuation thresholds, which are 
mainly influenced by the intensity of the local rain. There-
fore, from the observation of the analysis, the gain contribu-
tion to develop a prediction model such as frequency, base-
line angle, elevation angle and separation distance should 
be analysed further.
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Abstract
The Indian Regional Navigation Satellite System (IRNSS) is a newly functional regional satellite navigation system around 
Indian subcontinent. It is also known as its functioning name of NaVIC, Navigation with Indian Constellation, working on L5 
and S band. In this paper a compact and low cost circularly polarized microstrip patch antenna is proposed for IRNSS S band 
application, to provide single frequency navigation solution. Fabrication of proposed antenna is performed using substrate 
of RT Duroid 5880 with the dimensions of 0.66λ × 0.5λ. The performance of IRNSS is investigated by prototype antenna 
and Accord made triband antenna with IRNSS/GPS/SBAS receiver which is enable to receive L1, L5 and S band data. The 
comparison of proposed S band antenna, triband accord system antenna and GPS antenna is presented in terms of carrier to 
noise ratio and positioning error. Results show that proposed antenna is suitable for S band application of IRNSS receiver.

Keywords Indian Regional Navigation Satellite System · Microstrip patch antenna · Duroid · PVT-position, velocity, 
timing · IRNSS receiver · GPS

Introduction

Indian Regional Navigation Satellite System (IRNSS) is 
established and controlled by the Indian Space Research 
Organization (ISRO) under Government of India. This inde-
pendent navigation system was required for India since long 
back, because other global positioning and navigation sys-
tems are not reliable in inimical conditions. The main objec-
tive of the IRNSS is to provide positioning and navigation 
services to users in the Indian region. IRNSS is designed to 
provide navigation solutions to land, air and marine trans-
port users (Ganeshan et al. 2005) in place of GPS. IRNSS 
provides approximately 10-m accuracy for positioning in the 
Indian region and 20 m accuracy for positioning in 1500 km 
around the Indian region. There are seven satellites to make 
the IRNSS fully operational since May 2016. IRNSS trans-
mits signals in dual band namely L5 with centre frequency 

of 1176.45  MHz and S band with centre frequency of 
2492.028 MHz. So dual bands as well as any of the band 
can be used for the navigation purpose (ISRO 2019). Since 
S band is less prone to ionosphere effect, we focus on the S 
band antenna design. We also compare it with Accord made 
triband antenna and GPS antenna in terms of signal strength, 
carrier to noise ratio with positioning accuracy of IRNSS/
GPS/SBAS receiver.

Nowadays, very portable handheld wireless communica-
tion devices are in high demand for internet and mobile com-
munication. Antenna size and its gain is the major considera-
tion for these devices. Compact microstrip patch antenna is a 
better choice with portable communication devices. Naviga-
tion is one of the important application of satellite commu-
nication. For radio navigation, highly accurate receiver unit 
is required with its high gain antenna performance due to the 
longer distance between satellite and ground receiver (Wu 
et al. 2010; Bilotti and Vegni 2010). Circular polarization is 
preferred in satellite communication to overcome the limita-
tion of transmit and receive antenna orientation.(Sahal and 
Tiwari 2016) The axial ratio for circular polarization must be 
within the 3 dB to achieve circular polarization. Microstrip 
patch antenna is a thin flat structured antenna in which some 
simple techniques can be applied to get circular polarization, 
so it is preferable for satellite receivers.
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In this paper a low cost compact design of microstrip 
patch antenna is proposed for S band IRNSS application 
with circular polarization. A prototype of proposed antenna 
is fabricated and tested. Real time navigation signal, 
received with proposed antenna is closed confirmation with 
signal received by Accord made triband antenna. The posi-
tioning information and its error are found and discussed 
with proposed antenna, Accord made triband antenna and 
GPS antenna. Here, second section includes proposed “S 
band antenna design”, third section contains “Experimental 
setup”, fourth section comprises “Results and discussion”, 
and fifth section concludes the findings.

S band antenna design

The proposed design consists of conducting patch and 
ground plane, made up of copper with substrate of duroid 
with dielectric constant of 2.2. It contains loss tangent of 
0.0009 which exhibits very low dielectric loss. The antenna 
is fed with coaxial cable. The dimensions of the patch are 
38 mm × 29 mm, tuned to achieve 2.49 GHz in S band. 
Dimensions of the substrate are 80 mm × 60 mm with thick-
ness of 3.2 mm to get desired return loss and bandwidth. 
There are several methods to achieve circular polarization in 
microstrip patch antennas, like cross slits, truncated corners, 
and dual feed excited by two orthogonal modes technique 
etc. (Kumar and Ray 2003). The truncated-corners micro-
strip patch antenna is the best choice for small axial ratio 
with narrow axial ratio bandwidth (Sharma and Gupta 1983; 
Sahal and Tiwari 2016). Cross shaped slits gives circular 
polarization with good axial ratio bandwidth (Nasimuddin 
and Qing 2012). Feed location and feeding technique decides 
the impedance bandwidth and axial ratio which is ratio of 
minor and major axis of polarization circle or ellipse and it 
must be less than 3 dB, decides the polarization (Sahal and 
Tiwari 2016). As the circular polarization is preferred for 
satellite communication, half circular cuts are created at both 
diagonal corners to set the RHCP axial ratio is around 3 dB.

The proposed design of circularly polarized Microstrip 
patch antenna is focused for S band of IRNSS receiver with 
the resonant frequency of 2.4900 GHz. This design are pre-
pared and simulated in Ansoft HFSS 17. The prototype of 
proposed design is also prepared and initially tested on Key-
sight Field fox Microwave Analyzer N9916A.

Return loss is the loss of power which is returned back to 
the antenna. As much as the value of return loss is small, the 
antenna can radiate more in forward direction. So the smaller 
(negative) value of return loss is preferred. Generally, the 
return loss must be less than -10 dB is considered for practi-
cal application. For proposed antenna, the return loss found 
to be of − 27.85 dB with the bandwidth of 60 MHz. Imped-
ance bandwidth for simulated antenna is 2% and prototype 

antenna is 2.41%. The fabricated antenna received the reso-
nant frequency of 2.5422 GHz which was higher than the 
desired frequency. The simulation results of the design are 
not matched with prototype results when tested on micro-
wave analyzer and slight frequency deviation is found. So, 
the tuning stub is used on the edge of patch, to reduce the 
resonant frequency.

This stub will increase the effective length of patch and 
shift the axis of field electrically, also the position of feed 
point will be changed electrically. The effective length will 
determine the resonant frequency and effective position of 
feed point will decide the input impedance (Reddy et al. 
2015), resulting the desired frequency is achieved with very 
good value of return loss. When the length of the stub is very 
small, less than λ/4, then by changing its length and width, 
the resonant frequency of the microstrip patch antenna is 
tuned (Ray and Kumar 2000). Generally, the 10% tuning 
range of frequency is achieved by changing the length of 
stub from 0 to 1 cm (Roy and Jha 2019). The copper stub (as 
shown in Fig. 1a) of 19 mm × 2 mm is attached along the 
length of the patch which helped to set the desired resonant 
frequency. This antenna radiates on the center frequency of 
2.4845 GHz with the bandwidth of 60 MHz which covers S 
band operating bandwidth of IRNSS. The gain is 7.43 dBi 
and standing wave ratio of 1.24 dB. All these operating 
parameters make our antenna fully compatible to IRNSS 
application.

A planar microstrip patch antenna is having dielectric 
substrate between conducting ground plane and patch, due 
to which fringing effect is generated. It makes the effective 
dielectric constant always less than relative dielectric con-
stant of substrate. So effective width and effective length of 
patch is considered for further calculations. The effect of 
stub increases the overall resonant length of microstrip patch 
antenna from Le to Le + ∆l1, the value of ∆l1 can be found by 
following equation (Kumar and Ray 2003)

Fig. 1  a Top view of fabricated antenna, b bottom view of fabricated 
antenna
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where (we)(le) is effective area of stub and We is effective 
width of patch.

Now the new resonant frequency f0 will be (Kumar and 
Ray 2003)

where c is velocity of light in meter per second, Le is effec-
tive length for patch and Eeff is effective dielectric constant 
of substrate.

As the new desired frequency is known to us, we can find 
out the approximated length and width of stub by putting 
the value of f0 in Eq. (2) (Kumar and Ray 2003) (Table 1).

Here, Fig. 1a shows photograph of front side of fabricated 
antenna with corner truncated patch on the duroid substrate 
and a piece of copper wire is soldered on the surface of the 
patch for stub matching. Figure 1b shows the photograph of 
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back side of the fabricated antenna, over which the SMA 
connector is soldered to feed the antenna. Figure 2 shows 
the simulated and measured values of return loss (reflection 
coefficient), S11 in dB of proposed antenna. The red curve 
shows the simulated data and blue curve shows the experi-
mental data of return loss. Table 2 shows the comparison 
of antenna dimensions, patch type and size, bandwidth and 
gain of prototype antenna with other antennas present in the 
literature, and found that the size of proposed antenna is 
smaller with its gain value, comparing with other antennas.

Experimental setup

Ansys HFSS 17.2 is used to design and simulate the cir-
cularly polarized microstrip patch antenna for the resonant 
frequency of 2.49 GHz with RHCP axial ratio around 3 dB. 
The proposed design is fabricated using duroid substrate. 
Prototype of the antenna is initially tested with Keysight 
Field fox Microwave Analyzer N9916A and found that the 
results deviate from desired band. By properly designing and 
placing the stub, along the length of the patch, the resonant 
frequency of 2.4845 GHz is achieved with the return loss of 
− 27.85 dB for S band operation. Afterward this prototype 
antenna is connected with the IRNSS/GPS/SBAS receiver to 
receive the S band navigation signal by setting the receiver 
into S band mode only. There are two sets of IRNSS/GPS/
SBAS receivers (A314 and A315) are installed at IITRAM 
provided by SAC ISRO, Ahmedabad for the field trial of the 
IRNSS. Figure 3 shows antenna set up at terrace of IITRAM 
with Accord made triband antenna and proposed S Band 
antenna. Proposed S band antenna is connected to A315, 

Table 1  Comparison of simulated and measured results of prototype 
antenna

Parameters Simulated Measured

Resonant frequency 2.4900 GHz 2.4845 GHz
Return loss − 22.9331 dB − 27.85 dB
Gain 7.89 dB 7.43dBi
Bandwidth 52 MHz 60 MHz
Impedance bandwidth in % 2% 2.41%

Fig. 2  Simulated and measured value of return loss (reflection coefficient) S11 in dB for proposed antenna
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Accord made triband antenna is connected with A314 and 
GPS antenna is connected to its GPS receiver to collect the 
positioning data. The antenna is mounted at approximately 
25-m height from the ground at IITRAM. The value of 

carrier to noise ratio (C/N0) and positioning data have been 
analyzed to find the signal strength and position accuracy of 
IRNSS at stationary condition. Table 3 shows the specifica-
tions of our experimental setup using which the performance 
of IRNSS is analyzed with proposed S band antenna and 
Fig. 4 shows the front view of IRNSS/GPS/SBAS receiver 
and the computer monitor which shows the value of carrier 
to noise ratio. The vertical bars shown on both the screen 
are the amplitude of carrier to noise ratio. One bar indicates 
one channel received by receiver. As per Fig. 4, six channels 
are received, and according to atmospheric conditions its 
amplitude varies frequently.

Results and discussion

The performance analysis of IRNSS is carried out with 
three different antennas to evaluate the signal strength 
in terms of carrier to noise ratio and positioning error. 
The Accord made triband antenna is connected to A314 
IRNSS/GPS/SBAS receiver, the proposed S band antenna 
is connected to A315 IRNSS/GPS/SBAS receiver to 

Table 2  Comparison of proposed antenna performance parameters with other S band antenna design from the literature

Reference remarks Size of ant.  mm2 Patch type and size BW % Gain dBi

Nascetti et al. (2015) S band 
2450 MHz

96 * 96 Square 57 * 57 mm2 Not metioned 7.3

Pachigolla et al. (2018) ISM band 
2.4 GHz

50 * 50 Reactangle 29 * 38 mm2 3.75 1.75 for FR4, 4.1 for Arlon

Desai et al. (2018) Transparent Ant 
MIMO

Band 1: 2.4 GHz WLAN
Band 2: 3.7 GHz WiMAX

50 * 50 Slotted interconnected ring resonator 
24 mm diameter

Single element
Band 1: 18.70
Band 2: 21.28
2*1 element
Band 1: 11.29
Band 2: 11.64

Single element
Band 1: 1.12
Band 2: 2.28
2 * 1 element
Band 1: 1.98
Band 2: 2.95

Desai and Upadhyaya (2018) Transpar-
ent Ant for smart devices Band 1: 
2.4 GHz

Band 2: 5.5 GHz

35 * 35 Two over lapping rings 16.2 mm 
diameter

Band 1: 5.61
Band 2 : 3.62

Band 1: 0.70
Band 2: 1.67

Hussein et al. (2019) S band 2 to 
4 GHz

70 * 70 Gear shaped radiating patch 31 mm 
diameter

2.39 4.27

Proposed antenna 80 * 60 Rectangle 38 * 29 mm2 2.41 7.43

Fig. 3  Antenna set up at terrace of IITRAM

Table 3  Specification of 
experimental setup

System Indian Regional Navigation Satellite System

Antenna type Proposed antenna, accord made triband antenna, GPS antenna
Receiver type A314, A315 accord IRNSS/GPS/SBAS receiver, GPS receiver
Data type L1, L5, S band
Location Institute of Infrastructure Technology Research and Manage-

ment, Ahmedabad, Gujarat, India
Time period 25–31 March 2019
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collect real time navigation signal. Table 4 shows the val-
ues of carrier to noise ratio in dB and ionospheric delay 
correction model for Accord made triband antenna and 
proposed S band antenna. The acceptable value of C/N0 
for IRNSS is greater than 32 dB (Parmar et al. 2015). We 
found the carrier to noise ratio is between 37 and 41 dB 
for each channel of satellite and is in acceptable range for 

proposed S band prototype antenna. The first and eighth 
channels are not used for tracking. Channel number two 
to seven must be tracked and ninth channel can be tracked 
by adding PRN massage comment in IRNSS (ISRO 2019). 
The positioning information with Accord made triband 
antenna is 23.0044004129077 and 72.6216892127453 and 
positioning information with proposed S band antenna is 
23.0044471749422 and 72.6216352279293. This shows 
that the positioning data acquired by S band antenna is in 
good approximation with the triband antenna. Here, the 
location coordinates of IITRAM which are 23.00439687 
and 72.62182262 have been considered as a golden ref-
erence to determine the error in positioning (Rawat 
et al. 2018). So, the positioning error for S band proto-
type antenna is found which is less than 10 m. Table 5 
shows the latitude, longitude and altitude of IITRAM 
at stationary point using three different antennas with 
three different receivers. Table 6 shows that positioning 
error is 1.9 m for GPS antenna, 1.27 m for Accord made 
triband antenna (IRNSS dual band + GPS antenna) and 
1.29 m for proposed S band antenna. The altitude of the 
rooftop of the IITRAM is 84.50 m at which the IRNSS 
antennas are mounted. The altitude error is 3.81 m for 
GPS antenna, 6.29 m for Accord made triband antenna 
(IRNSS dual band + GPS antenna) and 5.27 m for pro-
posed S band antenna. For IITRAM, the X position is 
1,754,426.3 m, Y position is 5,605,814.42 m and Z posi-
tion is 2,477,176.59 m, which are considered as a golden 
reference or reference position stored in IRNSS/GPS/
SBAS receiver to calculate the positioning error. The posi-
tion error is calculated by Eq. (3) and it is verified with the 
receiver data also. The positioning error can be calculated 
by the following equation,

where X1, Y1 and Z1 are the instantaneous value of real time 
positioning data collected from the IRNSS receiver. The 
positioning data from receiver is subtracted from Golden 
reference, X, Y, Z individually, by adding and taking square 
of its answer and finally finding square root of it, we get 
the final positioning error at the location of IITRAM for 
stationary point.

(3)Error =

√

(

X − X
1

)2
+
(

Y − Y
1

)2
+
(

Z − Z
1

)2

Fig. 4  Experimental setup at lab of IITRAM

Table 4  Carrier to noise ratio for IRNSS channels received by Proto-
type antenna

a These data are changed continuously with minor variations accord-
ing to the time

Channel 
no.

PRN IRNSS+GPS mode 
(L1+L5+S) (Accord 
system antenna)

IRNSS S band mode 
(Prototype antenna)

C/N0
a (dB-

Hz)
Iono type C/N0

a (dB-
Hz)

Iono type

1 1 38.5 Dual 40.3 Grid
2 2 43.6 Dual 38.9 Grid
3 3 43.0 Dual 37.9 Grid
4 4 42.2 Dual 38.8 Grid
5 5 41.6 Dual 39.6 Grid
6 6 40.3 Dual 41.2 Grid
7 7 39.4 Dual 39.3 Grid

Table 5  Positioning information 
of IIT RAM with three different 
antennas

S. no. Antenna type Latitude Longitude Altitude (m)

1 GPS antenna 23.00440922470994 72.62166043201685 80.69
2 IRNSS dual band + GPS antenna 23.0044004129077 72.6216892127453 78.21
3 IRNSS S band antenna 23.0044471749422 72.6216352279293 79.23
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Conclusion

In this paper, a compact and low cost circularly polarized 
Microstrip patch antenna design is proposed for S band applica-
tion of IRNSS receiver. Initially, the hardware prototype of the 
proposed antenna is tested using Keysight Field fox Microwave 
Analyzer N9916A and found to be shifted from the desired 
resonant frequency of IRNSS receiver. After proper single 
stub matching, we achieved the desired resonant frequency 
and bandwidth in the hardware prototype. The positioning 
information of IITRAM is found by connecting Accord made 
triband antenna, proposed S band antenna and GPS antenna 
to individual receivers and compared the error in positioning 
data. Positioning error is least with Accord triband antenna 
which receives L1, L5 and S band data and altitude error is 
least with GPS antenna. A single frequency Grid model for 
ionosphere correction is applied for S band operation to correct 
the ionosphere delay and provides precise positioning data for 
single frequency user. Results reveal that the positioning error 
of 1.29 m for the single frequency operation using proposed 
prototype S band antenna is achieved, which are less than 10 m 
and fulfill the objective of Indian Regional Navigation Satellite 
System. Further, the signal strength, carrier to noise ratio and 
positioning data are found with good accuracy with proposed 
single band (S band) antenna also. This compact antenna can 
be used to find PVT and proved a good choice in the low cost 
for single band navigation solutions.
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